1
|
Bian JQ, Qin L, Fan LW, Fu J, Cheng YF, Zhang YF, Song Q, Wang PF, Li ZL, Gu QS, Yu P, Tang JB, Liu XY. Cu(I)-catalysed chemo-, regio-, and stereoselective radical 1,2-carboalkynylation with two different terminal alkynes. Nat Commun 2025; 16:4922. [PMID: 40425579 PMCID: PMC12117167 DOI: 10.1038/s41467-025-60012-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 05/12/2025] [Indexed: 05/29/2025] Open
Abstract
Transition-metal-catalysed asymmetric multicomponent reactions with two similar substrates often suffer from the lack of strategies to control the chemo-, regio-, and stereoselectivity of these substrates due to the close similarity in the chemical structures and properties of each reagent. Here, we describe a Cu(I)-catalysed asymmetric radical 1,2-carboalkynylation of two different terminal alkynes and alkyl halides with high chemo-, regio-, and stereoselectivity by using sterically bulky chiral tridentate anionic N,N,P-ligands and modulating alkynes with different electronic properties to circumvent above-mentioned challenges. This method features good substrate scope, high functional group tolerance of two different terminal alkynes, and diverse alkyl halides, providing universal access to a series of useful axially chiral 1,3-enyne building blocks.
Collapse
Affiliation(s)
- Jun-Qian Bian
- Shenzhen Key Laboratory of Cross-Coupling Reactions, Southern University of Science and Technology, 518055, Shenzhen, China
- Shenzhen Grubbs Institute, Department of Chemistry, and Guangming Advanced Research Institute, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Li Qin
- Shenzhen Grubbs Institute, Department of Chemistry, and Guangming Advanced Research Institute, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Li-Wen Fan
- Shenzhen Grubbs Institute, Department of Chemistry, and Guangming Advanced Research Institute, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Jiajia Fu
- Shenzhen Grubbs Institute, Department of Chemistry, and Guangming Advanced Research Institute, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Yong-Feng Cheng
- Shenzhen Grubbs Institute, Department of Chemistry, and Guangming Advanced Research Institute, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Yu-Feng Zhang
- Shenzhen Grubbs Institute, Department of Chemistry, and Guangming Advanced Research Institute, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Qiao Song
- Shenzhen Grubbs Institute, Department of Chemistry, and Guangming Advanced Research Institute, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Peng-Fei Wang
- Shenzhen Grubbs Institute, Department of Chemistry, and Guangming Advanced Research Institute, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Zhong-Liang Li
- Dongguan Key Laboratory of Interdisciplinary Science for Advanced Materials and Large-Scale Scientific Facilities, School of Physical Sciences, Great Bay University, 523000, Dongguan, China
| | - Qiang-Shuai Gu
- Shenzhen Grubbs Institute, Department of Chemistry, and Guangming Advanced Research Institute, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Peng Yu
- Eastern Institute for Advanced Study Eastern Institute of Technology, 315200, Ningbo, Zhejiang, China
| | - Jun-Bin Tang
- Shenzhen Key Laboratory of Cross-Coupling Reactions, Southern University of Science and Technology, 518055, Shenzhen, China.
- Shenzhen Grubbs Institute, Department of Chemistry, and Guangming Advanced Research Institute, Southern University of Science and Technology, 518055, Shenzhen, China.
- Eastern Institute for Advanced Study Eastern Institute of Technology, 315200, Ningbo, Zhejiang, China.
| | - Xin-Yuan Liu
- Shenzhen Key Laboratory of Cross-Coupling Reactions, Southern University of Science and Technology, 518055, Shenzhen, China.
- Shenzhen Grubbs Institute, Department of Chemistry, and Guangming Advanced Research Institute, Southern University of Science and Technology, 518055, Shenzhen, China.
| |
Collapse
|
2
|
Zhang H, Lin Y, Yang G, Yang X, Cui X. Efficient synthesis of pyrrolo[1,2- a]indol-3-ones through a radical-initiated cascade cyclization reaction. Org Biomol Chem 2025; 23:4966-4970. [PMID: 40298064 DOI: 10.1039/d5ob00474h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
A radical cascade cyanoisopropylation/cyclization reaction of 2,2'-azobis(2-methylpropionitrile) (AIBN) with 1-methacryloyl-3-phenyl-1H-indole-2-carbonitrile has been realized, providing an efficient strategy to access various pyrrolo[1,2-a]indol-3-ones in good to excellent yields with good functional group compatibility. The notable features of this protocol include avoiding the use of a photocatalyst and a transition metal, scalability, and ethanol as the green solvent. Moreover, mechanistic studies have been conducted and a plausible mechanism has been proposed.
Collapse
Affiliation(s)
- Han Zhang
- Engineering Research Centre of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences, Huaqiao University, Xiamen 361021, China.
| | - Yuze Lin
- Engineering Research Centre of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences, Huaqiao University, Xiamen 361021, China.
| | - Gang Yang
- Engineering Research Centre of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences, Huaqiao University, Xiamen 361021, China.
| | - Xifa Yang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Xiuling Cui
- Engineering Research Centre of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences, Huaqiao University, Xiamen 361021, China.
| |
Collapse
|
3
|
Peng G, Wei F, Bai J, Ding H, Yu X, Xiao Q. Metal-free iodosulfonylation of alkynes to access ( E)-β-iodovinyl sulfones in water. Org Biomol Chem 2025. [PMID: 40354146 DOI: 10.1039/d5ob00483g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
With the escalating concerns regarding environmental pollution caused by organic solvents, chemists are increasingly focusing on conducting organic reactions in water, nature's chosen solvent for chemical synthesis. Herein, the development of metal-free iodosulfonylation of alkynes with p-toluenesulfonyl cyanide and NIS for the synthesis of (E)-β-iodovinyl sulfones in water is reported. This reaction gives the desired products in good to excellent yields with high regio- and stereoselectivity by using water as a green solvent at room temperature. This reaction could be readily scaled up, and synthetic application was also studied.
Collapse
Affiliation(s)
- Guiting Peng
- Jiangxi Provincial Key Laboratory of Organic Functional Molecules; Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, China.
| | - Fang Wei
- Jiangxi Provincial Key Laboratory of Organic Functional Molecules; Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, China.
| | - Jiang Bai
- Jiangxi Provincial Key Laboratory of Organic Functional Molecules; Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, China.
| | - Haixin Ding
- Jiangxi Provincial Key Laboratory of Organic Functional Molecules; Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, China.
| | - Xin Yu
- Jiangxi Provincial Key Laboratory of Organic Functional Molecules; Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, China.
| | - Qiang Xiao
- Jiangxi Provincial Key Laboratory of Organic Functional Molecules; Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, China.
| |
Collapse
|
4
|
Yu X, Zhu S. Recent progress in the catalytic transformation of acetylene. Chem Soc Rev 2025. [PMID: 40327414 DOI: 10.1039/d4cs00729h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Acetylene, a traditional industrial raw material, has garnered increasing attention in modern organic synthesis over the past two decades. Its catalytic transformation has emerged as an atom-economical and efficient strategy for producing a variety of high value-added compounds. This review comprehensively summarizes recent advancements and breakthroughs in the catalytic conversion of acetylene, focusing on two main categories: transition-metal-catalyzed transformations and photo-catalyzed/promoted transformations. The discussions center on various reaction intermediates, including alkenylmetals, acetylides, metallacyclopentadienes or heterometallacycles, gold carbenes, alkenyl-Ni complexes, and vinyl radicals. Furthermore, this review delves into the detailed mechanisms and diverse derivatizations of these reactions, highlighting their significance in the development of versatile acetylene catalytic transformations.
Collapse
Affiliation(s)
- Xin Yu
- State Key Laboratory of Bio-based Fiber Materials, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China.
- Zhejiang Sci-Tech University Shengzhou Innovation Research Institute, Shengzhou 312400, China
| | - Shifa Zhu
- State Key Laboratory of Bio-based Fiber Materials, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China.
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
- State Key Laboratory of Elemento-OrganicChemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
5
|
Šimek M, Dworkin JH, Kwon O. Synthesis through C(sp 3)-C(sp 2) Bond Scission in Alkenes and Ketones. Acc Chem Res 2025; 58:1547-1561. [PMID: 40233283 PMCID: PMC12075848 DOI: 10.1021/acs.accounts.5c00156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
ConspectusThe homolytic cleavage of C-C bonds adjacent to functional groups has recently become a popular strategy for restructuring the skeletons of complex organic molecules. In contrast to the traditional reactivity profiles of polar bond disconnections, homolytic scission furnishes carbon-centered free radicals primed for controlled termination with a diverse range of radicophiles. Beyond standard radical capture, transition-metal catalysis facilitates sophisticated C-C and C-heteroatom bond-forming reactions. Intensive efforts have been focused over many years into the cleavage of the neighboring C-C bonds of carboxylic acids and alcohols. Despite the ubiquity of alkenes and ketones in natural products, feedstock chemicals, and common synthetic intermediates, much less attention has been paid to exploiting their potential in diversifying chiral pool materials, such as terpenes and terpenoids. Defunctionalization in this manner is a powerful approach for synthesizing high-value chemicals and advanced synthetic intermediates because of the possibility to reconstruct and further decorate chirality-bearing carbon skeletons. Motivated by synthetic necessity, since 2018 our group has focused on developing ozonolysis-based dealkenylative molecular diversification, and we expanded into deacylation in 2025. In this Account, we chronicle our initial motivation, describe the historical background, and summarize our research into dealkenylative and deacylative synthesis. Our dealkenylative approach capitalizes on the ozonolysis of alkenes in MeOH to generate α-methoxyhydroperoxides primed for a reaction with reducing agents. Their reduction through single electron transfer, mediated by a transition metal, leads to the formation of an alkoxyl radical that undergoes rapid β-scission, furnishing both a carbon-centered free radical and an ester group derived from the acetal carbon atom. The produced free radical can be strategically terminated by radicophiles, thereby delivering remodeled chiral molecules. Using this concept, we have developed hydrodealkenylation (through hydrogen atom transfer from benzenethiol), dealkenylative thiylation (through thiyl group transfer from diaryl disulfides), alkenylation (through addition/elimination with nitrostyrenes), and oxodealkenylation (through treatment with TEMPO followed by oxidation). Furthermore, kinetic analysis has enabled the development of a catalytic FeII/vitamin C system for dealkenylative alkynylation and halodealkenylation. Synergizing ozonolysis and copper catalysis has recently enabled aminodealkenylation through net-redox-neutral C-C cleavage followed by C-N bond formation. Although the high oxidation potential of ozone relative to organic compounds makes alkene-to-peroxide conversion possible, it also limits the applicability of dealkenylative techniques for substrates featuring ozone-sensitive functional groups. We recently overcame this constraint by first applying Isayama-Mukayiama peroxidation to olefins and then using a novel catalytic system─catalytic FeIII and PhSH with stoichiometric γ-terpinene─for ozone-free hydrodealkenylation. Beyond alkenes, we have developed a straightforward methodology for the homolytic deacylative cleavage of ketones as well, including cycloalkanones. This process is applicable in total syntheses and in the late-stage modifications of complex ketone-containing natural products.
