1
|
Pandey PK, Chandra A. Mechanism, Kinetics, and Potential of Mean Force of Evaporation of Water from Aqueous Sodium Chloride Solutions of Varying Concentrations. J Phys Chem B 2023; 127:4602-4612. [PMID: 37163726 DOI: 10.1021/acs.jpcb.2c09004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The mechanism, kinetics, and potential of mean force of evaporation of water from aqueous NaCl solutions are investigated through both unbiased molecular dynamics simulations and also biased simulations using the umbrella sampling method. The results are obtained for aqueous solutions of three different NaCl concentrations ranging from 0.6 to 6.0 m and also for pure water. The rate of evaporation is found to decrease in the presence of ions. It is found that the process of evaporation of a surface water molecule from ionic solutions can be triggered through its collision with another water or chloride ion. Such collisions provide the additional kinetic energy that is required for evaporation. However, when the collision takes place with a Cl- ion, the evaporation of the escaping water also involves a collision with water in the vicinity of the ion at the same time along with the ion-water collision. These two collisions together provide the required kinetic energy for escape of the evaporating water molecule. Thus, the mechanism of evaporation process of ionic solutions can be more complex than that of pure water. The potential of mean force (PMF) of evaporation is found to be positive and it increases with increasing ion concentration. Also, no barrier in the PMF is found to be present for the condensation of water from vapor phase to the surfaces of the solutions. A detailed analysis of the unsuccessful evaporation attempts by surface water molecules is also made in the current study.
Collapse
Affiliation(s)
- Prashant Kumar Pandey
- Department of Chemistry, Indian Institute of Technology Kanpur, Uttar Pradesh, India 208016
| | - Amalendu Chandra
- Department of Chemistry, Indian Institute of Technology Kanpur, Uttar Pradesh, India 208016
| |
Collapse
|
2
|
Niblett SP, Galib M, Limmer DT. Learning intermolecular forces at liquid-vapor interfaces. J Chem Phys 2021; 155:164101. [PMID: 34717371 DOI: 10.1063/5.0067565] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
By adopting a perspective informed by contemporary liquid-state theory, we consider how to train an artificial neural network potential to describe inhomogeneous, disordered systems. We find that neural network potentials based on local representations of atomic environments are capable of describing some properties of liquid-vapor interfaces but typically fail for properties that depend on unbalanced long-ranged interactions that build up in the presence of broken translation symmetry. These same interactions cancel in the translationally invariant bulk, allowing local neural network potentials to describe bulk properties correctly. By incorporating explicit models of the slowly varying long-ranged interactions and training neural networks only on the short-ranged components, we can arrive at potentials that robustly recover interfacial properties. We find that local neural network models can sometimes approximate a local molecular field potential to correct for the truncated interactions, but this behavior is variable and hard to learn. Generally, we find that models with explicit electrostatics are easier to train and have higher accuracy. We demonstrate this perspective in a simple model of an asymmetric dipolar fluid, where the exact long-ranged interaction is known, and in an ab initio water model, where it is approximated.
Collapse
Affiliation(s)
- Samuel P Niblett
- Department of Chemistry, University of California, Berkeley California 94609, USA
| | - Mirza Galib
- Department of Chemistry, University of California, Berkeley California 94609, USA
| | - David T Limmer
- Department of Chemistry, University of California, Berkeley California 94609, USA
| |
Collapse
|
3
|
Ding Y. First principles molecular dynamics investigation on the water-ion interaction: A case of diluted CsI solution. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
4
|
Borah S, Kumar PP. Hydration structure of As–III aqueous solutions from ab initio molecular dynamics simulations. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
5
|
Comparative study of the structure and dynamics of water confined between nickel nanosheets and bulk water, a study using reactive force fields. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.112030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Liu J, Li X, Hou J, Li X, Lu Z. The Influence of Sodium Iodide Salt on the Interfacial Properties of Aqueous Methanol Solution by a Combined Molecular Simulation and Sum Frequency Generation Vibrational Spectroscopy Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:7050-7059. [PMID: 31055930 DOI: 10.1021/acs.langmuir.8b03847] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Understanding the influence of salt ions on the microscopic properties of liquid interfaces is of both fundamental and practical importance. A large number of previous experimental and theoretical investigations have explored the salt effects on the surfaces of either pure water or neat organic liquid. However, how the salt ions affect the interfacial structures of water/organic liquid mixtures has rarely been studied. Here, the molecular dynamics (MD) simulations and sum frequency generation vibrational spectroscopy (SFG-VS) were carried out to investigate the influence of sodium iodide (NaI) on the air/liquid interfaces of the methanol-water mixtures. The SFG-VS spectral intensities were discovered to increase with the addition of 3 M NaI, while the center frequencies of the C-H stretching vibrations at high methanol concentrations showed a ∼2 cm-1 blue shift compared with those obtained before adding NaI. The MD results indicated that Na+ and I- can only affect Part I (near the bulk phase) but not Part II (near the gas phase) of the interfacial region. It was also found that the average orientations of interfacial methyl groups were constant and not effectively disturbed by the changes of methanol concentrations or the addition of NaI. It is therefore concluded that the changes of the SFG-VS intensities upon the addition of NaI salts were mainly caused by the increasing number of interfacial methanol molecules. Further analysis showed that the existence of NaI affects the surface tensions more for the interfaces with higher bulk methanol concentrations, which is in agreement with the SFG-VS results. It is noteworthy that the maximum number density of methanol molecules with the net nonzero orientations is reached near the Gibbs dividing surface, the reasons of which are worth further investigating.
Collapse
Affiliation(s)
- Jianchuan Liu
- Beijing National Laboratory for Molecular Sciences and State Key Laboratory of Molecular Reaction Dynamics , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Xia Li
- Beijing National Laboratory for Molecular Sciences and State Key Laboratory of Molecular Reaction Dynamics , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Jian Hou
- Beijing National Laboratory for Molecular Sciences and State Key Laboratory of Molecular Reaction Dynamics , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Xun Li
- School of linguistics and literature , UESTC , Chengdu 611731 , China
| | - Zhou Lu
- Beijing National Laboratory for Molecular Sciences and State Key Laboratory of Molecular Reaction Dynamics , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , China
| |
Collapse
|
7
|
Ding Y. Ab initio molecular dynamics investigation on NaCl solution at diluted concentration. COMPUT THEOR CHEM 2019. [DOI: 10.1016/j.comptc.2019.02.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
8
|
Daub CD, Hänninen V, Halonen L. Ab Initio Molecular Dynamics Simulations of the Influence of Lithium Bromide on the Structure of the Aqueous Solution-Air Interface. J Phys Chem B 2019; 123:729-737. [PMID: 30605330 PMCID: PMC6727360 DOI: 10.1021/acs.jpcb.8b10552] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
We
present the results of ab initio molecular dynamics simulations
of the solution–air interface of aqueous lithium bromide (LiBr).
