1
|
Jung S, Yoo S. Interpretable prediction of drug-drug interactions via text embedding in biomedical literature. Comput Biol Med 2025; 185:109496. [PMID: 39626457 DOI: 10.1016/j.compbiomed.2024.109496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/21/2024] [Accepted: 11/26/2024] [Indexed: 01/26/2025]
Abstract
Polypharmacy is a promising approach for treating diseases, especially those with complex symptoms. However, it can lead to unexpected drug-drug interactions (DDIs), potentially reducing efficacy and triggering adverse drug reactions (ADRs). Predicting the risk of DDIs is crucial for ensuring safe drug use, particularly by identifying the types of DDIs and the mechanisms involved. Therefore, this study used biomedical literature to proposed hierarchical attention-based deep learning models to predict DDIs and their types. The proposed model consists of two components: drug embedding and DDI prediction. The drug embedding module extracts representation vectors that effectively capture drug properties using sentence and sequence embedding methods. For sentence embedding, a pre-trained biomedical language model is used to map drug-related sentences into vector space. For sequence embedding, sentence embedding vectors are sequentially fed into bidirectional long short-term memory with a hierarchical attention network, enabling the analysis of sentences relevant to DDI prediction while accounting for the order of the sentences. Finally, DDI prediction is performed using a deep neural network based on the sequence embedding vectors of a drug pair. Our model achieved high performances in the accuracy (0.85-0.90), AUROC (0.98-0.99), and AUPR (0.63-0.95) performance across 164 DDI types. Additionally, the proposed model showed improvements in up to 11 % in AUROC, and 8 % in AUPR. Furthermore, model interprets predictions by leveraging attention mechanisms and drug similarity. The results indicated that the model considered various factors beyond similarity to predict DDIs. These findings may help prevent unforeseen medical accidents and reduce healthcare costs by predicting detailed drug interaction types.
Collapse
Affiliation(s)
- Sunwoo Jung
- Department of Intelligent Electronics and Computer Engineering, Chonnam National University, Gwangju, 61186, South Korea.
| | - Sunyong Yoo
- Department of Intelligent Electronics and Computer Engineering, Chonnam National University, Gwangju, 61186, South Korea.
| |
Collapse
|
2
|
Beltrán González AN, López Pazos MI, Del Vas M, Calvo DJ. Negative modulation of the GABA Aρ1 receptor function by histamine. Eur J Pharmacol 2023; 955:175880. [PMID: 37406850 DOI: 10.1016/j.ejphar.2023.175880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/12/2023] [Accepted: 06/26/2023] [Indexed: 07/07/2023]
Abstract
Besides its function as a local mediator of the immune response, histamine can play a role as a neurotransmitter and neuromodulator. Histamine actions are classically mediated through four different G protein-coupled receptor subtypes but non-classical actions were also described, including effects on many ligand-gated ion channels. Previous evidence indicated that histamine acts as a positive modulator on diverse GABAA receptor subtypes, such as GABAAα1β2γ2, GABAAα2β3γ2, GABAAα3β3γ2, GABAAα4β3γ2 and GABAAα5β3γ2. Meanwhile, its effects on GABAAρ1 receptors, known to stand for tonic currents in retinal neurons, had not been examined before. The effects of histamine on the function of human homomeric GABAAρ1 receptors were studied here, using heterologous expression in Xenopus laevis oocytes followed by the electrophysiological recording of GABA-evoked Cl- currents. Histamine inhibited GABAAρ1 receptor-mediated responses. Effects were reversible, independent of the membrane potential, and strongly dependent on both histamine and GABA concentration. A rightward parallel shift in the concentration-response curve for GABA was observed in the presence of histamine, without substantial change in the maximal response or the Hill coefficient. Results were compatible with a competitive antagonism of histamine on the GABAAρ1 receptors. This is the first report of inhibitory actions exerted by histamine on an ionotropic GABA receptor.