Collapse
Affiliation(s)
- Michal Šimek
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095-1569, United States; Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 160 00 Prague 6, Czech Republic
| | - Jeremy H. Dworkin
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095-1569, United States
| | - Ohyun Kwon
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, United States
| |
Collapse
|
6
|
Thaharn W, Soorukram D, Kuhakarn C. A Consecutive Two-Step Radical-Mediated Cyclization of gem-Difluorinated Diynes to Access gem-Difluorinated Cedrenes. Chem Asian J 2025; 20:e202401502. [PMID: 39931739 DOI: 10.1002/asia.202401502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/23/2025] [Indexed: 02/21/2025]
Abstract
A consecutive two-step radical-mediated cyclization of gem-difluoromethylenated bis(3-arylpropagyl)-indane-1,3-diones to access structurally unique gem-difluoromethylenated cedrenes is described. Substituents located on the aryl rings of the two propagyl units play an important role in governing the consecutive cyclization pattern. Upon treatment of gem-difluoromethylenated 1,3-diane with Bu3SnH/AIBN, a tributylstannyl radical-mediated radical cyclization between the two diyne units chemoselectively took place, leading to the corresponding gem-difluoromethylenated acoradienes in good yields, after removal of tributylstannyl group by TFA. Subsequently, Bu3SnH/AIBN promoted reductive cleavage of the phenylsulfanyl group leading to difluoroalkyl radicals which spontaneously underwent radical cyclization to give a series of gem-difluoromethylenated cedrenes.
Collapse
Affiliation(s)
- Watcharaporn Thaharn
- Chemistry Program, Faculty of Education, Chiang Rai Rajabhat University, Muang Chiang Rai, 57100, Thailand
| | - Darunee Soorukram
- Department of Chemistry, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
- Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
| | - Chutima Kuhakarn
- Department of Chemistry, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
- Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
| |
Collapse
|
7
|
Li M, Wei Y, Shi M. Electrochemically promoted tandem cyclization of functionalized methylenecyclopropanes: synthesis of tetracyclic benzazepine derivatives. Org Biomol Chem 2025; 23:4166-4171. [PMID: 40171828 DOI: 10.1039/d5ob00238a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
In this study, an electrocatalytic tandem cyclization reaction of amide-tethered methylenecyclopropanes has been developed, which can realize the rapid construction of tetracyclic benzazepine derivatives in moderate yields with good functional group compatibility under relatively mild conditions. In this transformation, the catalytic amount of ferrocene serves as the electrocatalytic medium, and electron transfer on electrodes can replace oxidants or reducing agents, which is more environmentally friendly than and economically comparable to traditional photocatalysis or metal catalysis. Moreover, the origin of the regiochemistry is well elucidated through density functional theory (DFT) calculations.
Collapse
Affiliation(s)
- Min Li
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, People's Republic of China
| | - Yin Wei
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| | - Min Shi
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, People's Republic of China
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| |
Collapse
|
8
|
Cheng Z, Zhang G, Deng Y, Zhang Y, Li X, Chen P, Liu G. Copper-Catalyzed Asymmetric Cyanation of Propargylic Radicals Derived From Silyl-Substituted Allenes and Alkynes. Angew Chem Int Ed Engl 2025:e202505939. [PMID: 40259834 DOI: 10.1002/anie.202505939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/21/2025] [Accepted: 04/21/2025] [Indexed: 04/23/2025]
Abstract
Here, we report an efficient method to synthesize enantiomerically enriched propargyl nitriles via copper-catalyzed asymmetric cyanation of propargylic radicals, which are generated from silyl-substituted allenes or alkynes. These reactions proceeded through a highly site-selective hydrogen atom abstraction (HAA) with Cu(II)-bound nitrogen-centered radicals (NCRs). Notably, silyl-substituted allenes demonstrate exceptional allenic sp2 C─H bond activation selectivity, outcompeting alternative reactive sp3 C─H bonds (benzylic, allylic, and heteroatom-adjacent) in HAA processes. This chemo-selectivity profile enables precise enantiocontrol and site-specific functionalization of complex molecular architectures.
Collapse
Affiliation(s)
- Zhongming Cheng
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, and Shanghai Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Guoyu Zhang
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, and Shanghai Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Yunshun Deng
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yiping Zhang
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, and Shanghai Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Xiang Li
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, and Shanghai Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Pinhong Chen
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, and Shanghai Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Guosheng Liu
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, and Shanghai Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
9
|
Liu Q, Begley A, Abbott DF, Yang JL, Mougel V, Zenobi R, Cai ZF. Radical-Induced Selective C─C Bond Activation at the Air-Solid Interface. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2500706. [PMID: 40256785 DOI: 10.1002/smll.202500706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Indexed: 04/22/2025]
Abstract
Radicals are of great interest to trigger reactions in synthetic chemistry due to their high efficiency and unique reactivity, but their uncontrollable nature poses challenges in achieving selectivity. This study explores the influence of a surface/interface on radical reactions, leveraging a low-temperature plasma ionization source for radical generation. Combining insights from tip-enhanced Raman spectroscopy, mass spectrometry, and X-ray photoelectron spectroscopy, the selectivity of radical reactions of a model organic compound, biphenylthiol is investigated, under both homogeneous and heterogeneous conditions. The metal surface, acting as a template with interfacial water, is found to significantly modify the radical reaction pathway. The surface-immobilized BPT exhibited selective radical reaction products, forming 4-mercaptophenol molecules on Au(111) via the cleavage of C─C bonds. Such a high selectivity of radical reactions is unique and only achieved at the air/solid interface as compared to reactions in the gas, liquid, and solid phases. The present work highlights the potential of surfaces and interfaces in tailoring radical reaction pathways with high selectivity.
Collapse
Affiliation(s)
- Qinlei Liu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
- Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 3, Zurich, CH-8093, Switzerland
| | - Alina Begley
- Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 3, Zurich, CH-8093, Switzerland
| | - Daniel F Abbott
- Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 3, Zurich, CH-8093, Switzerland
| | - Jun-Lei Yang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Victor Mougel
- Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 3, Zurich, CH-8093, Switzerland
| | - Renato Zenobi
- Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 3, Zurich, CH-8093, Switzerland
| | - Zhen-Feng Cai
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
- Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 3, Zurich, CH-8093, Switzerland
| |
Collapse
|
10
|
Sekine K, Yue G, Kajiwara J, Wu D, Shiozuka A, Kuninobu Y. Photoinduced Carbamoylarylation of Alkynes with N-Aryl Oxamic Acids. Org Lett 2025; 27:3947-3951. [PMID: 40176465 DOI: 10.1021/acs.orglett.5c00866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
1,2-Difunctionalization of alkynes is an attractive synthetic protocol, because it can achieve a high step economy and provide various complex organic molecules. This study demonstrates the visible-light-induced carbamoylarylation of terminal alkynes using N-aryl oxamic acids as bifunctional reagents. The transformation involves the addition of carbamoyl radicals to alkenes, resulting in 1,4-aryl migration via C(aryl)-N bond cleavage to afford the corresponding arylacrylamides in moderate to good yields.
Collapse
Affiliation(s)
- Kohei Sekine
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasugakoen, Kasuga-shi, Fukuoka 816-8580, Japan
- Department of Interdisciplinary Engineering Sciences, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasugakoen, Kasuga-shi, Fukuoka 816-8580, Japan
| | - Gaofan Yue
- Department of Interdisciplinary Engineering Sciences, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasugakoen, Kasuga-shi, Fukuoka 816-8580, Japan
| | - June Kajiwara
- Department of Interdisciplinary Engineering Sciences, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasugakoen, Kasuga-shi, Fukuoka 816-8580, Japan
| | - Di Wu
- Department of Interdisciplinary Engineering Sciences, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasugakoen, Kasuga-shi, Fukuoka 816-8580, Japan
| | - Akira Shiozuka
- Department of Interdisciplinary Engineering Sciences, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasugakoen, Kasuga-shi, Fukuoka 816-8580, Japan
| | - Yoichiro Kuninobu
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasugakoen, Kasuga-shi, Fukuoka 816-8580, Japan
- Department of Interdisciplinary Engineering Sciences, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasugakoen, Kasuga-shi, Fukuoka 816-8580, Japan
| |
Collapse
|
11
|
Zhang X, Wang W, Wang S. Three-component Minisci reaction involving trifluoromethyl radicals promoted by TBHP. Org Biomol Chem 2025; 23:3830-3835. [PMID: 40159934 DOI: 10.1039/d5ob00240k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
A three-component Minisci reaction based on radical polarity inversion and mediated by a trifluoromethyl radical is reported in this work. Under transition metal-free conditions, the electrophilic trifluoromethyl radical was added to an electron-rich alkene, generating a nucleophilic alkyl radical, which underwent a Minisci reaction with various electron-deficient N-heteroarenes. This protocol is easily executed using CF3SO2Na as the trifluoromethyl radical source under air- and moisture-free conditions, providing a versatile way to obtain trifluoromethyl-containing N-heteroarenes. Pyridines, quinolines, isoquinoline, phenanthridine and acridine were tolerated under the reaction conditions and reacted with both acyclic and cyclic alkenes. The potential of this reaction was demonstrated through a gram-scale preparation of trifluoromethyl-containing N-heteroarene and their various synthetic applications in synthesizing divergent and structurally complex molecules.