We find that, in agreement with the experimental data and previous
simulation results with empirical polarizable force field models,
Br– anions prefer to accumulate just below the first
molecular water layer near the interface, whereas Li+ cations
remain deeply buried several molecular layers from the interface,
even at very high concentration. The separation of ions has a profound
effect on the average orientation of water molecules in the vicinity
of the interface. We also find that the hydration number of Li+ cations in the center of the slab Nc,Li+–H2O ≈ 4.7 ±
0.3, regardless of the salt concentration. This estimate is consistent
with the recent experimental neutron scattering data, confirming that
results from nonpolarizable empirical models, which consistently predict
tetrahedral coordination of Li+ to four solvent molecules,
are incorrect. Consequently, disruption of the hydrogen bond network
caused by Li+ may be overestimated in nonpolarizable empirical
models. Overall, our results suggest that empirical models, in particular
nonpolarizable models, may not capture all of the properties of the
solution–air interface necessary to fully understand the interfacial
chemistry.
Collapse
Affiliation(s)
- Christopher D Daub
- Department of Chemistry , University of Helsinki , P.O. Box 55, Helsinki 00014 , Finland
| | - Vesa Hänninen
- Department of Chemistry , University of Helsinki , P.O. Box 55, Helsinki 00014 , Finland
| | - Lauri Halonen
- Department of Chemistry , University of Helsinki , P.O. Box 55, Helsinki 00014 , Finland
| |
Collapse
|
9
|
Borah S, Kumar PP. Ab initio molecular dynamics study of Se(iv) species in aqueous environment. Phys Chem Chem Phys 2016; 18:26755-26763. [PMID: 27711537 DOI: 10.1039/c6cp04725d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
An ab initio molecular dynamics investigation is carried out on various water-borne Se(iv) species, H2SeO3, HSeO3- and SeO32-, in aqueous environment. Consistent with the reported acid dissociation constants, in neutral solution H2SeO3 exchanges protons with the surrounding water molecules establishing a dynamic equilibrium with HSeO3-. The SeO32- species is found to be stable only in basic environment, which is emulated in the present simulation through introducing a hydroxide ion, OH-, in the system. The hydration structure, hydrogen bonding and spectroscopic signatures of the species are comprehensively analyzed. The influence of the solute's hydration structure on the structural and dynamic response of the solvent is discussed. The correlation between the strength as well as the number of hydrogen bonds accepted by the solute on its vibrational properties are analyzed.
Collapse
Affiliation(s)
- Sangkha Borah
- Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India.
| | - P Padma Kumar
- Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India.
| |
Collapse
|
10
|
Partanen L, Murdachaew G, Gerber RB, Halonen L. Temperature and collision energy effects on dissociation of hydrochloric acid on water surfaces. Phys Chem Chem Phys 2016; 18:13432-42. [DOI: 10.1039/c6cp00597g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Wick CD, Kuo IFW, Mundy CJ, Dang LX. The Effect of Polarizability for Understanding the Molecular Structure of Aqueous Interfaces. J Chem Theory Comput 2015; 3:2002-10. [PMID: 26636197 DOI: 10.1021/ct700098z] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A review is presented on recent progress of the application of molecular dynamics simulation methods with the inclusion of polarizability for the understanding of aqueous interfaces. Comparisons among a variety of models, including those based on density functional theory of the neat air-water interface, are given. These results are used to describe the effect of polarizability on modeling the microscopic structure of the neat air-water interface, including comparisons with recent spectroscopic studies. Also, the understanding of the contribution of polarization to the electrostatic potential across the air-water interface is elucidated. Finally, the importance of polarizability for understanding anion transfer across an organic-water interface is shown.
Collapse
Affiliation(s)
- Collin D Wick
- Pacific Northwest National Laboratory, Richland, Washington 99352, and Lawrence Livermore National Laboratory, Livermore, California 94550
| | - I-Feng W Kuo
- Pacific Northwest National Laboratory, Richland, Washington 99352, and Lawrence Livermore National Laboratory, Livermore, California 94550
| | - Christopher J Mundy
- Pacific Northwest National Laboratory, Richland, Washington 99352, and Lawrence Livermore National Laboratory, Livermore, California 94550
| | - Liem X Dang
- Pacific Northwest National Laboratory, Richland, Washington 99352, and Lawrence Livermore National Laboratory, Livermore, California 94550
| |
Collapse
|
12
|
Faralli C, Pagliai M, Cardini G, Schettino V. Ab Initio Molecular Dynamics Study of Mg(2+) and Ca(2+) Ions in Liquid Methanol. J Chem Theory Comput 2015; 4:156-63. [PMID: 26619989 DOI: 10.1021/ct700209v] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ab initio Car-Parrinello molecular dynamics simulations have been performed in order to investigate the solvation properties of Mg(2+) and Ca(2+) in fully deuterated methanol solution to better understand polarization effects induced by the ions. Charge transfer and dipole moment calculations have been performed to give more detailed insight on the role of the electronic reorganization and its effect on the first solvation shell stability. The perturbation of the methanol H-bond network has been investigated.