Collapse
Affiliation(s)
- Andrea N Beltrán González
- Laboratorio de Neurobiología Celular y Molecular, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIByNE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires (UBA), Ciudad Autónoma de Buenos Aires, Argentina
| | - Manuel I López Pazos
- Laboratorio de Neurobiología Celular y Molecular, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIByNE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires (UBA), Ciudad Autónoma de Buenos Aires, Argentina
| | - Mariana Del Vas
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Daniel J Calvo
- Laboratorio de Neurobiología Celular y Molecular, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIByNE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires (UBA), Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
3
|
Miller B, Powell A, Gutierrez BA, Limon A. Microtransplantation of Synaptic Membranes to Reactivate Human Synaptic Receptors for Functional Studies. J Vis Exp 2022:10.3791/64024. [PMID: 35938847 PMCID: PMC10729793 DOI: 10.3791/64024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Excitatory and inhibitory ionotropic receptors are the major gates of ion fluxes that determine the activity of synapses during physiological neuronal communication. Therefore, alterations in their abundance, function, and relationships with other synaptic elements have been observed as a major correlate of alterations in brain function and cognitive impairment in neurodegenerative diseases and mental disorders. Understanding how the function of excitatory and inhibitory synaptic receptors is altered by disease is of critical importance for the development of effective therapies. To gain disease-relevant information, it is important to record the electrical activity of neurotransmitter receptors that remain functional in the diseased human brain. So far this is the closest approach to assess pathological alterations in receptors' function. In this work, a methodology is presented to perform microtransplantation of synaptic membranes, which consists of reactivating synaptic membranes from snap frozen human brain tissue containing human receptors, by its injection and posterior fusion into the membrane of Xenopus laevis oocytes. The protocol also provides the methodological strategy to obtain consistent and reliable responses of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and γ-aminobutyric acid (GABA) receptors, as well as novel detailed methods that are used for normalization and rigorous data analysis.
Collapse
Affiliation(s)
- Brice Miller
- The Mitchell Center for Neurodegenerative Diseases, Department of Neurology, University of Texas Medical Branch
| | - Ashli Powell
- The Mitchell Center for Neurodegenerative Diseases, Department of Neurology, University of Texas Medical Branch
| | - Berenice A Gutierrez
- The Mitchell Center for Neurodegenerative Diseases, Department of Neurology, University of Texas Medical Branch
| | - Agenor Limon
- The Mitchell Center for Neurodegenerative Diseases, Department of Neurology, University of Texas Medical Branch;
| |
Collapse
|
4
|
Ochoa-de la Paz L, Zenteno E, Gulias-Cañizo R, Quiroz-Mercado H. Taurine and GABA neurotransmitter receptors, a relationship with therapeutic potential? Expert Rev Neurother 2019; 19:289-291. [DOI: 10.1080/14737175.2019.1593827] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Lenin Ochoa-de la Paz
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, México City, México
- Departamento de Investigación, Asociación para Evitar la Ceguera en México I.A.P. Hospital Dr. Luis Sánchez Bulnes, México City, México
| | - Edgar Zenteno
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, México City, México
| | - Rosario Gulias-Cañizo
- Departamento de Investigación, Asociación para Evitar la Ceguera en México I.A.P. Hospital Dr. Luis Sánchez Bulnes, México City, México
| | - Hugo Quiroz-Mercado
- Departamento de Investigación, Asociación para Evitar la Ceguera en México I.A.P. Hospital Dr. Luis Sánchez Bulnes, México City, México
| |
Collapse
|
5
|
Antagonistic effect of dopamine structural analogues on human GABAρ1 receptor. Sci Rep 2017; 7:17385. [PMID: 29234054 PMCID: PMC5727059 DOI: 10.1038/s41598-017-17530-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 11/24/2017] [Indexed: 12/12/2022] Open
Abstract
GABAergic and dopaminergic pathways are co-localized in several areas of the central nervous system and recently several reports have shown co-release of both neurotransmitters. The GABA-A receptor (β and ρ1 subunits) is modulated by dopamine (DA) and, interestingly, GABAρ1 can be modulated by several biogenic amines. Here we explored the effects of the metabolites of the dopaminergic pathway and other structural analogues of DA on GABAρ1 and the DA gated ion channel (LGC-53) from Caenorhabditis elegans expressed in Xenopus laevis oocytes. Our findings show an antagonistic effect of the metabolite 3-Methoxytyramine (3-MT, IC50 = 285 ± 30 µM) with similar potency compared to DA on induced GABA currents; however, it was inactive on LGC-53. The structural DA analogues and metabolites, 3, 4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), 2-phenylethylamine (β-PEA) and 4-amino-1-butanol (4-AM-1-OH), antagonized GABAρ1 currents, whereas β-PEA acted as partial agonists on LGC-53, indicating that the putative binding sites of both receptors may share structural characteristics. These results suggest that the DA metabolites 3-MT, DOPAC and HVA modulate GABAρ1 and possibly affect the activity of the receptors that include this subunit in vivo.