Collapse
Affiliation(s)
- Xiaole Zhang
- School of Chemistry and Chemical Engineering, University of Jinan, 250022, P. R. China.
| | - Wengui Wang
- School of Chemistry and Chemical Engineering, University of Jinan, 250022, P. R. China.
| | - Shoufeng Wang
- School of Chemistry and Chemical Engineering, University of Jinan, 250022, P. R. China.
| |
Collapse
|
12
|
Kumar P, Meyerstein D, Mizrahi A, Kornweitz H. Exploring the Adsorption and Reactions of Methyl Radicals on M(111) Surfaces (M=Cu, Ag, Au): A DFT Study. Chemphyschem 2025; 26:e202400979. [PMID: 39898486 PMCID: PMC12005131 DOI: 10.1002/cphc.202400979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 02/03/2025] [Accepted: 02/03/2025] [Indexed: 02/04/2025]
Abstract
It was reported that adsorbed methyl radicals produce ethane with Ag0- and Au0-nanoparticles in aqueous media, whereas on Cu0-powders, the product is methanol. The source of these differences was explored computationally, using the DFT method. The results indicate that up to six radicals can be adsorbed on Ag(111) and Au(111), (top site), while only four can be adsorbed on Cu(111) (fcc site), each surface containing eight atoms. The diffusion of the radicals on the surface is very easy on silver and copper, as this is achieved with a very low barrier (0.06 eV and 0.15 eV for Ag(111) and Cu(111), respectively), while on Au(111), the barrier is higher, 0.51 eV. The formation of ethane via a reaction of two adsorbed radicals is thermodynamically plausible for all studied coverage ratios on the three surfaces, but kinetically, it is plausible at room temperature only on Au(111) and Ag(111) at full coverage. Ethane can also be produced on Au(111) and Ag(111) by a collision of a solvated radical and an adsorbed radical. This is a barrierless process. On Cu(111), the yield of such a process is CH4(aq), and an adsorbed CH2 which reacts further with a non-adsorbed water molecule to produce adsorbed CH3OH.
Collapse
Affiliation(s)
- Pankaj Kumar
- Chemical Sciences DepartmentThe Radical Reactions Research CenterAriel UniversityArielIsrael
| | - Dan Meyerstein
- Chemical Sciences DepartmentThe Radical Reactions Research CenterAriel UniversityArielIsrael
- Chemistry DepartmentBen-Gurion UniversityBeer-ShevaIsrael
| | | | - Haya Kornweitz
- Chemical Sciences DepartmentThe Radical Reactions Research CenterAriel UniversityArielIsrael
| |
Collapse
|
13
|
Callegari C, Tedesco C, Corbo A, Prato M, Malavasi L, Ravelli D. Application of Lead-Free Metal Halide Perovskite Heterojunctions for the Carbohalogenation of C-C Multiple Bonds. Org Lett 2025; 27:3667-3672. [PMID: 40169388 PMCID: PMC11998073 DOI: 10.1021/acs.orglett.5c00780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/24/2025] [Accepted: 03/28/2025] [Indexed: 04/03/2025]
Abstract
A graphitic carbon nitride/lead-free double perovskite heterojunction (g-C3N4/Cs2AgBiCl6) has been adopted as a heterogeneous photocatalyst under visible light irradiation. The employed material enabled the atom transfer radical addition-type carbohalogenation of multiple C-C bonds, including (internal) alkenes and alkynes, with alkyl halides. The protocol showed a remarkable functional group tolerance, compatible with the late-stage functionalization of natural and pharmaceutical derivatives, and could be easily scaled up, delivering >1 g of the desired products.
Collapse
Affiliation(s)
- Camilla Callegari
- PhotoGreen
Lab, Department of Chemistry, University
of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Costanza Tedesco
- Energy
and Materials Chemistry Group, Department of Chemistry and INSTM, University of Pavia, Viale Taramelli 16, 27100 Pavia, Italy
| | - Alessia Corbo
- PhotoGreen
Lab, Department of Chemistry, University
of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Mirko Prato
- Materials
Characterization Facility, Istituto Italiano
di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Lorenzo Malavasi
- Energy
and Materials Chemistry Group, Department of Chemistry and INSTM, University of Pavia, Viale Taramelli 16, 27100 Pavia, Italy
| | - Davide Ravelli
- PhotoGreen
Lab, Department of Chemistry, University
of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
14
|
Huo L, Zhu S, Zhao Y, Zhao X, Chu L. Photocatalytic Amine-Promoted Selective Hydrochlorination and sp 3 C-O Acylation of Alkyne-Tethered Methyl Ethers with Aldehydes. Org Lett 2025; 27:3548-3553. [PMID: 40146798 DOI: 10.1021/acs.orglett.5c00547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
We present a photoredox and alkylamine-assisted approach for the selective hydrochlorination and acylation of sp3 C-O bonds in alkynyl methyl ethers using aldehydes. This method leverages a cascade of radical processes─including chlorine radical addition, hydrogen atom transfer, in situ imine radical addition, and spin-center shift─to enable selective hydrochlorination of alkynes and the spontaneous cleavage of sp3 C-O bonds. The transformation accommodates a broad range of internal alkyne-tethered ethers and aldehydes, providing an efficient and streamlined pathway to chloro-alkenyl ketones. Utilizing only a photocatalyst, chloride, and propylamine under light irradiation, this strategy offers a practical and complementary alternative to previous sp3 C-O cleavage protocols.
Collapse
Affiliation(s)
- Liping Huo
- State Key Laboratory of Advanced Fiber Materials, College of Chemistry and Chemical Engineering, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai, 201620, China
| | - Shengqing Zhu
- State Key Laboratory of Advanced Fiber Materials, College of Chemistry and Chemical Engineering, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai, 201620, China
| | - Yaheng Zhao
- State Key Laboratory of Advanced Fiber Materials, College of Chemistry and Chemical Engineering, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai, 201620, China
| | - Xiaoyu Zhao
- State Key Laboratory of Advanced Fiber Materials, College of Chemistry and Chemical Engineering, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai, 201620, China
| | - Lingling Chu
- State Key Laboratory of Advanced Fiber Materials, College of Chemistry and Chemical Engineering, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai, 201620, China
| |
Collapse
|
15
|
Shinde PS, Shinde VS, Rueping M. Catalytic stereoselective synthesis of all-carbon tetra-substituted alkenes via Z-selective alkyne difunctionalization. Chem Sci 2025; 16:6273-6281. [PMID: 40092594 PMCID: PMC11904831 DOI: 10.1039/d5sc00297d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 03/04/2025] [Indexed: 03/19/2025] Open
Abstract
We report a Ni-catalyzed cascade reaction leading to the arylation of an alkyne-induced acyl migration and the formation of all-carbon tetra-substituted alkenes in good yields with exclusive Z-selectivity. This transformation involves the generation of a nucleophilic vinyl-Ni species through regioselective syn-aryl nickelation of the alkynes, followed by an intramolecular acyl migration. The steric and electronic properties of the phosphine ligands are crucial for achieving high regio- and stereocontrol in this migratory carbo-acylation process. The synthetic utility of the resulting Z-tetra-substituted alkenes is also demonstrated.
Collapse
Affiliation(s)
- Prashant S Shinde
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Valmik S Shinde
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute Lucknow 226031 Uttar Pradesh India
| | - Magnus Rueping
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| |
Collapse
|
16
|
Wang Q, Wang X, Liu Y, Zhang J, Song J, Guo C. Enantioselective Multicomponent Electrochemical Difunctionalization of Terminal Alkynes. J Am Chem Soc 2025. [PMID: 39996313 DOI: 10.1021/jacs.5c00830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
The direct functionalization of alkyne triple bonds using a radical strategy provides an efficient platform for creating a wide range of substituted alkenes. However, developing a multicomponent enantioselective radical reaction using feedstock alkynes to forge all-carbon quaternary stereocenters─while addressing challenges related to compatibility, selectivity, and efficiency─remains relatively rare. Here we report an enantioselective electrochemical nickel-catalyzed three-component cross-coupling of readily available terminal alkynes, diverse racemic alkyl radical precursors, and group transfer reagents (such as (TMS)3Si-H, RSe-SeR, RTe-TeR, and CHI3), achieving excellent regio-, stereo-, and enantioselectivities (more than 70 examples, up to 95% ee). Electricity-mediated difunctionalizations significantly expand the scope of both aliphatic and aromatic alkynes, demonstrating excellent functional group compatibility. The key to success lies in the rational design of anodically generated nickel-bound tertiary radical intermediates, which stereoselectively capture alkynes to form vinyl radicals and participate in subsequently diverse group transfer processes to enable the intermolecular and anti-stereoselective difunctionalization of alkynes. This approach allows the transformation of terminal alkynes into diverse structural entities with α-quaternary stereogenic centers.
Collapse
Affiliation(s)
- Qiannan Wang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Xinyu Wang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Yong Liu
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Jiayin Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Jin Song
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Chang Guo
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
17
|
Singh S, Gambhir D, Singh RP. Photoinduced stereoselective reactions using pyridinium salts as radical precursors. Chem Commun (Camb) 2025; 61:3436-3446. [PMID: 39873307 DOI: 10.1039/d4cc06026a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Pyridinium salts are amine surrogates that are abundant in nature and the redox active nature of the pyridinium salts allows them to serve as precursors for generating radical species under mild conditions that can be initiated by light, heat or metal catalysis. The stereoselective formation of products has always been a topic of interest for synthetic chemists worldwide. In this context, pyridinium salts can readily undergo single electron reduction to form a neutral radical, and the N-X bond's subsequent fragmentation furnishes the X radical without any harsh reaction conditions. As a consequence, the past decade has witnessed an increased effort in utilizing pyridinium salts to photocatalytically generate radicals for the regioselective, diastereoselective as well as enantioselective formation of products that have been summarised in this review.