Collapse
Affiliation(s)
- Cristian Faralli
- Laboratorio di Spettroscopia Molecolare, Dipartimento di Chimica, Università di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino, Firenze, Italia, and European Laboratory for Nonlinear Spectroscopy (LENS), via Nello Carrara 1, 50019 Sesto Fiorentino, Firenze, Italia
| | - Marco Pagliai
- Laboratorio di Spettroscopia Molecolare, Dipartimento di Chimica, Università di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino, Firenze, Italia, and European Laboratory for Nonlinear Spectroscopy (LENS), via Nello Carrara 1, 50019 Sesto Fiorentino, Firenze, Italia
| | - Gianni Cardini
- Laboratorio di Spettroscopia Molecolare, Dipartimento di Chimica, Università di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino, Firenze, Italia, and European Laboratory for Nonlinear Spectroscopy (LENS), via Nello Carrara 1, 50019 Sesto Fiorentino, Firenze, Italia
| | - Vincenzo Schettino
- Laboratorio di Spettroscopia Molecolare, Dipartimento di Chimica, Università di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino, Firenze, Italia, and European Laboratory for Nonlinear Spectroscopy (LENS), via Nello Carrara 1, 50019 Sesto Fiorentino, Firenze, Italia
| |
Collapse
|
13
|
Yamaguchi S. Development of single-channel heterodyne-detected sum frequency generation spectroscopy and its application to the water/vapor interface. J Chem Phys 2015. [DOI: 10.1063/1.4927067] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
14
|
Hammerich AD, Finlayson-Pitts BJ, Gerber RB. Mechanism for formation of atmospheric Cl atom precursors in the reaction of dinitrogen oxides with HCl/Cl− on aqueous films. Phys Chem Chem Phys 2015; 17:19360-70. [DOI: 10.1039/c5cp02664d] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Formation of atmospheric chlorine atom precursors ClNO2 and ClNO in the reaction of HCl with oxides of nitrogen on a water film: left – formation of N–Cl bond as N–O bond breaks; right – concurrent changes in Mulliken charges.
Collapse
Affiliation(s)
| | | | - R. Benny Gerber
- Department of Chemistry
- University of California Irvine
- Irvine
- USA
- Institute of Chemistry and the Fritz Haber Research Center
| |
Collapse
|
15
|
Hassanali AA, Cuny J, Verdolino V, Parrinello M. Aqueous solutions: state of the art in ab initio molecular dynamics. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2014; 372:20120482. [PMID: 24516179 DOI: 10.1098/rsta.2012.0482] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The simulation of liquids by ab initio molecular dynamics (AIMD) has been a subject of intense activity over the last two decades. The significant increase in computational resources as well as the development of new and efficient algorithms has elevated this method to the status of a standard quantum mechanical tool that is used by both experimentalists and theoreticians. As AIMD computes the electronic structure from first principles, it is free of ad hoc parametrizations and has thus been applied to a large variety of physical and chemical problems. In particular, AIMD has provided microscopic insight into the structural and dynamical properties of aqueous solutions which are often challenging to probe experimentally. In this review, after a brief theoretical description of the Born-Oppenheimer and Car-Parrinello molecular dynamics formalisms, we show how AIMD has enhanced our understanding of the properties of liquid water and its constituent ions: the proton and the hydroxide ion. Thereafter, a broad overview of the application of AIMD to other aqueous systems, such as solvated organic molecules and inorganic ions, is presented. We also briefly describe the latest theoretical developments made in AIMD, such as methods for enhanced sampling and the inclusion of nuclear quantum effects.
Collapse
Affiliation(s)
- Ali A Hassanali
- Department of Chemistry and Applied Biosciences, ETH Zurich and Università della Svizzera Italiana, , via G. Buffi 13, 6900 Lugano, Switzerland
| | | | | | | |
Collapse
|
16
|
Abstract
The dynamics of water exhibits anomalous behavior in the presence of different electrolytes. Recent experiments [Kim JS, Wu Z, Morrow AR, Yethiraj A, Yethiraj A (2012) J Phys Chem B 116(39):12007-12013] have found that the self-diffusion of water (Dw) can either be enhanced or suppressed around CsI and NaCl, respectively, relative to that of neat water. Here we show that unlike classical empirical potentials, ab initio molecular dynamics simulations successfully reproduce the qualitative trends observed experimentally. These types of phenomena have often been rationalized in terms of the "structure-making" or "structure-breaking" effects of different ions on the solvent, although the microscopic origins of these features have remained elusive. Rather than disrupting the network in a significant manner, the electrolytes studied here cause rather subtle changes in both structural and dynamical properties of water. In particular, we show that water in the ab initio molecular dynamics simulations is characterized by dynamic heterogeneity, which turns out to be critical in reproducing the experimental trends.
Collapse
|
17
|
Paluch P, Kaźmierski S, Jeziorna A, Sniechowska J, Dabrowa K, Panek JJ, Jezierska-Mazzarello A, Jurczak J, Potrzebowski MJ. Influence of environmental humidity on organization and molecular dynamics of heteromacrocyclic assemblies. J Phys Chem B 2013; 117:14420-31. [PMID: 24168636 DOI: 10.1021/jp406308a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
1D and 2D NMR study, Car-Parrinello molecular dynamics, as well as classical molecular dynamics were employed to investigate three derivatives of benzodiazacoronands (achiral compounds which are able to form single crystals with a planar chirality) with intention to explain all subtle effects important during their preorganization, the step anticipating formation of crystals. The experimental study was carried out in two solvents: chloroform and DMSO either containing traces of water (commercial samples) or carefully dried over molecular sieves. Both methods revealed that environmental humidity has a dramatic influence on topology of solute-solvent interactions. Damping of the macrocycle dynamics by its diverse types of interactions with water molecules was shown by computational means. In the most spectacular experiment, we have proved that in chloroform-d during the low temperature measurements traces of water dramatically change the spectral pattern, leading to isochronous NMR signals of the AB spin system of benzodiazacoronand. The temperature of isochronous point (TIP) strongly depends on the benzodiazacoronand/water (BW) ratio. This observation opens a pathway to a new strategy based on variable temperature crystallizations and fitting of BW ratio with hope to optimize conditions for formation of chiral crystals.