Collapse
|
6
|
Popova E, Kupenova P. Interaction between the serotoninergic and GABAergic systems in frog retina as revealed by electroretinogram. Acta Neurobiol Exp (Wars) 2017. [DOI: 10.21307/ane-2017-067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
7
|
Popova E, Kostov M, Kupenova P. Effects of dopamine D 1 receptor blockade on the ERG b- and d-waves during blockade of ionotropic GABA receptors. EYE AND VISION 2016; 3:32. [PMID: 27981058 PMCID: PMC5142325 DOI: 10.1186/s40662-016-0064-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 11/24/2016] [Indexed: 11/16/2022]
Abstract
Background Some data indicate that the dopaminergic and GABAergic systems interact in the vertebrate retina, but the type of interactions is not well understood. Methods In this study we investigated the effect of dopamine D1 receptor blockade by 75 μM SCH 23390 on the electroretinographic ON (b-wave) and OFF (d-wave) responses in intact frog eyecup preparations and in eyecups where the ionotropic GABA receptors were blocked by 50 μM picrotoxin. Student’s t-test, One-way repeated measures ANOVA with Bonferroni post-hoc test and Two-way ANOVA were used for statistical evaluation of the data. Results We found that SCH 23390 alone significantly enhanced the amplitude of the b- and d-waves without altering their latency. The effect developed rapidly and was fully expressed within 8-11 min after the blocker application. Picrotoxin alone also markedly enhanced the amplitude of the ERG ON and OFF responses and increased their latency significantly. The effect was fully expressed within 25-27 min after picrotoxin application and remained very stable in the next 20 min. The effects of SCH 23390 and picrotoxin are similar to that reported in our previous studies. When SCH 23390 was applied on the background of the fully developed picrotoxin effect, it diminished the amplitude of the b- and d-waves in comparison to the corresponding values obtained during application of picrotoxin alone. Conclusion Our results demonstrate that the enhancing effect of D1 receptor blockade on the amplitude of the ERG b- and d-waves is not evident during the ionotropic GABA receptor blockade, indicating an interaction between these neurotransmitter systems in the frog retina. We propose that the inhibitory effect of endogenous dopamine mediated by D1 receptors on the ERG ON and OFF responses in the frog retina may be due to the dopamine-evoked GABA release. Electronic supplementary material The online version of this article (doi:10.1186/s40662-016-0064-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elka Popova
- Department of Physiology, Medical University of Sofia, Sofia, Bulgaria
| | - Momchil Kostov
- Department of Physiology, Medical University of Sofia, Sofia, Bulgaria
| | - Petia Kupenova
- Department of Physiology, Medical University of Sofia, Sofia, Bulgaria
| |
Collapse
|
8
|
Mutagenesis and computational docking studies support the existence of a histamine binding site at the extracellular β3+β3− interface of homooligomeric β3 GABA A receptors. Neuropharmacology 2016; 108:252-63. [DOI: 10.1016/j.neuropharm.2016.04.042] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 04/06/2016] [Accepted: 04/28/2016] [Indexed: 12/31/2022]
|
9
|
Limon A, Estrada-Mondragón A, Ruiz JMR, Miledi R. Dipicrylamine Modulates GABAρ1 Receptors through Interactions with Residues in the TM4 and Cys-Loop Domains. Mol Pharmacol 2016; 89:446-56. [PMID: 26869399 DOI: 10.1124/mol.116.103432] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 02/09/2016] [Indexed: 02/02/2023] Open
Abstract