Collapse
Affiliation(s)
- Shashank Singh
- Department of Chemistry, Institute of Technology Delhi, Hauz Khas, New Delhi 110-016, India.
| | - Diksha Gambhir
- Department of Chemistry, Institute of Technology Delhi, Hauz Khas, New Delhi 110-016, India.
| | - Ravi P Singh
- Department of Chemistry, Institute of Technology Delhi, Hauz Khas, New Delhi 110-016, India.
| |
Collapse
|
18
|
Zhang TS, He JM, Liu YT, Li J, Zhuang W, Sun H, Hao WJ, Wu Q, Liu S, Jiang B. Radical-Triggered Bicyclization and Aryl Migration of 1,7-Diynes with Diphenyl Diselenide for the Synthesis of Selenopheno[3,4- c]quinolines. Org Lett 2025; 27:1000-1005. [PMID: 39818924 DOI: 10.1021/acs.orglett.4c04533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
The translocation of an aryl group from selenium into carbon enabled by the cleavage of the C-Se bond is reported by using nitrogen atom-linked 1,7-diynes and diaryl diselenides as starting materials, leading to various selenophene derivatives in a regioselective manner. This method enables the construction of two C-Se bonds and two C-C bonds through sequential radical bicyclization and 1,2-aryl migration under metal-free conditions. Control experiments and mechanistic studies suggest that this reaction proceeds through the cleavage of the inert C(Ph)-Se bond, facilitating the aryl translocation process. This transformation enables the one-step conversion of simple diselenides into diverse selenopheno[3,4-c]quinolines via a radical-promoted process, holding significant potential for new seleniferous heterocycles.
Collapse
Affiliation(s)
- Tian-Shu Zhang
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, P. R. China
| | - Jia-Ming He
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, P. R. China
| | - Yu-Tao Liu
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, P. R. China
| | - Jing Li
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, P. R. China
| | - Wenchang Zhuang
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, P. R. China
| | - Hua Sun
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, P. R. China
| | - Wen-Juan Hao
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Qiong Wu
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, P. R. China
| | - Shuai Liu
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, P. R. China
| | - Bo Jiang
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| |
Collapse
|
19
|
Hordijk Y, Dalla Tiezza M, Rodrigues Silva D, Hamlin TA. Radical Addition Reactions: Hierarchical Ab Initio Benchmark and DFT Performance Study. Chemphyschem 2025; 26:e202400728. [PMID: 39230961 DOI: 10.1002/cphc.202400728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/06/2024]
Abstract
We performed a hierarchical ab initio benchmark study of the gas-phase radical addition reactions of X⋅+C2H2 and X⋅+C2H4 (X⋅ = CH3⋅, NH2⋅, OH⋅, SH⋅). The hierarchical series of ab initio methods (HF, MP2, CCSD, CCSD(T)) were paired with a hierarchal series of Dunning basis sets with and without diffuse functions ((aug)-cc-pVDZ, (aug)-cc-pVTZ, (aug)-cc-pVQZ). The HF ground-state wavefunctions were transformed into quasi-restricted orbital (QRO) reference wavefunctions to address spin contamination. Following extrapolation to the CBS limit, the energies from our highest- QRO-CCSD(T)/CBS+ level converged within 0.0-3.4 kcal mol-1 and 0.0-1.0 kcal mol-1 concerning the ab initio method and basis set, respectively. Our QRO-CCSD(T)/CBS+ reference data was used to evaluate the performance of 98 density functional theory (DFT) approximations. The MAE of the best functionals for reaction barriers and energies were: OLYP (1.9 kcal mol-1), BMK (1.0 kcal mol-1), M06-2X (0.9 kcal mol-1), MN12-SX (0.8 kcal mol-1) and CAM-B3LYP (0.8 kcal mol-1). These functionals also accurately reproduce key geometrical parameters of the stationary points within an average 2 % deviation from the reference QRO-CCSD(T)/cc-pVTZ level.
Collapse
Affiliation(s)
- Yuman Hordijk
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute for Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam De Boelelaan 1108, 1081, HZ Amsterdam, The Netherlands
| | - Marco Dalla Tiezza
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute for Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam De Boelelaan 1108, 1081, HZ Amsterdam, The Netherlands
| | - Daniela Rodrigues Silva
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute for Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam De Boelelaan 1108, 1081, HZ Amsterdam, The Netherlands
| | - Trevor A Hamlin
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute for Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam De Boelelaan 1108, 1081, HZ Amsterdam, The Netherlands
| |
Collapse
|
20
|
Kweon J, Lee M, Kim D, Chang S. Stereoretentive Decarboxylative Amidation of α,β-Unsaturated Carboxylic Acids to Access Enamides. Org Lett 2024; 26:11167-11172. [PMID: 39665268 DOI: 10.1021/acs.orglett.4c04234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Enamides have emerged as robust alternatives for enamines, exhibiting versatile reactivity for further synthetic modifications, including nucleophilic addition, cycloaddition, and asymmetric hydrogenation. While transition-metal-catalyzed cross-coupling of alkenyl (pseudo)halides with amides has been widely employed to construct this valuable scaffold, it suffers from some limitations, such as the need for transition-metal catalysts and the preparative synthesis of alkenyl (pseudo)halides. In this study, we report a mild and convenient stereoretentive decarboxylative amidation of α,β-unsaturated carboxylic acids with easily procurable 1,4,2-dioxazol-5-ones, providing a practical synthetic route to enamides. Density functional theory (DFT) calculations revealed a plausible reaction mechanism, which involves the nucleophilic addition of a carboxylate onto dioxazolone, followed by sequential concerted rearrangements.
Collapse
Affiliation(s)
- Jeonguk Kweon
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Minjeong Lee
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Dongwook Kim
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Sukbok Chang
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| |
Collapse
|
21
|
Huang Z, Qin J, Hu Y, Zhu S, Chu L. Radical Alkylcyanation of 1,6-Enynes with Isonitriles as Bifunctional Reagents. Org Lett 2024; 26:10763-10768. [PMID: 39651722 DOI: 10.1021/acs.orglett.4c03744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
We report a radical cyano-cyclization of 1,6-enynes with isonitriles via photochemically driven nickel catalysis, forging alkenyl nitrile-tethered γ-lactams under mild conditions. This reaction leverages the photoexcitation of in situ generated nickel (isonitrile) species to facilitate isonitriles serving as alkyl radical precursors and cyanide sources. The reaction accommodates a wide range of substrates, exhibiting excellent regioselectivity and Z/E stereoselectivity.
Collapse
Affiliation(s)
- Zhonghou Huang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai 201620, China
| | - Jian Qin
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai 201620, China
| | - Yuntong Hu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai 201620, China
| | - Shengqing Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai 201620, China
| | - Lingling Chu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai 201620, China
| |
Collapse
|
22
|
Pu T, Wu SH, Cai L, Pu W, Yuan Y, Zhuang Z, Yang S, Wang L. Regio- and Stereoselective β-Sulfonylamination of Alkynes via Photosensitized Bifunctional N-S Bond Homolysis. Org Lett 2024; 26:10604-10610. [PMID: 39629853 DOI: 10.1021/acs.orglett.4c04091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Nitrogen central radicals (NCRs) are versatile synthetic intermediates for creating functional nitrogen-containing molecules. Herein, a photosensitized β-sulfonylamination of terminal alkynes as well as acetylene has been established by employing N-sulfonyl heteroaromatics as bifunctional reagents (BFRs) to efficiently deliver versatile (E)-β-sulfonylvinylamines with excellent regio- and stereoselectivities. Mechanistic studies suggest a base-accelerated energy transfer (EnT) photocatalysis involving aromatic NCR formation, radical addition to alkynes, and sulfonylation processes.
Collapse
Affiliation(s)
- Tonglv Pu
- School of Medicine, Huaqiao University, Quanzhou 362021, P. R. China
| | - Si-Hai Wu
- School of Medicine, Huaqiao University, Quanzhou 362021, P. R. China
| | - Liuyan Cai
- School of Medicine, Huaqiao University, Quanzhou 362021, P. R. China
| | - Wenjia Pu
- School of Medicine, Huaqiao University, Quanzhou 362021, P. R. China
| | - Yilong Yuan
- School of Medicine, Huaqiao University, Quanzhou 362021, P. R. China
| | - Zhenjing Zhuang
- School of Medicine, Huaqiao University, Quanzhou 362021, P. R. China
| | - Shumin Yang
- School of Medicine, Huaqiao University, Quanzhou 362021, P. R. China
| | - Lianhui Wang
- School of Medicine, Huaqiao University, Quanzhou 362021, P. R. China
| |
Collapse
|
23
|
Ghosh P, Saikia AK. BF 3·OEt 2-catalyzed/mediated alkyne cyclization: a comprehensive review of heterocycle synthesis with mechanistic insights. Org Biomol Chem 2024; 22:8991-9020. [PMID: 39431437 DOI: 10.1039/d4ob01426j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
The quest for efficient and versatile methods for heterocycle synthesis continues to drive innovation in organic chemistry. In this context, the cyclization of alkynes catalyzed or mediated by boron trifluoride diethyl etherate (BF3·OEt2) has emerged as a powerful and widely applicable strategy. This review provides a comprehensive and authoritative overview of BF3·OEt2-catalyzed/mediated alkyne cyclization reactions, covering the scope, mechanisms, and applications of these processes. We discuss the synthesis of a diverse range of heterocyclic compounds, including dihydropyrans, quinolines, dehydropiperidines, oxindoles and others, and highlight the unique advantages of BF3·OEt2 as a catalyst/mediator. Recent advances, challenges, and future directions in this rapidly evolving field are also addressed. This review aims to serve as a valuable resource for synthetic chemists, inspiring further research and applications in this exciting area.
Collapse
Affiliation(s)
- Priya Ghosh
- Department of Chemistry, Ganesh Lal Choudhury College, Borpeta-781315, Assam, India.
| | - Anil K Saikia
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
| |
Collapse
|
24
|
Murugesan V, Syam A, Anantharaj GV, Rasappan R. Alkenylation of unactivated alkanes: synthesis of Z-alkenes via dual Co-TBADT catalysis. Chem Commun (Camb) 2024; 60:14049-14052. [PMID: 39526920 DOI: 10.1039/d4cc04651j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Hydroalkylation of terminal alkynes via C-H activation is the most atom-economical and straightforward method for synthesizing alkenes. They remain confined to using C(sp2)-H or activated C(sp3)-H bonds. A chelating group enabled the alkenylation of C(sp3)-H bonds, resulting in E alkenes. Protocols by which alkenylation of unactivated C(sp3)-H bonds occurs without a chelating group via metal-hydride or radical pathways remain unknown. Our cobalt-HAT catalysis achieves the desired Z alkene with excellent regio- and diastereoselectivity via C-H activation.
