1
|
Li X, Ma M, Shao W, Wang H, Fan R, Chen X, Wang X, Zhan Y, Zeng F. Molecular cloning and functional analysis of a UV-B photoreceptor gene, BpUVR8 (UV Resistance Locus 8), from birch and its role in ABA response. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 274:294-308. [PMID: 30080616 DOI: 10.1016/j.plantsci.2018.06.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 06/02/2018] [Accepted: 06/12/2018] [Indexed: 05/21/2023]
Abstract
As a photoreceptor specifically for UV-B light, UVR8 gene plays an important role in the photomorphogenesis and developmental growth of plants. In this research, we isolated the UVR8 gene from birch, named BpUVR8 (AHY02156). BpUVR8 overexpression rescued the uvr8 mutant phenotype using functional complementation assay of BpUVR8 in Arabidopsis uvr8 mutants, which showed that the function of UVR8 is conserved between Arabidopsis and birch. The expression analysis of BpUVR8 indicated that this gene is expressed in various tissues, but its expression levels in leaves are higher than in other organs. Moreover, abiotic stress factors, such as UV-B, salinity, and abscisic acid (ABA) can induce the expression of BpUVR8 gene. Interestingly, the analysis of promoter activity indicated that BpUVR8 promoter not only has the promoting activity but can also respond to the induction of abiotic stress and ABA signal. So, we analyzed its function in ABA response via transgenic UVR8 overexpression in Arabidopsis. The BpUVR8 enhances the susceptibility to ABA, which indicates that BpUVR8 is regulated by ABA and can inhibit seed germination. The root length of 20-day-old 35S::BpUVR8/WT transgenic plants was 18% reduced as compared to the wild-type under the ABA treatment. The membrane of the BpUVR8-overexpressing in Arabidopsis thaliana was the most damaged after ABA treatment and 35S::BpUVR8/WT transgenic plant was more sensitive to ABA than the wild type. These results showed that BpUVR8 is a positive regulator in the ABA signal transduction pathway. In the presence of low dose of UV-B, the sensitivity of wild-type and 35S::BpUVR8/WT plants to ABA was reduced. Moreover, BpUVR8 regulates the expression of a subset of ABA-responsive genes, both in Arabidopsis and Betula platyphylla, under the ABA treatment. Our data provide evidence that BpUVR8 is a positive regulator in the UV-B-induced photomorphogenesis in plants. Moreover, we propose from this research that BpUVR8 might have an important role in integrating plant growth and ABA signaling pathway.
Collapse
Affiliation(s)
- Xiaoyi Li
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Minghao Ma
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Wanxuan Shao
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Hengtao Wang
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Ruixin Fan
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Xiaohui Chen
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Xigang Wang
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin 150040, China
| | - Yaguang Zhan
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin 150040, China; College of Life Science, Northeast Forestry University, Harbin 150040, China.
| | - Fansuo Zeng
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin 150040, China; College of Life Science, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
2
|
Rodriguez RA, Yu L, Chen LY. Computing Protein-Protein Association Affinity with Hybrid Steered Molecular Dynamics. J Chem Theory Comput 2016; 11:4427-4438. [PMID: 26366131 DOI: 10.1021/acs.jctc.5b00340] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Computing protein-protein association affinities is one of the fundamental challenges in computational biophysics/biochemistry. The overwhelming amount of statistics in the phase space of very high dimensions cannot be sufficiently sampled even with today's high-performance computing power. In this article, we extend a potential of mean force (PMF)-based approach, the hybrid steered molecular dynamics (hSMD) approach we developed for ligand-protein binding, to protein-protein association problems. For a protein complex consisting of two protomers, P1 and P2, we choose m (≥3) segments of P1 whose m centers of mass are to be steered in a chosen direction and n (≥3) segments of P2 whose n centers of mass are to be steered in the opposite direction. The coordinates of these m + n centers constitute a phase space of 3(m + n) dimensions (3(m + n)D). All other degrees of freedom of the proteins, ligands, solvents, and solutes are freely subject to the stochastic dynamics of the all-atom model system. Conducting SMD along a line in this phase space, we obtain the 3(m + n)D PMF difference between two chosen states: one single state in the associated state ensemble and one single state in the dissociated state ensemble. This PMF difference is the first of four contributors to the protein-protein association energy. The second contributor is the 3(m + n - 1)D partial partition in the associated state accounting for the rotations and fluctuations of the (m + n - 1) centers while fixing one of the m + n centers of the P1-P2 complex. The two other contributors are the 3(m - 1)D partial partition of P1 and the 3(n - 1)D partial partition of P2 accounting for the rotations and fluctuations of their m - 1 or n - 1 centers while fixing one of the m/n centers of P1/P2 in the dissociated state. Each of these three partial partitions can be factored exactly into a 6D partial partition in multiplication with a remaining factor accounting for the small fluctuations while fixing three of the centers of P1, P2, or the P1-P2 complex, respectively. These small fluctuations can be well-approximated as Gaussian, and every 6D partition can be reduced in an exact manner to three problems of 1D sampling, counting the rotations and fluctuations around one of the centers as being fixed. We implement this hSMD approach to the Ras-RalGDS complex, choosing three centers on RalGDS and three on Ras (m = n = 3). At a computing cost of about 71.6 wall-clock hours using 400 computing cores in parallel, we obtained the association energy, -9.2 ± 1.9 kcal/mol on the basis of CHARMM 36 parameters, which well agrees with the experimental data, -8.4 ± 0.2 kcal/mol.