Collapse
Affiliation(s)
- Piotr Paluch
- Polish Academy of Sciences, Centre of Molecular and Macromolecular Studies , Sienkiewicza 112, 90-363 Lodz, Poland
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Letzner M, Gruen S, Habig D, Hanke K, Endres T, Nieto P, Schwaab G, Walewski Ł, Wollenhaupt M, Forbert H, Marx D, Havenith M. High resolution spectroscopy of HCl–water clusters: IR bands of undissociated and dissociated clusters revisited. J Chem Phys 2013; 139:154304. [DOI: 10.1063/1.4824858] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
19
|
Cecchi T, Marcotulli F. Chromatography and the hundred year mystery of inorganic ions at aqueous interfaces: adsorption of inorganic ions at the Porous Graphitic Carbon Aqueous Interface follows the Hofmeister series. J Chromatogr A 2013; 1314:106-14. [PMID: 24075459 DOI: 10.1016/j.chroma.2013.09.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 09/03/2013] [Accepted: 09/04/2013] [Indexed: 10/26/2022]
Abstract
Many physical phenomena are affected by the structure of water interfaces, yet it remains an active and controversial subject. A great deal of recent theoretical endeavour and computer simulations question the validity of the Onsager Samaras theory of the ion-free interface between an electrolyte solution and an hydrophobic surface. Experimental results play a crucial role in assessing the legitimacy of the theories. Experimental data are scarce, while simulation results suggest an increasing surface affinity of ions with increasing chaotropic character, in dramatic contradiction to the classical view. Chromatography is a powerful separative technique, but we originally used it as a tool to detect the adsorption of chloride electrolytes and sodium electrolytes, strongly expected to shun any dielectric boundary, onto an hydrophobic surface, and to rank ions according to their adsorbophilicities. Frontal analysis gave unequivocal experimental evidence to this unexpected phenomenon and it was used to quantify it. The infinite dilution equilibrium constants for adsorption of kosmotropes and chaotropes onto the interface were obtained and contrasted to the Jones-Dole B viscosity coefficients, that is a common quantifier of the Hofmeister effect. It is clear that (i) the more chaotropic the ion is, the more it contributes to the global adsorbophilicity of the electrolyte; (ii) the influence of the variable anion is more than twofold that of the variable cation, thereby confirming a robust observation in many other physical systems. Standard free energy of adsorption for each electrolyte was calculated and its reliability was commented upon. The central issue in this paper is the effective and ascertained adsorption of electrolytes onto an hydrophobic surface and the fact that the adsorbophilicity of an electrolyte may be inferred from its position in the Hofmeister series.
Collapse
Affiliation(s)
- Teresa Cecchi
- Accademia Delle Scienze dell'istituto di Bologna, Via Zamboni, 31, 40126 Bologna, Italy.
| | | |
Collapse
|
20
|
Eisenberg B. Interacting ions in biophysics: real is not ideal. Biophys J 2013; 104:1849-66. [PMID: 23663828 PMCID: PMC3647150 DOI: 10.1016/j.bpj.2013.03.049] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 03/03/2013] [Accepted: 03/27/2013] [Indexed: 11/28/2022] Open
Abstract
Ions in water are important throughout biology, from molecules to organs. Classically, ions in water were treated as ideal noninteracting particles in a perfect gas. Excess free energy of each ion was zero. Mathematics was not available to deal consistently with flows, or interactions with other ions or boundaries. Nonclassical approaches are needed because ions in biological conditions flow and interact. The concentration gradient of one ion can drive the flow of another, even in a bulk solution. A variational multiscale approach is needed to deal with interactions and flow. The recently developed energetic variational approach to dissipative systems allows mathematically consistent treatment of the bio-ions Na(+), K(+), Ca(2+), and Cl(-) as they interact and flow. Interactions produce large excess free energy that dominate the properties of the high concentration of ions in and near protein active sites, ion channels, and nucleic acids: the number density of ions is often >10 M. Ions in such crowded quarters interact strongly with each other as well as with the surrounding protein. Nonideal behavior found in many experiments has classically been ascribed to allosteric interactions mediated by the protein and its conformation changes. The ion-ion interactions present in crowded solutions-independent of conformation changes of the protein-are likely to change the interpretation of many allosteric phenomena. Computation of all atoms is a popular alternative to the multiscale approach. Such computations involve formidable challenges. Biological systems exist on very different scales from atomic motion. Biological systems exist in ionic mixtures (like extracellular and intracellular solutions), and usually involve flow and trace concentrations of messenger ions (e.g., 10(-7) M Ca(2+)). Energetic variational methods can deal with these characteristic properties of biological systems as we await the maturation and calibration of all-atom simulations of ionic mixtures and divalents.
Collapse
Affiliation(s)
- Bob Eisenberg
- Department of Molecular Biophysics Rush University, Chicago Illinois, USA.
| |
Collapse
|
21
|
Tobias DJ, Stern AC, Baer MD, Levin Y, Mundy CJ. Simulation and Theory of Ions at Atmospherically Relevant Aqueous Liquid-Air Interfaces. Annu Rev Phys Chem 2013; 64:339-59. [DOI: 10.1146/annurev-physchem-040412-110049] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Douglas J. Tobias
- Department of Chemistry, University of California, Irvine, California 92697-2025; ,
| | - Abraham C. Stern
- Department of Chemistry, University of California, Irvine, California 92697-2025; ,
| | - Marcel D. Baer
- Chemical and Materials Science Division, Pacific Northwest National Laboratory, Richland, Washington 99352; ,
| | - Yan Levin
- Insituto de Física, Universidade Federal do Rio Grande do Sul, CEP 91501-970 Porto Alegre, RS, Brazil;
| | - Christopher J. Mundy
- Chemical and Materials Science Division, Pacific Northwest National Laboratory, Richland, Washington 99352; ,
| |
Collapse
|
22
|
Hammerich AD, Finlayson-Pitts BJ, Gerber RB. NOx Reactions on Aqueous Surfaces with Gaseous HCl: Formation of a Potential Precursor to Atmospheric Cl Atoms. J Phys Chem Lett 2012; 3:3405-3410. [PMID: 26290963 DOI: 10.1021/jz3014985] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Chlorine atoms are highly reactive free radicals known to catalyze ozone depletion in the stratosphere and organic oxidation in the troposphere. They are readily produced photolytically upon irradiation of some stable Cl containing species, for instance, nitrosyl chloride, ClNO. We predict the formation of ClNO using ab initio molecular dynamics (AIMD) simulations of an NO2 dimer on the surface of a thin film of water upon which gaseous HCl impinges. The reactant is chloride ion formed when HCl ionizes on the water film. The same mechanism for ClNO production may occur in humid environments when ONONO2 (the asymmetric NO2 dimer examined here) comes in contact with either HCl or sea salt. The film of water serves to (1) stabilize ONONO2 on the film surface so that it is localized and physically accessible for reaction, (2) provide the medium to ionize HCl, and (3) activate ONONO2 making it more susceptible to nucleophilic attack by chloride. This substitution/elimination mechanism is new for NOx chemistry on thin water films and could not be derived from studies on small clusters.