Dipicrylamine (DPA) is a commonly used acceptor agent in Förster resonance energy transfer experiments that allows the study of high-frequency neuronal activity in the optical monitoring of voltage in living cells. However, DPA potently antagonizes GABAA receptors that contain α1 and β2 subunits by a mechanism which is not clearly understood. In this work, we aimed to determine whether DPA modulation is a general phenomenon of Cys-loop ligand-gated ion channels (LGICs), and whether this modulation depends on particular amino acid residues. For this, we studied the effects of DPA on human homomeric GABAρ1, α7 nicotinic, and 5-HT3A serotonin receptors expressed in Xenopus oocytes. Our results indicate that DPA is an allosteric modulator of GABAρ1 receptors with an IC50 of 1.6 µM, an enhancer of α7 nicotinic receptors at relatively high concentrations of DPA, and has little, if any, effect on 5-HT3A receptors. DPA antagonism of GABAρ1 was strongly enhanced by preincubation, was slightly voltage-dependent, and its washout was accelerated by bovine serum albumin. These results indicate that DPA modulation is not a general phenomenon of LGICs, and structural differences between receptors may account for disparities in DPA effects. In silico modeling of DPA docking to GABAρ1, α7 nicotinic, and 5-HT3A receptors suggests that a hydrophobic pocket within the Cys-loop and the M4 segment in GABAρ1, located at the extracellular/membrane interface, facilitates the interaction with DPA that leads to inhibition of the receptor. Functional examinations of mutant receptors support the involvement of the M4 segment in the allosteric modulation of GABAρ1 by DPA.
Collapse
Affiliation(s)
- Agenor Limon
- Neurobiology and Behavior, University of California, Irvine, California (A.L., J.M.R.R., R.M.); Psychiatry and Human Behavior, University of California, Irvine, California (A.L.); and The Queensland Brain Institute, St. Lucia, Queensland, Australia (A.E.-M.)
| | - Argel Estrada-Mondragón
- Neurobiology and Behavior, University of California, Irvine, California (A.L., J.M.R.R., R.M.); Psychiatry and Human Behavior, University of California, Irvine, California (A.L.); and The Queensland Brain Institute, St. Lucia, Queensland, Australia (A.E.-M.)
| | - Jorge M Reyes Ruiz
- Neurobiology and Behavior, University of California, Irvine, California (A.L., J.M.R.R., R.M.); Psychiatry and Human Behavior, University of California, Irvine, California (A.L.); and The Queensland Brain Institute, St. Lucia, Queensland, Australia (A.E.-M.)
| | - Ricardo Miledi
- Neurobiology and Behavior, University of California, Irvine, California (A.L., J.M.R.R., R.M.); Psychiatry and Human Behavior, University of California, Irvine, California (A.L.); and The Queensland Brain Institute, St. Lucia, Queensland, Australia (A.E.-M.)
| |
Collapse
|
10
|
Abstract
Dopamine is a critical neuromodulator that activates GPCRs in mammals or ligand-gated ion channels in invertebrates. The present study demonstrates that dopamine (0.1-10 mm) exerts novel, opposing effects on different populations of mammalian (rat) GABAA receptors. Using whole-cell patch-clamp electrophysiology, we observed direct dopamine-mediated inhibition of tonic-level (1 μm) GABA-evoked currents in untransfected striatal neurons that could be recapitulated in HEK293 cells containing α1β3 or α1β2γ2 subunits. Surprisingly, direct activation by dopamine was seen in the absence of GABA with α1β2γ2, α5β3γ2, or α1β3γ2 transfections. This activity was also present in α1β3γ2 receptors containing a mutant β3 subunit (H267A [(Z)β3]) insensitive to trace levels of inhibitory Zn(2+). Dopamine activation required β and γ subunits but not α subunits ((Z)β3γ2 EC50 value, 660 μm). Dopamine activity was fully blocked by picrotoxin but not GABAA competitive antagonists, and was strongly correlated with spontaneous receptor activity. We also report opposing effects of bicuculline and gabazine, such that bicuculline surprisingly activated non-α-containing (β3γ2) GABAA receptors, whereas gabazine suppressed spontaneous activity in these receptors. Our results suggest that dopamine may directly inhibit GABAA receptors that are both immediately adjacent to dopamine release sites in the striatum and activated by tonic GABA. Furthermore, synaptic/phasic release of dopamine may directly enhance signaling at some spontaneously active noncanonical GABAA receptors that lack α subunits.