Collapse
Affiliation(s)
- Roberto A Rodriguez
- Department of Physics, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249 USA
| | - Lili Yu
- Department of Physics, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249 USA
| | - Liao Y Chen
- Department of Physics, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249 USA
| |
Collapse
|
3
|
Zeng X, Ren Z, Wu Q, Fan J, Peng PP, Tang K, Zhang R, Zhao KH, Yang X. Dynamic Crystallography Reveals Early Signalling Events in Ultraviolet Photoreceptor UVR8. NATURE PLANTS 2015; 1:14006. [PMID: 26097745 PMCID: PMC4469132 DOI: 10.1038/nplants.2014.6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 10/23/2014] [Indexed: 05/19/2023]
Abstract
Arabidopsis thaliana UVR8 (AtUVR8) is a long-sought-after photoreceptor that undergoes dimer dissociation in response to UV-B light. Crystallographic and mutational studies have identified two crucial tryptophan residues for UV-B responses in AtUVR8. However, the mechanism of UV-B perception and structural events leading up to dimer dissociation remain elusive at the molecular level. We applied dynamic crystallography to capture light-induced structural events in photoactive AtUVR8 crystals. Here we report two intermediate structures at 1.67Å resolution. At the epicenter of UV-B signaling, concerted motions associated with Trp285/Trp233 lead to ejection of a water molecule, which weakens an intricate network of hydrogen bonds and salt bridges at the dimer interface. Partial opening of the β-propeller structure due to thermal relaxation of conformational strains originating in the epicenter further disrupts the dimer interface and leads to dimer dissociation. These dynamic crystallographic observations provide structural insights into the photo-perception and signaling mechanism of UVR8.
Collapse
Affiliation(s)
- Xiaoli Zeng
- Key State Laboratory of Agricultural Microbiology, Huazhong
Agricultural University, Wuhan, Hubei 430070, P.R. China
| | - Zhong Ren
- Renz Research Inc., Westmont, IL 60559, USA
| | - Qi Wu
- Department of Physics and Materials Science, City University of Hong
Kong, Kowloon, Hong Kong
| | - Jun Fan
- Department of Physics and Materials Science, City University of Hong
Kong, Kowloon, Hong Kong
| | - Pan-Pan Peng
- Key State Laboratory of Agricultural Microbiology, Huazhong
Agricultural University, Wuhan, Hubei 430070, P.R. China
| | - Kun Tang
- Key State Laboratory of Agricultural Microbiology, Huazhong
Agricultural University, Wuhan, Hubei 430070, P.R. China
| | - Ruiqin Zhang
- Department of Physics and Materials Science, City University of Hong
Kong, Kowloon, Hong Kong
| | - Kai-Hong Zhao
- Key State Laboratory of Agricultural Microbiology, Huazhong
Agricultural University, Wuhan, Hubei 430070, P.R. China
| | - Xiaojing Yang
- Department of Biochemistry and Molecular Biology, The University of
Chicago, Chicago, IL 60637, USA
- Department of Chemistry, The University of Illinois at Chicago,
Chicago, IL 60607, USA
| |
Collapse
|
4
|
Mathes T, Heilmann M, Pandit A, Zhu J, Ravensbergen J, Kloz M, Fu Y, Smith BO, Christie JM, Jenkins GI, Kennis JTM. Proton-Coupled Electron Transfer Constitutes the Photoactivation Mechanism of the Plant Photoreceptor UVR8. J Am Chem Soc 2015; 137:8113-20. [DOI: 10.1021/jacs.5b01177] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Tilo Mathes
- Biophysics
Section, Department of Physics and Astronomy, Faculty of Sciences, VU University, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Monika Heilmann
- Institute
of Molecular, Cell and Systems Biology, College of Medical, Veterinary
and Life Sciences, Bower Building, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Anjali Pandit
- Biophysics
Section, Department of Physics and Astronomy, Faculty of Sciences, VU University, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
- Department
of Solid-State NMR, Leiden Institute of Chemistry, Leiden University, Einsteinweg
55, 2333 CC Leiden, The Netherlands
| | - Jingyi Zhu
- Biophysics
Section, Department of Physics and Astronomy, Faculty of Sciences, VU University, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Janneke Ravensbergen
- Biophysics
Section, Department of Physics and Astronomy, Faculty of Sciences, VU University, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Miroslav Kloz
- Biophysics
Section, Department of Physics and Astronomy, Faculty of Sciences, VU University, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Yinan Fu
- Institute
of Molecular, Cell and Systems Biology, College of Medical, Veterinary
and Life Sciences, Bower Building, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Brian O. Smith
- Institute
of Molecular, Cell and Systems Biology, College of Medical, Veterinary
and Life Sciences, Bower Building, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - John M. Christie
- Institute
of Molecular, Cell and Systems Biology, College of Medical, Veterinary
and Life Sciences, Bower Building, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Gareth I. Jenkins
- Institute
of Molecular, Cell and Systems Biology, College of Medical, Veterinary
and Life Sciences, Bower Building, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - John T. M. Kennis