Collapse
Affiliation(s)
- Audrey Dell Hammerich
- †Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | | | - R Benny Gerber
- ‡Department of Chemistry, University of California Irvine, Irvine, California 92697, United States
- §Institute of Chemistry and the Fritz Haber Research Center, The Hebrew University, Jerusalem 91904 Israel
- ∥Laboratory of Physical Chemistry, University of Helsinki, P.O. Box 55, FIN-00014, Helsinki, Finland
| |
Collapse
|
23
|
Ma Z, Zhang Y, Tuckerman ME. Ab initio molecular dynamics study of water at constant pressure using converged basis sets and empirical dispersion corrections. J Chem Phys 2012; 137:044506. [PMID: 22852630 DOI: 10.1063/1.4736712] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
It is generally believed that studies of liquid water using the generalized gradient approximation to density functional theory require dispersion corrections in order to obtain reasonably accurate structural and dynamical properties. Here, we report on an ab initio molecular dynamics study of water in the isothermal-isobaric ensemble using a converged discrete variable representation basis set and an empirical dispersion correction due to Grimme [J. Comp. Chem. 27, 1787 (2006)]. At 300 K and an applied pressure of 1 bar, the density obtained without dispersion corrections is approximately 0.92 g/cm(3) while that obtained with dispersion corrections is 1.07 g/cm(3), indicating that the empirical dispersion correction overestimates the density by almost as much as it is underestimated without the correction for this converged basis. Radial distribution functions exhibit a loss of structure in the second solvation shell. Comparison of our results with other studies using the same empirical correction suggests the cause of the discrepancy: the Grimme dispersion correction is parameterized for use with a particular basis set; this parameterization is sensitive to this choice and, therefore, is not transferable to other basis sets.
Collapse
Affiliation(s)
- Zhonghua Ma
- Department of Chemistry, New York University, New York, New York 10003, USA.
| | | | | |
Collapse
|
24
|
Vysotsky YB, Belyaeva EA, Fomina ES, Vasylyev AO, Vollhardt D, Fainerman VB, Aksenenko EV, Miller R. Superposition-additive approach in the description of thermodynamic parameters of formation and clusterization of substituted alkanes at the air/water interface. J Colloid Interface Sci 2012; 387:162-74. [PMID: 22939427 DOI: 10.1016/j.jcis.2012.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 07/31/2012] [Accepted: 08/01/2012] [Indexed: 11/19/2022]
Abstract
The superposition-additive approach developed previously was shown to be applicable for the calculations of the thermodynamic parameters of formation and atomization of conjugate systems, their dipole polarizability, molecular diamagnetic susceptibility, π-electronic ring currents, etc. In the present work, the applicability of this approach for the calculation of the thermodynamic parameters of formation and clusterization at the water/air interface of alkanes, fatty alcohols, thioalcohols, amines, nitriles, fatty acids (C(n)H(2n+1)X, X is the functional group) and cis-unsaturated carboxylic acids (C(n)H(2n-1)COOH) is studied. Using the proposed approach the thermodynamic quantities determined agree well with the available data, either calculated using the semiempirical (PM3) quantum chemical method, or obtained in experiments. In particular, for enthalpy and Gibbs' energy of the formation of substituted alkane monomers from the elementary substances, and their absolute entropy, the standard deviations of the values calculated according to the superposition-additive scheme with the mutual superimposition domain C(n-2)H(2n-4) (n is the number of carbon atoms in the alkyl chain) from the results of PM3 calculations for alkanes, alcohols, thioalcohols, amines, fatty acids, nitriles and cis-unsaturated carboxylic acids are respectively: 0.05, 0.004, 2.87, 0.02, 0.01, 0.77, and 0.01 kJ/mol for enthalpy; 2.32, 5.26, 4.49, 0.53, 1.22, 1.02, 5.30 J/(molK) for absolute entropy; 0.69, 1.56, 3.82, 0.15, 0.37, 0.69, 1.58 kJ/mol for Gibbs' energy, whereas the deviations from the experimental data are: 0.52, 5.75, 1.40, 1.00, 4.86 kJ/mol; 0.52, 0.63, 1.40, 6.11, 2.21 J/(molK); 2.52, 5.76, 1.58, 1.78, 4.86 kJ/mol, respectively (for nitriles and cis-unsaturated carboxylic acids experimental data are not available). The proposed approach provides also quite accurate estimates of enthalpy, entropy and Gibbs' energy of boiling and melting, critical temperatures and standard heat capacities for several classes of substituted alkanes. For the calculation of thermodynamic functions of clusterization of dimers, trimers and tetramers of fatty alcohols, thioalcohols, amines, carboxylic acids and cis-unsaturated carboxylic acids two superposition-additive schemes are proposed which ensure the correct superimposition of the molecular graphs, including intermolecular hydrogen-hydrogen interactions in the clusters. The calculations involve the thermodynamic parameters of clusterization obtained earlier by the PM3 method. It is shown that the proposed approach reproduces quite accurately the values calculated earlier and is applicable for the prediction of the thermodynamic parameters of the formation of surfactant monolayers.