Collapse
|
11
|
Gallegos-Perez JL, Limon A, Reyes-Ruiz JM, Alshanqeeti AS, Aljohi MA, Miledi R. Analysis of free ACh and 5-HT in milk from four different species and their bioactivity on 5-HT(3) and nACh receptors. Food Funct 2015; 5:1489-94. [PMID: 24820623 DOI: 10.1039/c3fo60458f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Milk is one of the most beneficial aliments and is highly recommended in normal conditions; however, in certain disorders, like irritable bowel syndrome, cow milk and dairy products worsen the gastric symptoms and their use is not recommended. Among the most recognized milk-induced gatrointestinal symptoms are abdominal pain, nausea and vomiting, which are processes controlled by cholinergic and serotonergic transmission. Whether the presence of bioavailable ACh and 5-HT in milk may contribute to normal peristalsis, or to the developing of these symptoms, is not known. In this work we attempt to determine whether the content of free ACh and 5-HT is of physiological significance in milk from four different species: cow (bovine), goat, camel and human. Liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) was used to identify and quantify free ACh and 5-HT in milk, and activation of the serotonergic and cholinergic ionotropic receptors was investigated using electrophysiological experiments. Our principal hypothesis was that milk from these four species had sufficient free ACh and 5-HT to activate their correspondent receptors expressed in a heterologous system. Our results showed a more complex picture, in which free ACh and 5-HT and their ability to activate cholinergic and serotonergic receptors are not correlated. This work is a first step to elucidate whether 5-HT and ACh, at the concentrations present in the milk, can be associated to a direct function in the GI.
Collapse
Affiliation(s)
- Jose-Luis Gallegos-Perez
- Department of Neurobiology and Behavior, University of California, 2205 McGaugh Hall, Irvine, CA 92697, USA.
| | | | | | | | | | | |
Collapse
|
12
|
Limon A, Gallegos-Perez JL, Reyes-Ruiz JM, Aljohi MA, Alshanqeeti AS, Miledi R. The endogenous GABA bioactivity of camel, bovine, goat and human milks. Food Chem 2014; 145:481-7. [PMID: 24128504 DOI: 10.1016/j.foodchem.2013.08.058] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 08/05/2013] [Accepted: 08/14/2013] [Indexed: 10/26/2022]
Abstract
GABA orally administered has several beneficial effects on health, including the regulation of hyperglycaemic states in humans. Those effects are similar to the effects reported for camel milk (CMk); however, it is not known whether compounds with GABAergic activity are present in milk from camels or other species. We determined CMk free-GABA concentration by LS/MS and its bioactivity on human GABA receptors. We found that camel and goat milks have significantly more bioavailable GABA than cow and human milks and are able to activate GABAρ receptors. The relationship between GABA and taurine concentrations suggests that whole camel milk may be more efficient to activate GABAρ1 receptors than goat milk. Because GABAρ receptors are normally found in enteroendocrine cells in the lumen of the digestive tract, these results suggest that GABA in camel and goat milk may participate in GABA-modulated functions of enteroendocrine cells in the GI lumen.