- Biophysics
Section, Department of Physics and Astronomy, Faculty of Sciences, VU University, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
5
|
Structure and function of the UV-B photoreceptor UVR8. Curr Opin Struct Biol 2014; 29:52-7. [DOI: 10.1016/j.sbi.2014.09.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 09/01/2014] [Accepted: 09/11/2014] [Indexed: 11/18/2022]
|
6
|
Li X, Chung LW, Morokuma K, Li G. Theoretical Study on the UVR8 Photoreceptor: Sensing Ultraviolet-B by Tryptophan and Dissociation of Homodimer. J Chem Theory Comput 2014; 10:3319-30. [DOI: 10.1021/ct5003362] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Xin Li
- State
Key Lab of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Dalian 116023, China
| | - Lung Wa Chung
- Fukui
Institute for Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan
- Department
of Chemistry, South University of Science and Technology of China, Shenzhen 518055, China
| | - Keiji Morokuma
- Fukui
Institute for Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan
| | - Guohui Li
- State
Key Lab of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Dalian 116023, China
| |
Collapse
|
7
|
On the mechanism of photoinduced dimer dissociation in the plant UVR8 photoreceptor. Proc Natl Acad Sci U S A 2014; 111:5219-24. [PMID: 24639509 DOI: 10.1073/pnas.1402025111] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
UV-B absorption by the photoreceptor UV resistance locus 8 (UVR8) consisting of two identical protein units triggers a signal chain used by plants in connection with protection and repair of UV-B induced damage. X-ray structural analysis of the purified protein [Christie JM, et al. (2012) Science 335(6075):1492-1496] [Wu D, et al. (2012) Nature 484(7393): 214-220] has revealed that the dimer is held together by arginine-aspartate salt bridges. In this paper we address the initial processes in the signal chain. On the basis of high-level quantum-chemical calculations, we propose a mechanism for the photodissociation of UVR8 that consists of three steps: (i) In each monomer, multiple tryptophans form an extended light-harvesting system in which the La excited state of Trp233 experiences strong electrostatic stabilization by the protein environment. The strong stabilization singles out this tryptophan to be an efficient exciton acceptor that accumulates the excitation energy from the entire protein subunit. (ii) A fast decay of the locally excited state by charge separation generates the radical ion pair Trp285(+)-Trp233(-) with a dipole moment of ∼18 D. (iii) Key to the proposed mechanism is that this large dipole moment drives the breaking of the salt bridges between the two monomer subunits. The suggested mechanism for the UV-B-driven dissociation of the dimer that rests on the prominent players Trp233 and Trp285 explains the experimental results obtained from mutagenesis of UVR8.
Collapse
|
8
|
Wu M, Strid Å, Eriksson LA. Photochemical reaction mechanism of UV-B-induced monomerization of UVR8 dimers as the first signaling event in UV-B-regulated gene expression in plants. J Phys Chem B 2014; 118:951-65. [PMID: 24410443 DOI: 10.1021/jp4104118] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The Arabidopsis thaliana UV RESISTANCE LOCUS8 (UVR8) protein has been identified to specifically mediate photomorphogenic UV-B responses by acting as a UV-B photoreceptor. The dimeric structure of the UVR8 protein dissociates into signaling-active monomers upon UV-B exposure, and the monomers rapidly interact with downstream signaling components to regulate gene expression. UVR8 monomers revert to dimers in the absence of UV-B radiation, thereby reversing transcription activation. UVR8 amino acid residues W233 and W285 have been identified to play critical roles in the UVR8 dimer for the response to UV-B irradiation. In the present work, the photoreaction mechanism for UVR8 monomerization is explored with quantum chemical cluster calculations and evaluated by molecular dynamics simulations using the wild-type UVR8 dimer and novel force field parameters developed for intermediate radicals formed in the photochemical process. Three different models are investigated, which show that the preferred mechanism for UVR8 monomerization involves electron transfer from residue W233 to W285 and onward to R338 initiated by UV-B irradiation, coupled to simultaneous proton transfer from W233 to D129 leading to the formation of protonated D129, a deprotonated W233 radical, and a neutral R338 radical. Due to the formation of the neutral R338 radical, salt bridges involving this residue are disrupted together with the concomitant interruption of several other key salt bridges R286-D96, R286-D107, R338-D44, R354-E43, and R354-E53. The resulting large decrease in protein-protein interaction energy arising from this sequence of events leads to the monomerization of the UVR8 dimer. The mechanism presented is in accord with all experimental data available to date.
Collapse
Affiliation(s)
- Min Wu
- Department of Chemistry and Molecular Biology, University of Gothenburg , SE-412 96 Göteborg, Sweden
| | | | | |
Collapse
|