Collapse
Affiliation(s)
- Yu B Vysotsky
- Donetsk National Technical University, 58 Artema Str., 83000 Donetsk, Ukraine
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Assowe O, Politano O, Vignal V, Arnoux P, Diawara B, Verners O, van Duin ACT. Reactive Molecular Dynamics of the Initial Oxidation Stages of Ni(111) in Pure Water: Effect of an Applied Electric Field. J Phys Chem A 2012; 116:11796-805. [DOI: 10.1021/jp306932a] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- O. Assowe
- ICB, Université de Bourgogne,
UMR 6303 CNRS, 9 Avenue A. Savary, Dijon, France
| | - O. Politano
- ICB, Université de Bourgogne,
UMR 6303 CNRS, 9 Avenue A. Savary, Dijon, France
| | - V. Vignal
- ICB, Université de Bourgogne,
UMR 6303 CNRS, 9 Avenue A. Savary, Dijon, France
| | - P. Arnoux
- CEA, DEN, DPC, SCCME, Laboratoire
d’Etude de la Corrosion Aqueuse, F-91191 Gif-sur-Yvette, France
| | - B. Diawara
- LPCS, ENSCP-CNRS (UMR 7045), 11
rue Pierre et Marie Curie, 75231 Paris Cedex 05, France
| | - O. Verners
- Department of Mechanical and
Nuclear Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - A. C. T. van Duin
- Department of Mechanical and
Nuclear Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
26
|
Hammerich AD, Buch V. Ab Initio Molecular Dynamics Simulations of the Liquid/Vapor Interface of Sulfuric Acid Solutions. J Phys Chem A 2012; 116:5637-52. [DOI: 10.1021/jp2126398] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Audrey Dell Hammerich
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois
60607, United States
| | - Victoria Buch
- The Fritz
Haber Institute for Molecular Dynamics, The Hebrew University, Jerusalem 91904, Israel
| |
Collapse
|
27
|
Chakraborty D, Chandra A. A first principles simulation study of fluctuations of hydrogen bonds and vibrational frequencies of water at liquid–vapor interface. Chem Phys 2012. [DOI: 10.1016/j.chemphys.2011.10.025] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
28
|
Ota ST, Richmond GL. Chilling out: a cool aqueous environment promotes the formation of gas-surface complexes. J Am Chem Soc 2011; 133:7497-508. [PMID: 21520889 DOI: 10.1021/ja201027k] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
SO(2), an important atmospheric pollutant, has been implicated in environmental phenomena such as acid rain, climate change, and cloud formation. In addition, SO(2) is fundamentally interesting because it forms spectroscopically identifiable complexes with water at aqueous surfaces. Vibrational sum frequency spectroscopy (VSFS) is used here to further investigate the mechanism by which SO(2) adsorbs to water at tropospherically relevant temperatures (0-23 °C). The spectral results lead to two important conclusions. SO(2) surface affinity is enhanced at colder temperatures, with nearly all of the topmost water molecules showing evidence of binding to SO(2) at 0 °C as compared to a much lower fraction at room temperature. This surface adsorption results in significant changes in water orientation at the surface, but is reversible at the temperatures examined here. Second, the SO(2) complex formation at aqueous surfaces is independent of aqueous solution acidity. One challenge in previous uptake studies was the ability to distinguish between the effects of surface adsorption as compared to bulk accommodation. The surface and vibrational specificity of these studies make this distinction possible, allowing a selective study of how the aqueous properties temperature and pH influence SO(2) surface affinity.
Collapse
Affiliation(s)
- Stephanie T Ota
- Department of Chemistry, University of Oregon, Eugene, Oregon 97403, USA
| | | |
Collapse
|
29
|
Kühne TD, Pascal TA, Kaxiras E, Jung Y. New Insights into the Structure of the Vapor/Water Interface from Large-Scale First-Principles Simulations. J Phys Chem Lett 2011; 2:105-113. [PMID: 26295528 DOI: 10.1021/jz101391r] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We present extensive ab initio simulations of the molecular arrangements at the vapor/water interface, which provide valuable insights into the interface structure. In particular, the simulations address the controversy of whether there is a significant amount of nondonor configurations at this prototypical interface, using a novel Car-Parrinello-like ab initio molecular dynamics approach. The interface is modeled by a system of 384 water molecules for 125 ps in a two-dimensional periodic slab, the most extensive ab initio molecular dynamics simulation to date. In contrast to previous theoretical simulations and X-ray absorption spectroscopy, but consistent with sum-frequency generation experiments, we observe no evidence for a significant occurrence of acceptor-only species at the vapor/water interface. Besides a distinct surface relaxation effect, we find that only the topmost layers of the interface obey structural order.
Collapse
Affiliation(s)
- Thomas D Kühne
- †Institute of Physical Chemistry and Center of Computational Sciences, Johannes Gutenberg University Mainz, Staudinger Weg 9, D-55128 Mainz, Germany
- ‡Department of Physics, and School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Tod A Pascal
- §Graduate School of EEWS (WCU), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Korea
| | - Efthimios Kaxiras
- ‡Department of Physics, and School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Yousung Jung
- §Graduate School of EEWS (WCU), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Korea
| |
Collapse
|
30
|
Wang Y, Hodas NO, Jung Y, Marcus RA. Microscopic structure and dynamics of air/water interface by computer simulations—comparison with sum-frequency generation experiments. Phys Chem Chem Phys 2011; 13:5388-93. [DOI: 10.1039/c0cp02745f] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
31
|
Kim HI, Kim H, Shin YS, Beegle LW, Goddard WA, Heath JR, Kanik I, Beauchamp JL. Time resolved studies of interfacial reactions of ozone with pulmonary phospholipid surfactants using field induced droplet ionization mass spectrometry. J Phys Chem B 2010; 114:9496-503. [PMID: 20608690 DOI: 10.1021/jp102332g] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Field induced droplet ionization mass spectrometry (FIDI-MS) comprises a soft ionization method to sample ions from the surface of microliter droplets. A pulsed electric field stretches neutral droplets until they develop dual Taylor cones, emitting streams of positively and negatively charged submicrometer droplets in opposite directions, with the desired polarity being directed into a mass spectrometer for analysis. This methodology is employed to study the heterogeneous ozonolysis of 1-palmitoyl-2-oleoyl-sn-phosphatidylglycerol (POPG) at the air-liquid interface in negative ion mode using FIDI mass spectrometry. Our results demonstrate unique characteristics of the heterogeneous reactions at the air-liquid interface. We observe the hydroxyhydroperoxide and the secondary ozonide as major products of POPG ozonolysis in the FIDI-MS spectra. These products are metastable and difficult to observe in the bulk phase, using standard electrospray ionization (ESI) for mass spectrometric analysis. We also present studies of the heterogeneous ozonolysis of a mixture of saturated and unsaturated phospholipids at the air-liquid interface. A mixture of the saturated phospholipid 1,2-dipalmitoyl-sn-phosphatidylglycerol (DPPG) and unsaturated POPG is investigated in negative ion mode using FIDI-MS while a mixture of 1,2-dipalmitoyl-sn-phosphatidylcholine (DPPC) and 1-stearoyl-2-oleoyl-sn-phosphatidylcholine (SOPC) surfactant is studied in positive ion mode. In both cases FIDI-MS shows the saturated and unsaturated pulmonary surfactants form a mixed interfacial layer. Only the unsaturated phospholipid reacts with ozone, forming products that are more hydrophilic than the saturated phospholipid. With extensive ozonolysis only the saturated phospholipid remains at the droplet surface. Combining these experimental observations with the results of computational analysis provides an improved understanding of the interfacial structure and chemistry of a surfactant layer system when subject to oxidative stress.