Collapse
Affiliation(s)
- Vetrivelan Murugesan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala 695551, India.
| | - Anagha Syam
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala 695551, India.
| | - Guru Vigknesh Anantharaj
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala 695551, India.
| | - Ramesh Rasappan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala 695551, India.
| |
Collapse
|
25
|
Bai X, Chen J, Du H, Zhao C, Li Y, Li Y, Dixneuf PH, Zhang M, Chen L. Silver-Mediated Acetoxyselenylation of Alkynes: Mild Stereoselective Access to Bifunctional Alkenes. Org Lett 2024. [PMID: 39535246 DOI: 10.1021/acs.orglett.4c03178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Herein, we report a AgF-mediated regio- and stereoselective acetoxyselenylation of terminal/internal alkynes from iodobenzene dicarboxylate [PhI(OCOR)2] and diorganyl diselenides via multiple-site functionalization to afford β-selenyl enol esters in good yields. Alkynes derived from bioactive molecules, such as l(-)-borneol, l-menthol, and acyne oxalate, are also suitable for this transformation and afford the expected compounds.
Collapse
Affiliation(s)
- Xiaoyan Bai
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
| | - Jiabin Chen
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
| | - Hongxuan Du
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
| | - Cong Zhao
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
| | - Ya Li
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
| | - Yibiao Li
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
| | | | - Min Zhang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, Guangdong 510641, People's Republic of China
| | - Lu Chen
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
| |
Collapse
|
26
|
Zheng M, Zhuang X, Jia Q, Ren Q, Wu J. Photoredox-Catalyzed Multicomponent α-Sulfonylation of Terminal Alkynes. Org Lett 2024. [PMID: 39526832 DOI: 10.1021/acs.orglett.4c03828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
A generality-oriented and adaptive α-sulfonylation of alkynes via photoinduced multicomponent radical cross-coupling of terminal alkynes with sulfinates and a variety of alcohols, thiophenols, or selenophenols has been explored. This protocol features mild conditions, good functional group tolerability, broad substrate scope, excellent chemo-, site-, and stereoselectivity, and applicability to late-stage functionalization. It provides a modular platform for the synthesis of value-added structurally diverse α-sulfonyl-containing multisubstituted alkenes from simple precursors.
Collapse
Affiliation(s)
- Mingyue Zheng
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Xin Zhuang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Qianfa Jia
- Chongqing Key Laboratory for New Chemical Materials of Shale Gas, College of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408100, P. R. China
| | - Qiao Ren
- College of Pharmaceutical Science, Southwest University, Chongqing 400715, P. R. China
| | - Jicheng Wu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| |
Collapse
|
27
|
Mohammadi N, Mohaghegh F, Ghasemi M, Jafarpour F. Combining Trifunctionalization of Alkynoic Acids, Arene ortho C-H Functionalization and Amination: An Approach to Unsymmetrical 2,3-Diaryl Substituted Indoles. Org Lett 2024; 26:9492-9497. [PMID: 39475346 DOI: 10.1021/acs.orglett.4c03446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2024]
Abstract
Here we report a simultaneous construction of two C-C and two C-N bonds in a unified procedure that incorporates alkynoic acid trifunctionalization, ortho C-H functionalization, and amination cascade. In an ordered process, the regioselective alkyne insertion reaction is favored over the decarboxylation process. The presence of the carboxyl group in alkynoic acid ensures the high regioselectivity in the carbopalladation process, paving the way for a novel method to synthesize unsymmetrically 2,3-diaryl substituted indole scaffolds with excellent regioselectivity. The protocol is demonstrated to be suitable for gram-scale synthesis.
Collapse
Affiliation(s)
- Narges Mohammadi
- School of Chemistry, College of Science, University of Tehran, 14155-6455 Tehran, Iran
| | - Farid Mohaghegh
- School of Chemistry, College of Science, University of Tehran, 14155-6455 Tehran, Iran
| | - Mehran Ghasemi
- School of Chemistry, College of Science, University of Tehran, 14155-6455 Tehran, Iran
| | - Farnaz Jafarpour
- School of Chemistry, College of Science, University of Tehran, 14155-6455 Tehran, Iran
| |
Collapse
|
28
|
Chen F, Shi G, Zheng Y, Dong Q, Peng W, Wang R, Hao E, Wang X, Sun K. Three-Component Photochemical Cyclization/Dithiocarbamate Formation of gem-Difluoro Quinolin-2(1 H)-ones. Org Lett 2024; 26:9604-9609. [PMID: 39470629 DOI: 10.1021/acs.orglett.4c03754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Herein, a novel visible-light-induced 6-exo-trig difluoromethylation cyclization and subsequent carbo-thioesterification reaction is described. This protocol allows efficient access to valuable gem-difluoro quinolin-2(1H)-ones in moderate to excellent yields under mild conditions. Broad amino sources compatibility, including cyclic morpholine, thiazolidine, thiomorpholine, pyrrolidine, 1,4-oxazepane, 2,6-dimethylmorpholine, tert-butyl piperazine-1-carboxylate and noncyclic diethylamine, N-ethylpropan-1-amine, N-benzylethanamine, N-benzyl-trimethylsilanamine, dibenzylamine, and N-(4-methoxybenzyl)ethanamine, demonstrated the practicability of this strategy. A radical-radical crossover route was proposed on the basis of radical inhibition experiments, visible light irradiation on-off test, apparent quantum efficiency (AQE) calculation, and fluorescence quenching studies.
Collapse
Affiliation(s)
- Fei Chen
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, 455000, P. R. China
| | - Gangqing Shi
- School of Pharmacy, Yantai University, Yantai, 264005, P. R. China
| | - Yang Zheng
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, 455000, P. R. China
| | - Qinghao Dong
- School of Pharmacy, Yantai University, Yantai, 264005, P. R. China
| | - Wei Peng
- School of Pharmacy, Yantai University, Yantai, 264005, P. R. China
| | - Rentian Wang
- School of Pharmacy, Yantai University, Yantai, 264005, P. R. China
| | - Erjun Hao
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, P. R. China
| | - Xin Wang
- School of Pharmacy, Yantai University, Yantai, 264005, P. R. China
| | - Kai Sun
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, 455000, P. R. China
- School of Pharmacy, Yantai University, Yantai, 264005, P. R. China
| |
Collapse
|
29
|
Zhao JQ, Chen ZP. The Progress of Reductive Coupling Reaction by Iron Catalysis. CHEM REC 2024; 24:e202400108. [PMID: 39289832 DOI: 10.1002/tcr.202400108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/21/2024] [Indexed: 09/19/2024]
Abstract
The transition metal catalyzed coupling reaction has revolutionized the strategies for forging the carbon-carbon bonds. In contrast to traditional cross-coupling methods using pre-prepared nucleophilic organometallic reagents, reductive coupling reactions for the C-C bonds formation provide some advantages. Because both coupling partners are reduced in the final products using a stoichiometric amount of a reductant, this approach not only avoids the need to use sensitive organometallic species, but also provides an orthogonal and complementary access to classical coupling reaction. Notably, the reductive coupling reactions feature readily available fragments, promote good step economy, exhibit high functional group tolerance and unique chemoselectivity, which have propelled their increasingly popular in the organic synthesis. In recent years, due to the low price, minimal toxicity, and environmentally benign character, iron-catalyzed carbon-carbon coupling reactions have garnered significant attention from the organic synthetic chemists and pharmacologists, especially the iron-catalyzed reductive coupling. This review aims to provide an insightful overview of recent advances in iron-catalyzed reductive coupling reactions, and to illustrate their possible reaction mechanisms.
Collapse
Affiliation(s)
- Jian-Qiang Zhao
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu, 610106, China
| | - Zhang-Pei Chen
- College of Sciences Northeastern University, Shenyang, 110819, China
| |
Collapse
|
30
|
Corpas J, Alonso M, Leonori D. Boryl radical-mediated halogen-atom transfer (XAT) enables the Sonogashira-like alkynylation of alkyl halides. Chem Sci 2024:d4sc06516f. [PMID: 39483251 PMCID: PMC11521202 DOI: 10.1039/d4sc06516f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 10/23/2024] [Indexed: 11/03/2024] Open
Abstract
Alkynes are a crucial class of materials with application across the wide range of chemical disciplines. The alkynylation of alkyl halides presents an ideal strategy for assembling these materials. Current methods rely on the intrinsic electrophilic nature of alkyl halides to couple with nucleophilic acetylenic systems, but these methods faces limitations in terms of applicability and generality. Herein, we introduce a different approach to alkynylation of alkyl halides that proceeds via radical intermediates and uses alkynyl sulfones as coupling partners. This strategy exploits the ability of amine-ligated boryl radicals to activate alkyl iodides and bromides through halogen-atom transfer (XAT). The resulting radicals then undergo a cascade of α-addition and β-fragmentation with the sulfone reagent, leading to the construction of C(sp3)-C(sp) bonds. The generality of the methodology has been demonstrated by its successful application in the alkynylation of complex and high-value molecules.
Collapse
Affiliation(s)
- Javier Corpas
- Institute of Organic Chemistry, RWTH Aachen University Landoltweg 1 Aachen 52056 Germany
| | - Maialen Alonso
- Institute of Organic Chemistry, RWTH Aachen University Landoltweg 1 Aachen 52056 Germany
| | - Daniele Leonori
- Institute of Organic Chemistry, RWTH Aachen University Landoltweg 1 Aachen 52056 Germany
| |
Collapse
|
31
|
Barik D, Chakraborty N, Sahoo AK, Dhara HN, Patel BK. Electron-donor-acceptor (EDA) complex-driven regioselective vicinal and oxidative geminal functionalization of alkynes. Chem Commun (Camb) 2024; 60:12577-12580. [PMID: 39387279 DOI: 10.1039/d4cc04610b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
A visible-light-initiated electron-donor-acceptor (EDA) complex-driven regioselective vicinal and oxidative geminal thiosulfonylation of alkynes is presented. Organic thiosulfonates act as an acceptor, producing either sulfonyl (RSO2˙) or thiyl (RS˙) radicals under base and solvent switchable conditions. Simultaneous installation of three different functionalities, viz carbonyl, sulfonyl, and thiyl, takes place under one condition, while another condition leads to vicinal thiolation and sulfonylation.