Collapse
Affiliation(s)
- Agenor Limon
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA
| | | | | | | | | | | |
Collapse
|
13
|
El-Sayyad HIH, Khalifa SA, AL-Gebaly AS, El-Mansy AA. Aging related changes of retina and optic nerve of Uromastyx aegyptia and Falco tinnunculus. ACS Chem Neurosci 2014; 5:39-50. [PMID: 24215233 DOI: 10.1021/cn400154k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Aging is a biological phenomenon that involves gradual degradation of the structure and function of the retina and optic nerve. To our knowledge, little is known about the aging-related ocular cell loss in avian (Falco tinnunculus) and reptilian species (Uromastyx aegyptia). A selected 90 animals of pup, middle, and old age U. aegyptia (reptilian) and F. tinnunculus (avian) were used. The retinae and optic nerves were investigated by light and transmission electron microscopy (TEM) and assessments of neurotransmitters, antioxidant enzymes (catalase, superoxide dismustase and glutathione s transferase), caspase-3 and -7, malonadialdhyde, and DNA fragmentation. Light and TEM observations of the senile specimens revealed apparent deterioration of retinal cell layers, especially the pigmented epithelium and photoreceptor outer segments. Their inclusions of melanin were replaced by lipofuscins. Also, vacuolar degeneration and demyelination of the optic nerve axons were detected. Concomitantly, there was a marked increase of oxidative stress involved reduction of neurotransmitters and antioxidant enzymes and an increase of lipid peroxidation, caspase-3 and -7, subG0/G1 apoptosis, and P53. We conclude that aging showed an inverse relationship with the neurotransmitters and antioxidant enzymes and a linear relationship of caspases, malondialdhyde, DNA apoptosis, and P53 markers of cell death. These markers reflected the retinal cytological alterations and lipofuscin accumulation within inner segments.
Collapse
Affiliation(s)
| | - Soad A. Khalifa
- Department of Zoology, Faculty of Science, Mansoura University, Mansoura 002050, Egypt
| | - Asma S. AL-Gebaly
- Department of Biology, Science College, Princess Noura Bint Abdul Rahman University, Riyadh 11421, Kingdom of Saudia Arabia
| | - Ahmed A. El-Mansy
- Department of Zoology, Faculty of Science, Mansoura University, Mansoura 002050, Egypt
| |
Collapse
|
14
|
Reyes-Ruiz JM, Limon A, Miledi R. Cloning and characterization of the ionotropic GABA receptor subunit ρ1 from pig (Sus scrofa). Neurosci Lett 2014; 558:78-81. [PMID: 24239647 DOI: 10.1016/j.neulet.2013.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 10/28/2013] [Accepted: 11/03/2013] [Indexed: 11/16/2022]
Abstract
Since human and pig eyes have remarkably anatomical and physiological similitudes swine models have been broadly used for functional studies and therapeutic research. Recently, a GABAρ-mediated relaxation of retinal vascularity suggested that GABAρ signaling may be used to improve retinal blood flow in vascular-driven impaired vision, and a further molecular characterization of GABAρ receptors would be beneficial. However, none of the GABAρ type subunits from pigs has been yet cloned; Among the 19 subunits that compose the family of GABAA receptors, ρ1-3 subunits are capable of forming homomeric channels. These homomeric receptors are particularly interesting because their pharmacological and kinetic properties are notably different from receptors composed by other GABAA subunits. Here we report the cloning of the GABAρ1subunit from the pig and the functional expression of homomeric channels in Xenopus oocytes. The most notable difference found in the pig GABAρ1 receptor was the absence of a stretch of 17 amino acids near the amino terminus (R41-V58) conserved in the rat and the human. This sequence has a higher nucleotidic match with the transcript variant 2 of the human GABAρ1 subunit. Xenopus oocytes injected with cRNA from the receptor generated currents when exposed to GABA that shared all the characteristics of other GABAρ1 subunits in mammals, including its modulation by dopamine. This study will help to increase the knowledge of the genetics of the pig, further the understanding of this important neurotransmitter receptor family and will shed some light in the evolution of these genes among mammals.
Collapse
Affiliation(s)
| | - Agenor Limon
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697, USA
| | - Ricardo Miledi
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697, USA
| |
Collapse
|