Collapse
Affiliation(s)
- Hugh I Kim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 790-784, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Ishiyama T, Morita A. Analysis of anisotropic local field in sum frequency generation spectroscopy with the charge response kernel water model. J Chem Phys 2010; 131:244714. [PMID: 20059106 DOI: 10.1063/1.3279126] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
A new flexible and polarizable water model based on the charge response kernel (CRK) theory is developed for the analysis of sum frequency generation (SFG) spectroscopy. The CRK model well describes several bulk water properties and SFG spectrum by molecular dynamics (MD) calculations. While the flexible and polarizable MD simulation generally adopts the short-range damping of intermolecular interaction, it is found that the same procedure is not adequate for the calculation of transition dipole in strongly hydrogen bonding environment. Accordingly, the improved calculation of the nonlinear susceptibility of water surface results in the positive imaginary part in the 3000-3200 cm(-1) region, which is consistent with recent phase-sensitive experiments. The mechanism of the positive region is attributed to the anisotropic local field effect induced by the orientational correlation of surface water.
Collapse
Affiliation(s)
- Tatsuya Ishiyama
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | | |
Collapse
|
33
|
Kim HI, Kim H, Shin YS, Beegle LW, Jang SS, Neidholdt EL, Goddard WA, Heath JR, Kanik I, Beauchamp JL. Interfacial reactions of ozone with surfactant protein B in a model lung surfactant system. J Am Chem Soc 2010; 132:2254-63. [PMID: 20121208 PMCID: PMC2830728 DOI: 10.1021/ja908477w] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Oxidative stresses from irritants such as hydrogen peroxide and ozone (O(3)) can cause dysfunction of the pulmonary surfactant (PS) layer in the human lung, resulting in chronic diseases of the respiratory tract. For identification of structural changes of pulmonary surfactant protein B (SP-B) due to the heterogeneous reaction with O(3), field-induced droplet ionization (FIDI) mass spectrometry has been utilized. FIDI is a soft ionization method in which ions are extracted from the surface of microliter-volume droplets. We report structurally specific oxidative changes of SP-B(1-25) (a shortened version of human SP-B) at the air-liquid interface. We also present studies of the interfacial oxidation of SP-B(1-25) in a nonionizable 1-palmitoyl-2-oleoyl-sn-glycerol (POG) surfactant layer as a model PS system, where competitive oxidation of the two components is observed. Our results indicate that the heterogeneous reaction of SP-B(1-25) at the interface is quite different from that in the solution phase. In comparison with the nearly complete homogeneous oxidation of SP-B(1-25), only a subset of the amino acids known to react with ozone are oxidized by direct ozonolysis in the hydrophobic interfacial environment, both with and without the lipid surfactant layer. Combining these experimental observations with the results of molecular dynamics simulations provides an improved understanding of the interfacial structure and chemistry of a model lung surfactant system subjected to oxidative stress.
Collapse
Affiliation(s)
- Hugh I. Kim
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109
| | - Hyungjun Kim
- Materials and Process Simulation Center, Beckman Institute, California Institute of Technology, Pasadena, CA 91125
| | - Young Shik Shin
- Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, CA 91125
| | - Luther W. Beegle
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109
| | - Seung Soon Jang
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0245
| | - Evan L. Neidholdt
- Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, CA 91125
| | - William A. Goddard
- Materials and Process Simulation Center, Beckman Institute, California Institute of Technology, Pasadena, CA 91125
| | - James R. Heath
- Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, CA 91125
| | - Isik Kanik
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109
| | - J. L. Beauchamp
- Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, CA 91125
| |
Collapse
|
34
|
Gómez PC, Gálvez O, Mosteo RG, Puzzarini C, Escribano R. Clusters of atmospheric relevance: H2O/HCl/HNO3. Prediction of IR & MW spectra. Phys Chem Chem Phys 2010; 12:4617-24. [DOI: 10.1039/b924890k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
35
|
Mundy CJ, Kuo IFW, Tuckerman ME, Lee HS, Tobias DJ. Hydroxide anion at the air–water interface. Chem Phys Lett 2009. [DOI: 10.1016/j.cplett.2009.09.003] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
36
|
Gutberlet A, Schwaab G, Birer O, Masia M, Kaczmarek A, Forbert H, Havenith M, Marx D. Aggregation-Induced Dissociation of HCl(H2O)4 Below 1 K: The Smallest Droplet of Acid. Science 2009; 324:1545-8. [DOI: 10.1126/science.1171753] [Citation(s) in RCA: 176] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
37
|
Ho MH, Klein ML, Kuo IFW. Bulk and interfacial aqueous fluoride: an investigation via first principles molecular dynamics. J Phys Chem A 2009; 113:2070-4. [PMID: 19173578 PMCID: PMC2765570 DOI: 10.1021/jp808735x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Using first principles molecular dynamics simulation, we have studied a fluoride anion embedded in a periodically replicated water slab composed of 215 water molecules to mimic both bulk and interfacial solvation. In contrast to some recent experiments, our findings suggest that there are only small structural changes for fluoride and its first solvation shell in the bulk. Moreover, the presence of fluoride does not significantly alter the rotational dynamics of nearby water. In addition, we have computed the molecular dipole moments using Wannier centers. At the interface, the presence of fluoride increases the molecular dipole moments of nearby water molecules, whereas in the bulk, the dipole moments for water appear to be essentially invariant to the presence of fluoride in the vicinity. Previous studies of the air-water interface have showed interfacial water to have higher average HOMO energies and, thus, likely to be more prone to electrophilic attack. With the addition of fluoride, the most likely reactive site for electrophilic reactions shifts to the anion. This finding could explain the known large increase in reaction rates for heterogeneous process of interest in atmospheric science. The reactive properties of other anions near the air-water interface are of general interest in heterogeneous chemistry and can be elucidated using a similar type of analysis, as performed here for the fluoride anion.