Collapse
Affiliation(s)
- Dinabandhu Barik
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India.
| | - Nikita Chakraborty
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India.
| | - Ashish K Sahoo
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India.
| | - Hirendra Nath Dhara
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India.
| | - Bhisma K Patel
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India.
| |
Collapse
|
32
|
Dong X, Shao Y, Liu Z, Huang X, Xue XS, Chen Y. Radical 6-Endo Addition Enables Pyridine Synthesis under Metal-Free Conditions. Angew Chem Int Ed Engl 2024; 63:e202410297. [PMID: 39031447 DOI: 10.1002/anie.202410297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 07/22/2024]
Abstract
Metal-free synthesis of heterocycles is highly sought after in the pharmaceutical industry and has garnered widespread attention due to eliminating the need to remove trace metal catalysts from the reaction. We report a radical 6-endo addition method for pyridine synthesis from cyclopropylamides and alkynes under metal-free conditions. Various terminal and substituted alkynes are inserted as C2 units into cyclopropylamides to synthesize versatile pyridines with 57 examples. Mechanistic investigations and computational studies indicate the unprecedented 6-endo-trig addition of vinyl radicals to the imine nitrogen atom rather than the conventional 5-exo-trig addition to the imine carbon atom, in which the hypervalent iodine(III) plays a critical role. This reaction easily scales up with excellent functional group compatibility and suits the late-stage pyridine installation on complex molecules.
Collapse
Affiliation(s)
- Xiaojuan Dong
- Central China Normal University, 152 Luoyu Road, Wuhan, Hubei, 430079, China
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Yingbo Shao
- College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zhengyi Liu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Xia Huang
- Central China Normal University, 152 Luoyu Road, Wuhan, Hubei, 430079, China
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Xiao-Song Xue
- School of Chemistry and Material Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Yiyun Chen
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
- School of Physical Science and Technology, Shanghai Tech University, 100 Haike Road, Shanghai, 201210, China
- School of Chemistry and Material Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China
| |
Collapse
|
33
|
Wang S, Chen K, Niu J, Guo X, Yuan X, Yin J, Zhu B, Shi D, Guan W, Xiong T, Zhang Q. Copper-Catalyzed Regiodivergent Asymmetric Difunctionalization of Terminal Alkynes. Angew Chem Int Ed Engl 2024; 63:e202410833. [PMID: 38923633 DOI: 10.1002/anie.202410833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 06/23/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024]
Abstract
We herein describe the first example of ligand-controlled, copper-catalyzed regiodivergent asymmetric difunctionalization of terminal alkynes through a cascade hydroboration and hydroallylation process. The catalytic system, consisting of (R)-DTBM-Segphos and CuBr, could efficiently achieve asymmetric 1,1-difunctionalization of aryl terminal alkynes, while ligand switching to (S,S)-Ph-BPE could result in asymmetric 1,2-difunctionalization exclusively. In addition, alkyl substituted terminal alkynes, especially industrially relevant acetylene and propyne, were also valid feedstocks for asymmetric 1,1-difunctionalization. This protocol is characterized by good functional group tolerance, a broad scope of substrates (>150 examples), and mild reaction conditions. We also showcase the value of this method in the late-stage functionalization of complicated bioactive molecules and simplifying the synthetic routes toward the key intermediacy of natural product (bruguierol A). Mechanistic studies combined with DFT calculations provide insight into the mechanism and origins of this ligand-controlled regio- and stereoselectivity.
Collapse
Affiliation(s)
- Simin Wang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Kexin Chen
- Institute of Functional Material Chemistry, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Junbo Niu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Xiaobing Guo
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Xiuping Yuan
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Jianjun Yin
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Bo Zhu
- Institute of Functional Material Chemistry, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Dazhen Shi
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Wei Guan
- Institute of Functional Material Chemistry, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Tao Xiong
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Qian Zhang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
34
|
Gao H, Xiao T, Jiang Y. Oxy-difluoroallylation of Ynamides by Nickel-Catalyzed Tandem Alkoxylation/Claisen Rearrangement. Org Lett 2024; 26:8832-8836. [PMID: 39382402 DOI: 10.1021/acs.orglett.4c03232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
A nickel-catalyzed tandem alkoxylation/claisen rearrangement strategy for the oxy-difluoroallylation of ynamides has been developed. In this reaction, 3,3-difluoroallyl alcohol was used as a fluorine-containing building block to construct the C-CF2 bond for the first time. This approach is recognized for its robust tolerance of functional groups, impressive yields, and excellent atomic efficiency, all achieved under mild reaction conditions. A series of β,β-difluoromethyleneamide derivatives were efficiently obtained through simple operations, and their practicality was confirmed through gram-scale synthesis and product derivatization.
Collapse
Affiliation(s)
- Haotian Gao
- Faculty of Science, Kunming University of Science and Technology, Kunming 650500, China
| | - Tiebo Xiao
- Faculty of Science, Kunming University of Science and Technology, Kunming 650500, China
| | - Yubo Jiang
- Faculty of Science, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
35
|
Qin J, Li Y, Hu Y, Huang Z, Miao W, Chu L. Photoinduced Nickel-Catalyzed Homolytic C(sp 3)-N Bond Activation of Isonitriles for Selective Carbo- and Hydro-Cyanation of Alkynes. J Am Chem Soc 2024; 146:27583-27593. [PMID: 39325022 DOI: 10.1021/jacs.4c08631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
The exploration of strong chemical bonds as synthetic handles offers new disconnection strategies for the synthesis of functionalized molecules via transition metal catalysis. However, the slow oxidative addition rate of these covalent bonds to a transition metal center hampers their synthetic utility. Here, we report a C(sp3)-N bond activation strategy that bypasses thermodynamically challenging 2e- or 1e- oxidative addition via a distinct pathway in nickel catalysis. This strategy leverages a previously unknown activation pathway of photoinduced inner-sphere charge transfer of low-valent nickel(isonitriles), triggering a C(sp3)-N bond cleavage distal to the metal-ligand interaction to deliver nickel(cyanide) and versatile alkyl radicals. Utilizing this catalytic strategy, the selective intermolecular 1,2-carbocyanation reaction of alkynes with alkyl isonitriles as both alkylating and cyanating agents can be achieved, delivering a wide array of trisubstituted alkenyl nitriles with excellent atom-economy, regio-, and stereoselectivity under mild conditions. Furthermore, Markovnikov-selective hydrocyanation of aliphatic alkynes can be accomplished through the synergistic action of a photocatalyst utilizing isonitriles as the cyanation agents. Mechanistic investigations support the photogeneration of low-valent Ni(isonitrile) complexes that undergo photochemical homolysis of the C(sp3)-N bond to engage catalytic cyanation with alkynes.
Collapse
Affiliation(s)
- Jian Qin
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai 201620, China
| | - Yingying Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai 201620, China
| | - Yuntong Hu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai 201620, China
| | - Zhonghou Huang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai 201620, China
| | - Weihang Miao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai 201620, China
| | - Lingling Chu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai 201620, China
| |
Collapse
|
36
|
Zhang Y, Fu D, Chen Z, Cui R, He W, Wang H, Chen J, Chen Y, Li SJ, Lan Y, Duan C, Jin Y. Bifunctional iron-catalyzed alkyne Z-selective hydroalkylation and tandem Z-E inversion via radical molding and flipping. Nat Commun 2024; 15:8619. [PMID: 39366970 PMCID: PMC11452693 DOI: 10.1038/s41467-024-53021-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/29/2024] [Indexed: 10/06/2024] Open
Abstract
The challenging synthesis of thermodynamic-unfavored cis-olefins through catalytic cross-coupling reactions requires the synergistic interaction of substrate-activating units and configuration-regulating catalysts. Successfully hitting these two birds with one stone, we herein develop a convenient photoredox access to Z-alkenes from alkynes and light alkanes with a bifunctional iron-catalyzed system possessing both C(sp3)-H activation and configuration-controlling abilities. The protocol exhibits 100% atom utilization, mild conditions, a broad substrate scope, and compatibility with multitudinous functional groups. The detailed reaction mechanism and the origin of geometry regulation are well investigated by experimental and computational studies. Progressively, a catalytic amount of diaryl disulfides is introduced for consecutive photoinduced Z-E isomerization via reversible radical addition and flipping. Big steric hindrance substituents assembled on the disulfide emerge necessity for suppressing double-bond migration. This tandem strategy paves a promising way for stereoselective alkene construction and will bring significant inspiration for the development of transition metal photocatalysis.
Collapse
Affiliation(s)
- Yongqiang Zhang
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Dongmin Fu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Ziyang Chen
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Rongqi Cui
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Wenlong He
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Hongyao Wang
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Jiajin Chen
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Yufei Chen
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Shi-Jun Li
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Yu Lan
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China.
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing, 400030, China.
| | - Chunying Duan
- State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, 210093, China
| | - Yunhe Jin
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
37
|
Wang X, Zhao D, Huang JB, Shi G, Hao EJ, Ni S, Sun K. Photo-Induced Difluoromethylation-Cyclization and Domino Amination-Defluorination to 4-(Aminomethyl)-3-fluoro-quinolinones. Org Lett 2024. [PMID: 39348475 DOI: 10.1021/acs.orglett.4c03252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
Herein, we report a visible light-induced difluoromethylation cyclization and subsequent amination-defluorination reaction. This protocol allows efficient to valuable 3-fluoro-quinolinones in moderate to excellent yields. A sequential difluoromethylation-cyclization-amination-defluorination mechanism was proposed based on a mechanism study. Further density functional theory (DFT) calculations revealed that the base K2HPO4 could lower the energy due to the C═O···K+ electrostatic interaction to assist the elimination process, while the six-membered transition state located in situ was essential for the cleavage of N-H and C-F bonds during this SN2'-type process.
Collapse
Affiliation(s)
- Xin Wang
- School of Pharmacy, Yantai University, Yantai 264005, P. R. China
| | - Dongyang Zhao
- School of Pharmacy, Yantai University, Yantai 264005, P. R. China
| | - Jia-Bo Huang
- College Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, P. R. China
| | - Gangqing Shi
- School of Pharmacy, Yantai University, Yantai 264005, P. R. China
| | - Er-Jun Hao
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, P. R. China
| | - Shaofei Ni
- College Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, P. R. China
| | - Kai Sun
- School of Pharmacy, Yantai University, Yantai 264005, P. R. China
| |
Collapse
|
38
|
Tlahuext-Aca A, Nguyen QD, Gao Y, Sati GC, Zhao J, Valco D. Palladium-Catalyzed Cross-Coupling of Aryl Bromides and Chlorides with Trimethylsilylalkynes under Mild Conditions. J Org Chem 2024; 89:13762-13767. [PMID: 39219445 DOI: 10.1021/acs.joc.4c01499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Herein, we disclose a palladium-catalyzed cross-coupling of aryl bromides and chlorides with trimethylsilylalkynes under mild reaction conditions. This method utilizes commercially available and air stable palladium precatalysts and avoids the use of copper cocatalysts. Moreover, it allows for the synthesis of a wide range of disubstituted alkynes in high yields with excellent functional group tolerance. The utility of the developed method was further demonstrated via the late-stage alkynylation of pharmaceuticals and natural bioactive compounds.
Collapse
Affiliation(s)
- Adrian Tlahuext-Aca
- Corteva Agriscience, Small Molecule Discovery and Development, Indianapolis, Indiana 46268, United States
| | - Quyen D Nguyen
- Corteva Agriscience, Small Molecule Discovery and Development, Indianapolis, Indiana 46268, United States
| | - Yang Gao
- Corteva Agriscience, Small Molecule Discovery and Development, Indianapolis, Indiana 46268, United States
| | - Girish C Sati
- Corteva Agriscience, Small Molecule Discovery and Development, Indianapolis, Indiana 46268, United States
| | - Jinpeng Zhao
- Corteva Agriscience, Small Molecule Discovery and Development, Indianapolis, Indiana 46268, United States
| | - Daniel Valco
- Corteva Agriscience, Reactive Chemicals SME, Indianapolis, Indiana 46268, United States
| |
Collapse
|
39
|
Bhargava Reddy M, Becker VE, McGarrigle EM. Carbosulfonylation of Alkynes: A Direct Conversion of sp-C to sp 3-C through Visible Light-Mediated 3-Component Reaction. Org Lett 2024; 26:7858-7863. [PMID: 39259966 PMCID: PMC11421081 DOI: 10.1021/acs.orglett.4c02700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
A 3-component metal-free carbosulfonylation of alkynes is reported using readily available alkyl carboxylic acids and arylsulfinates under visible light irradiation. This photochemical approach gives direct conversion of sp-C to sp3-C yielding highly functionalized alkyl sulfones. It employs feedstock chemicals as starting materials and shows a broad substrate scope and moderate diastereoselectivity. The method's utility is highlighted in the synthesis of sedum alkaloids. A single photocatalyst is proposed to be active in two distinct photocatalytic cycles operating in tandem.
Collapse
Affiliation(s)
- Mandapati Bhargava Reddy
- Centre for Synthesis & Chemical Biology, UCD School of Chemistry, Belfield, Dublin 4, Ireland
- A2P CDT in Sustainable Chemistry and BiOrbic Bioeconomy SFI Research Centre, University College Dublin, Belfield, Dublin 4, Ireland
| | - Vanessa E Becker
- Centre for Synthesis & Chemical Biology, UCD School of Chemistry, Belfield, Dublin 4, Ireland
| | - Eoghan M McGarrigle
- Centre for Synthesis & Chemical Biology, UCD School of Chemistry, Belfield, Dublin 4, Ireland
- A2P CDT in Sustainable Chemistry and BiOrbic Bioeconomy SFI Research Centre, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
40
|
Satheesh V, Deng Y. Recent Advances in Synthetic Methods by Photocatalytic Single-Electron Transfer Chemistry of Pyridine N-Oxides. J Org Chem 2024; 89:11864-11874. [PMID: 39121338 PMCID: PMC11415123 DOI: 10.1021/acs.joc.4c01453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2024]
Abstract
By adoption of the enabling technology of modern photoredox catalysis and photochemistry, the generation of reactive and versatile pyridine N-oxy radicals can be facilely achieved from single-electron oxidation of pyridine N-oxides. This Synopsis highlights recent methodologies mediated by pyridine N-oxy radicals in developing (1) pyridine N-oxide-based hydrogen atom transfer catalysts for C(sp3)-H functionalizations and (2) β-oxyvinyl radical-mediated cascade reactions. In addition, recent research revealed that direct photoexcitation of pyridine N-oxides allowed for the generation of alkyl carbon radicals from alkylboronic acids.
Collapse
Affiliation(s)
- Vanaparthi Satheesh
- Department of Chemistry and Chemical Biology, Indiana University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Yongming Deng
- Department of Chemistry and Chemical Biology, Indiana University Indianapolis, Indianapolis, Indiana 46202, United States
| |
Collapse
|
41
|
Duan MF, Xiao M, Ogundipe OO, Wu XX, Zou JP. Copper-Catalyzed Vicinal Thiocyanosulfonylation of Alkenes and Alkynes. J Org Chem 2024; 89:11558-11566. [PMID: 39082143 DOI: 10.1021/acs.joc.4c01241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Efficient copper-catalyzed radical thiocyanosulfonylation of alkenes and alkynes with potassium thiocyanate and sodium phenylsulfinate is described. The reactions provide general and convenient methods toward the synthesis of β-thiocyanoalkyl sulfones and β-thiocyanoalkenyl sulfones, respectively, in satisfactory yields. Based on conducted mechanistic experiments, a mechanism involving oxidative generation of sulfonyl radicals and subsequent addition to alkenes followed by Cu-assisted thiocyanation is proposed. Moreover, the practicability of the reaction is successfully demonstrated by its successful application on a gram scale.
Collapse
Affiliation(s)
- Meng-Fan Duan
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry and Chemical Engineering, Soochow University, 199 Renai Street, Suzhou, Jiangsu 215123, China
| | - Mei Xiao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry and Chemical Engineering, Soochow University, 199 Renai Street, Suzhou, Jiangsu 215123, China
| | - Olukayode Olamiji Ogundipe
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry and Chemical Engineering, Soochow University, 199 Renai Street, Suzhou, Jiangsu 215123, China
| | - Xin-Xin Wu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry and Chemical Engineering, Soochow University, 199 Renai Street, Suzhou, Jiangsu 215123, China
| | - Jian-Ping Zou
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry and Chemical Engineering, Soochow University, 199 Renai Street, Suzhou, Jiangsu 215123, China
| |
Collapse
|
42
|
Luo Z, Zhang X, Li Z, Luo M, Zeng X. Mild ketyl radical generation and coupling with alkynes enabled by Cr catalysis: stereoselective access to E-exocyclic allyl alcohols. Chem Sci 2024; 15:11428-11434. [PMID: 39054998 PMCID: PMC11268464 DOI: 10.1039/d4sc02967d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/07/2024] [Indexed: 07/27/2024] Open
Abstract
The mild catalytic generation of ketyl radicals for organic transformations remains an unsolved issue, although it facilitates the discovery of metal-catalyzed reactions with the features of high functional group tolerance. Here, we report the generation of the ketyl radicals and coupling with alkynes that was enabled by cost-effective chromium catalysis, allowing for the formation of valuable E-exocyclic allyl alcohols with high stereo- and chemoselectivity. A broad range of synthetically useful functional groups that are sensitive to strong reductants are compatible with the catalytic system, providing access to diverse substituted E-exocyclic allyl alcohols under mild conditions. Appended hydroxyl groups in products are facilely late-stage functionalized in accessing numerous derivatives, as well as the enantio-enrichment of exocyclic allyl alcohol using chiral ligands. Mechanistic studies suggest that bipyridine-ligated Cr(ii) complex serves as a reactive catalyst enabling the generation of the ketyl radical for coupling, giving vinyl radical, followed by the combination of Cr and transmetalation with Cp2ZrCl moiety in affording oxazirconiumacycle. This reaction provides a new opportunity for the mild formation of transient ketyl radicals from widely accessible aliphatic aldehydes for coupling with Earth-abundant metal catalysis.
Collapse
Affiliation(s)
- Zheng Luo
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Xiaoyu Zhang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Zaiyang Li
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Meiming Luo
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Xiaoming Zeng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| |
Collapse
|
43
|
Chen J, Wei WT, Li Z, Lu Z. Metal-catalyzed Markovnikov-type selective hydrofunctionalization of terminal alkynes. Chem Soc Rev 2024; 53:7566-7589. [PMID: 38904176 DOI: 10.1039/d4cs00167b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Metal-catalyzed highly Markovnikov-type selective hydrofunctionalization of terminal alkynes provides a straightforward and atom-economical route to access 1,1-disubstituted alkenes, which have a wide range of applications in organic synthesis. However, the highly Markovnikov-type selective transformations are challenging due to the electronic and steric effects during the addition process. With the development of metal-catalyzed organic synthesis, different metal catalysts have been developed to solve this challenge, especially for platinum group metal catalysts. In this perspective, we review homogeneous metal-catalyzed Markovnikov-type selective hydrofunctionalization of terminal alkynes according to the classified element types as well as reaction mechanisms. Future avenues for investigation are also presented to help expand this exciting field.
Collapse
Affiliation(s)
- Jieping Chen
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Wen-Ting Wei
- School of Materials Science and Chemical Engineering, Ningbo University, Zhejiang, 315211, China
| | - Zhuocheng Li
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Zhan Lu
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
44
|
Zeng Q, Nirwan Y, Benet-Buchholz J, Kleij AW. An Expedient Radical Approach for the Decarboxylative Synthesis of Stereodefined All-Carbon Tetrasubstituted Olefins. Angew Chem Int Ed Engl 2024; 63:e202403651. [PMID: 38619179 DOI: 10.1002/anie.202403651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/16/2024]
Abstract
We report a user-friendly approach for the decarboxylative formation of stereodefined and complex tri- and tetra-substituted olefins from vinyl cyclic carbonates and amines as radical precursors. The protocol relies on easy photo-initiated α-amino-radical formation followed by addition onto the double bond of the substrate resulting in a sequence involving carbonate ring-opening, double bond relay, CO2 extrusion and finally O-protonation. The developed protocol is efficient for both mismatched and matched polarity substrate combinations, and the scope of elaborate stereodefined olefins that can be forged including drug-functionalized derivatives is wide, diverse and further extendable to other types of heterocyclic and radical precursors. Mechanistic control reactions show that the decarboxylation step is a key driving force towards product formation, with the initial radical addition under steric control.