Collapse
Affiliation(s)
- Ming-Hsun Ho
- Center for Molecular Modeling and Department of Chemistry, University of Pennsylvania Philadelphia, Pennsylvania 19104-6323
| | - Michael L. Klein
- Center for Molecular Modeling and Department of Chemistry, University of Pennsylvania Philadelphia, Pennsylvania 19104-6323
| | - I-F. William Kuo
- Chemical Sciences Division, Lawrence Livermore National Laboratory P.O. Box 808, Livermore, CA 94551
| |
Collapse
|
38
|
Lee HS, Tuckerman ME. Ab Initio Molecular Dynamics Studies of the Liquid−Vapor Interface of an HCl Solution. J Phys Chem A 2009; 113:2144-51. [DOI: 10.1021/jp809236c] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Hee-Seung Lee
- Department of Chemistry and Biochemistry, University of North Carolina, Wilmington, North Carolina 28403
| | - Mark E. Tuckerman
- Department of Chemistry and Courant Institute of Mathematical Sciences, New York University, New York, New York 10003
| |
Collapse
|
39
|
Hydrogen bonding strength of interfacial water determined with surface sum-frequency generation. Chem Phys Lett 2009. [DOI: 10.1016/j.cplett.2009.01.009] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
40
|
Wang S, Bianco R, Hynes JT. Depth-Dependent Dissociation of Nitric Acid at an Aqueous Surface: Car−Parrinello Molecular Dynamics. J Phys Chem A 2009; 113:1295-307. [DOI: 10.1021/jp808533y] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shuzhi Wang
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215, USA, Ecole Normale Supérieure, Chemistry Department, 24 rue Lhomond 75005 Paris, France, and CNRS UMR Pasteur
| | - Roberto Bianco
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215, USA, Ecole Normale Supérieure, Chemistry Department, 24 rue Lhomond 75005 Paris, France, and CNRS UMR Pasteur
| | - James T. Hynes
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215, USA, Ecole Normale Supérieure, Chemistry Department, 24 rue Lhomond 75005 Paris, France, and CNRS UMR Pasteur
| |
Collapse
|
41
|
|
42
|
Buch V, Tarbuck T, Richmond GL, Groenzin H, Li I, Shultz MJ. Sum frequency generation surface spectra of ice, water, and acid solution investigated by an exciton model. J Chem Phys 2007; 127:204710. [DOI: 10.1063/1.2790437] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
43
|
VandeVondele J, Hutter J. Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases. J Chem Phys 2007; 127:114105. [PMID: 17887826 DOI: 10.1063/1.2770708] [Citation(s) in RCA: 2044] [Impact Index Per Article: 113.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present a library of Gaussian basis sets that has been specifically optimized to perform accurate molecular calculations based on density functional theory. It targets a wide range of chemical environments, including the gas phase, interfaces, and the condensed phase. These generally contracted basis sets, which include diffuse primitives, are obtained minimizing a linear combination of the total energy and the condition number of the overlap matrix for a set of molecules with respect to the exponents and contraction coefficients of the full basis. Typically, for a given accuracy in the total energy, significantly fewer basis functions are needed in this scheme than in the usual split valence scheme, leading to a speedup for systems where the computational cost is dominated by diagonalization. More importantly, binding energies of hydrogen bonded complexes are of similar quality as the ones obtained with augmented basis sets, i.e., have a small (down to 0.2 kcal/mol) basis set superposition error, and the monomers have dipoles within 0.1 D of the basis set limit. However, contrary to typical augmented basis sets, there are no near linear dependencies in the basis, so that the overlap matrix is always well conditioned, also, in the condensed phase. The basis can therefore be used in first principles molecular dynamics simulations and is well suited for linear scaling calculations.
Collapse
Affiliation(s)
- Joost VandeVondele
- Physical Chemistry Institute, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | | |
Collapse
|
44
|
Abstract
We introduce a new formula for the acceleration weight factor in the hyperdynamics simulation method, the use of which correctly provides an exact simulation of the true dynamics of a system. This new form of hyperdynamics is valid and applicable where the transition state theory (TST) is applicable and also where the TST is not applicable. To illustrate this new formulation, we perform hyperdynamics simulations for four systems ranging from one degree of freedom to 591 degrees of freedom: (1) We first analyze free diffusion having one degree of freedom. This system does not have a transition state. The TST and the original form of hyperdynamics are not applicable. Using the new form of hyperdynamics, we compute mean square displacement for a range of time. The results obtained agree perfectly with the analytical formula. (2) Then we examine the classical Kramers escape rate problem. The rate computed is in perfect agreement with the Kramers formula over a broad range of temperature. (3) We also study another classical problem: Computing the rate of effusion out of a cubic box through a tiny hole. This problem does not involve an energy barrier. Thus, the original form of hyperdynamics excludes the possibility of using a nonzero bias and is inappropriate. However, with the new weight factor formula, our new form of hyperdynamics can be easily implemented and it produces the exact results. (4) To illustrate applicability to systems of many degrees of freedom, we analyze diffusion of an atom adsorbed on the (001) surface of an fcc crystal. The system is modeled by an atom on top of a slab of six atomic layers. Each layer has 49 atoms. With the bottom two layers of atoms fixed, this system has 591 degrees of freedom. With very modest computing effort, we are able to characterize its diffusion pathways in the exchange-with-the-substrate and hop-over-the-bridge mechanisms.
Collapse
Affiliation(s)
- L Y Chen
- Department of Physics, University of Texas at San Antonio, San Antonio, Texas 78249-0697, USA.
| | | |
Collapse
|
45
|
Koelsch P, Viswanath P, Motschmann H, Shapovalov V, Brezesinski G, Möhwald H, Horinek D, Netz RR, Giewekemeyer K, Salditt T, Schollmeyer H, von Klitzing R, Daillant J, Guenoun P. Specific ion effects in physicochemical and biological systems: Simulations, theory and experiments. Colloids Surf A Physicochem Eng Asp 2007. [DOI: 10.1016/j.colsurfa.2007.03.040] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
46
|
Poterya V, Fárník M, Slavícek P, Buck U, Kresin VV. Photodissociation of hydrogen halide molecules on free ice nanoparticles. J Chem Phys 2007; 126:071101. [PMID: 17328585 DOI: 10.1063/1.2709635] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Photodissociation of water clusters doped with HX(X=Br,Cl), molecules has been studied in a molecular beam experiment. The HX(H2O)n clusters are dissociated with 193 nm laser pulses, and the H fragments are ionized at 243.07 nm and their time-of-flight distributions are measured. Experiments with deuterated species DBr(H2O)n and HBr(D2O)n suggest that the photodissociation signal originates from the presence of the HX molecule on the water cluster, but does not come directly from a photolysis of the HX molecule. The H fragment is proposed to originate from the hydronium molecule H3O. Possible mechanisms of the H3O production are discussed. Experimental evidence suggests that acidic dissociation takes place in the cluster, but the H3O+ ion remains rather immobile.
Collapse
Affiliation(s)
- Viktoriya Poterya
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Prague 8, Czech Republic
| | | | | | | | | |
Collapse
|
47
|
Zhao J, Li B, Onda K, Feng M, Petek H. Solvated Electrons on Metal Oxide Surfaces. Chem Rev 2006; 106:4402-27. [PMID: 17031992 DOI: 10.1021/cr050173c] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Jin Zhao
- Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | | | | | | | | |
Collapse
|