Collapse
Affiliation(s)
- Qian Zeng
- Institute of Chemical Research of Catalonia (ICIQ-Cerca), the Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona
- Departament de Química Física i Inorgànica/Universitat Rovira i Virgili, Marcel⋅lí Domingo s/n, 43007, Tarragona, Spain
| | - Yamini Nirwan
- Institute of Chemical Research of Catalonia (ICIQ-Cerca), the Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona
| | - Jordi Benet-Buchholz
- Institute of Chemical Research of Catalonia (ICIQ-Cerca), the Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona
| | - Arjan W Kleij
- Institute of Chemical Research of Catalonia (ICIQ-Cerca), the Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona
- Catalan Institute of Research and Advanced Studies (ICREA), Pg. Lluís, Companys 23, 08010, Barcelona, Spain
| |
Collapse
|
45
|
Reddy CR, Kolgave DH, Fatima S, Ramesh R. Carbonylative cyclization of biaryl enones with aldehydes and oxamic acids. Org Biomol Chem 2024; 22:4901-4911. [PMID: 38832447 DOI: 10.1039/d4ob00513a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
An oxidative radical-promoted carbonylative cyclization strategy for the synthesis of phenanthren-9-(10H)-one frameworks from biaryl enones using aldehydes as the carbonyl radical sources is disclosed. The reaction proceeds through a sequential addition of a carbonyl radical to the olefin followed by cyclization with an aryl ring. The method is further extended to carbamoyl radicals generated from oxamic acids to access the corresponding phenanthrenones with amide functionalities.
Collapse
Affiliation(s)
- Chada Raji Reddy
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Dattahari H Kolgave
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Sana Fatima
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Remya Ramesh
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| |
Collapse
|
46
|
Cheng H, He T, Chen D, Zheng Y, Lu Y, Liang H, Liao S, Huang S. Fluorosulfonyl Arylation of Alkynes via Electron Donor-Acceptor Photoactivation. Org Lett 2024; 26:3581-3585. [PMID: 38661063 DOI: 10.1021/acs.orglett.4c01024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
A radical fluorosulfonyl arylation of alkynes with sulfuryl chlorofluoride as the FSO2 radical precursor via electron donor-acceptor photoactivation driven by daylight or a blue light-emitting diode is disclosed. A series of valuable benzo-fused carbocycles and heterocycles have been produced with simple operation under mild conditions in the absence of any external catalysts or additives. The synthetic potential of this protocol has further demonstrated excellent scalability, as well as diverse postderivatizations, including SuFEx reactions and other useful cascade reactions.
Collapse
Affiliation(s)
- Haoyuan Cheng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Tianyu He
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Dengfeng Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Yu Zheng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Yanju Lu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Hui Liang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Saihu Liao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| | - Shenlin Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education of China, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
47
|
Shlapakov NS, Kobelev AD, Burykina JV, Cheng YZ, You SL, Ananikov VP. Sulfur in Waste-Free Sustainable Synthesis: Advancing Carbon-Carbon Coupling Techniques. Angew Chem Int Ed Engl 2024; 63:e202402109. [PMID: 38421344 DOI: 10.1002/anie.202402109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/29/2024] [Accepted: 02/29/2024] [Indexed: 03/02/2024]
Abstract
This review explores the pivotal role of sulfur in advancing sustainable carbon-carbon (C-C) coupling reactions. The unique electronic properties of sulfur, as a soft Lewis base with significant mesomeric effect make it an excellent candidate for initiating radical transformations, directing C-H-activation, and facilitating cycloaddition and C-S bond dissociation reactions. These attributes are crucial for developing waste-free methodologies in green chemistry. Our mini-review is focused on existing sulfur-directed C-C coupling techniques, emphasizing their sustainability and comparing state-of-the-art methods with traditional approaches. The review highlights the importance of this research in addressing current challenges in organic synthesis and catalysis. The innovative use of sulfur in photocatalytic, electrochemical and metal-catalyzed processes not only exemplifies significant advancements in the field but also opens new avenues for environmentally friendly chemical processes. By focusing on atom economy and waste minimization, the analysis provides broad appeal and potential for future developments in sustainable organic chemistry.
Collapse
Affiliation(s)
- Nikita S Shlapakov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect, 47, 119991, Moscow, Russia
| | - Andrey D Kobelev
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect, 47, 119991, Moscow, Russia
| | - Julia V Burykina
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect, 47, 119991, Moscow, Russia
| | - Yuan-Zheng Cheng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, 200032, Shanghai, China
| | - Shu-Li You
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, 200032, Shanghai, China
| | - Valentine P Ananikov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect, 47, 119991, Moscow, Russia
| |
Collapse
|
48
|
Wang J, Wu X, Cao Z, Zhang X, Wang X, Li J, Zhu C. E-Selective Radical Difunctionalization of Unactivated Alkynes: Preparation of Functionalized Allyl Alcohols from Aliphatic Alkynes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309022. [PMID: 38348551 DOI: 10.1002/advs.202309022] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/23/2024] [Indexed: 04/25/2024]
Abstract
Radical difunctionalization of aliphatic alkynes provides direct access to valuable multi-substituted alkenes, but achieving a high level of chemo- and stereo-control remains a formidable challenge. Herein a novel photoredox neutral alkyne di-functionalization is reported through functional group migration followed by a radical-polar crossover and energy transfer-enabled stereoconvergent isomerization of alkenes. In this sequence, a hydroxyalkyl and an aryl group are incorporated concomitantly into an alkyne, leading to diversely functionalized E-allyl alcohols. The scope of alkynes is noteworthy, and the reaction tolerates aliphatic alkynes containing hydrogen donating C─H bonds that are prone to intramolecular hydrogen atom transfer. The protocol features broad functional group compatibility, high product diversity, and exclusive chemo- and stereoselectivity, thus providing a practical strategy for the elusive radical di-functionalization of unactivated alkynes.
Collapse
Affiliation(s)
- Jie Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu, 215123, China
| | - Xinxin Wu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu, 215123, China
| | - Zhu Cao
- Frontiers Science Center for Transformative Molecules and Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Xu Zhang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu, 215123, China
| | - Xinxin Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu, 215123, China
| | - Jie Li
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu, 215123, China
| | - Chen Zhu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu, 215123, China
- Frontiers Science Center for Transformative Molecules and Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|
49
|
Shlapakov NS, Kobelev AD, Burykina JV, Kostyukovich AY, König B, Ananikov VP. Reversible Radical Addition Guides Selective Photocatalytic Intermolecular Thiol-Yne-Ene Molecular Assembly. Angew Chem Int Ed Engl 2024; 63:e202314208. [PMID: 38240738 DOI: 10.1002/anie.202314208] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Indexed: 02/21/2024]
Abstract
In modern organic chemistry, harnessing the power of multicomponent radical reactions presents both significant challenges and extraordinary potential. This article delves into this scientific frontier by addressing the critical issue of controlling selectivity in such complex processes. We introduce a novel approach that revolves around the reversible addition of thiyl radicals to multiple bonds, reshaping the landscape of multicomponent radical reactions. The key to selectivity lies in the intricate interplay between reversibility and the energy landscapes governing C-C bond formation in thiol-yne-ene reactions. The developed approach not only allows to prioritize the thiol-yne-ene cascade, dominating over alternative reactions, but also extends the scope of coupling products obtained from alkenes and alkynes of various structures and electron density distributions, regardless of their relative polarity difference, opening doors to more versatile synthetic possibilities. In the present study, we provide a powerful tool for atom-economical C-S and C-C bond formation, paving the way for the efficient synthesis of complex molecules. Carrying out our experimental and computational studies, we elucidated the fundamental mechanisms underlying radical cascades, a knowledge that can be broadly applied in the field of organic chemistry.
Collapse
Affiliation(s)
- Nikita S Shlapakov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect, 47, 119991, Moscow, Russia
| | - Andrey D Kobelev
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect, 47, 119991, Moscow, Russia
- Lomonosov Moscow State University, Leninskie Gory GSP-1, 1-3, 119991, Moscow, Russia
| | - Julia V Burykina
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect, 47, 119991, Moscow, Russia
| | - Alexander Yu Kostyukovich
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect, 47, 119991, Moscow, Russia
| | - Burkhard König
- Institut für Organische Chemie, Universität Regensburg, Universitätstrasse 31, 93053, Regensburg, Germany
| | - Valentine P Ananikov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect, 47, 119991, Moscow, Russia
- Lomonosov Moscow State University, Leninskie Gory GSP-1, 1-3, 119991, Moscow, Russia
| |
Collapse
|
50
|
Gallegos M, Del Amo V, Guevara-Vela JM, Moreno-Alcántar G, Martín Pendás Á. Radical revelations: the pnictogen effect in linear acetylenes. Phys Chem Chem Phys 2024; 26:7718-7730. [PMID: 38372358 DOI: 10.1039/d3cp06324k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Acetylenes are essential building blocks in modern chemistry due to their remarkable modularity. The introduction of heteroatoms, such as pnictogens (X), is one of the simplest approaches to altering the C≡C bond. However, the chemistry of the resultant dipnictogenoacetylenes (DXAs) is strongly dependent on the nature of X. In this work, rigorous theoretical chemistry tools are employed to shed light on the origin of these differences, providing a detailed evaluation of the impact of X on the geometrical and electronic features of DXAs. Special emphasis is made on the study of the carbene character of the systems through the analysis of the interconversion mechanism between the linear and zigzag isomers. Our results show that second-period atoms behave drastically differently to the remaining X: down the group, a zwitterionic resonance form emerges at the expense of decreasing the carbenoid role, eventually resulting in an electrostatically driven ring closure. Furthermore, our findings pave the way to potentially unveiling novel routes for the promotion of free-radical chemistry.
Collapse
Affiliation(s)
- Miguel Gallegos
- Departamento de Química Física y Analítica, Universidad de Oviedo, Oviedo E-33006, Spain.
| | - Vicente Del Amo
- Departamento de Química Orgánica e Inorgánica, Universidad de Oviedo, Oviedo E-33006, Spain
| | | | - Guillermo Moreno-Alcántar
- Department of Chemistry, School of Natural Sciences, Technical University of Munich, Lichtenbergstr. 4, Garching b., München 85748, Germany
| | - Ángel Martín Pendás
- Departamento de Química Física y Analítica, Universidad de Oviedo, Oviedo E-33006, Spain.
| |
Collapse
|