1
|
Qiu S, Cui YT, Wang TT, Fan FF, Lyu CJ, Huang J. Stereoselective synthesis of (R)-(+)-1-(1-naphthyl)ethylamine by ω-amine transaminase immobilized on amino modified multi-walled carbon nanotubes and biocatalyst recycling. Enzyme Microb Technol 2024; 174:110378. [PMID: 38134735 DOI: 10.1016/j.enzmictec.2023.110378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/07/2023] [Accepted: 12/10/2023] [Indexed: 12/24/2023]
Abstract
Immobilized enzymes exhibit favorable advantages in biocatalysis, such as high operation stability, feasible reusability, and improved organic solvents tolerance. Herein, an immobilized ω-amine transaminase AtATA@MWCNTs-NH2 is successfully prepared using amino modified multi-walled carbon nanotubes as carrier and glutaraldehyde as crosslinker. Under the optimum immobilization conditions, the activity recovery is 78.7%. Compared with purified enzyme AtATA, AtATA@MWCNTs-NH2 possesses superior stability, even in harsh conditions (e.g., high temperature, acidic or alkali environment, and different kind of organic solvents). To simplify the separation and extraction of products, we choose methanol (10%, v/v) as the cosolvent, replacing DMSO (20%, v/v) in our previous work, for the catalytic reaction of AtATA@MWCNTs-NH2. AtATA@MWCNTs-NH2 can be used for stereoselective synthesis (R)-(+)- 1(1-naphthyl)ethylamine ((R)-NEA) for 15 cycles, with the e.e.p (enantiomeric excess) > 99.5%. The catalytic process of AtATA@MWCNTs-NH2 achieves cycle production of (R)-NEA using methanol as cosolvent.
Collapse
Affiliation(s)
- Shuai Qiu
- Key Laboratory of Chemical and Biological Processing Technology for Farm Products of Zhejiang Province, Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Yu-Tong Cui
- Key Laboratory of Chemical and Biological Processing Technology for Farm Products of Zhejiang Province, Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Tong-Tong Wang
- Key Laboratory of Chemical and Biological Processing Technology for Farm Products of Zhejiang Province, Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Fang-Fang Fan
- Key Laboratory of Chemical and Biological Processing Technology for Farm Products of Zhejiang Province, Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Chang-Jiang Lyu
- Key Laboratory of Chemical and Biological Processing Technology for Farm Products of Zhejiang Province, Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Jun Huang
- Key Laboratory of Chemical and Biological Processing Technology for Farm Products of Zhejiang Province, Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China.
| |
Collapse
|
2
|
Skendrović D, Primožič M, Rezić T, Vrsalović Presečki A. Mesocellular Silica Foam as Immobilization Carrier for Production of Statin Precursors. Int J Mol Sci 2024; 25:1971. [PMID: 38396648 PMCID: PMC10887991 DOI: 10.3390/ijms25041971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/01/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
The employment of 2-deoxyribose-5-phosphate aldolase (DERA) stands as a prevalent biocatalytic route for synthesizing statin side chains. The main problem with this pathway is the low stability of the enzyme. In this study, mesocellular silica foam (MCF) with different pore sizes was used as a carrier for the covalent immobilization of DERA. Different functionalizing and activating agents were tested and kinetic modeling was subsequently performed. The use of succinic anhydride as an activating agent resulted in an enzyme hyperactivation of approx. 140%, and the stability almost doubled compared to that of the free enzyme. It was also shown that the pore size of MCF has a decisive influence on the stability of the DERA enzyme.
Collapse
Affiliation(s)
- Dino Skendrović
- Faculty of Chemical Engineering and Technology, University of Zagreb, HR-10000 Zagreb, Croatia;
| | - Mateja Primožič
- Faculty of Chemistry and Chemical Engineering, University of Maribor, 2000 Maribor, Slovenia;
| | - Tonči Rezić
- Faculty of Food Technology and Biotechnology, University of Zagreb, HR-10000 Zagreb, Croatia;
| | - Ana Vrsalović Presečki
- Faculty of Chemical Engineering and Technology, University of Zagreb, HR-10000 Zagreb, Croatia;
| |
Collapse
|
3
|
Yamacli S, Avci M. Investigation and comparison of graphene nanoribbon and carbon nanotube based SARS-CoV-2 detection sensors: An ab initio study. PHYSICA. B, CONDENSED MATTER 2023; 648:414438. [PMID: 36281340 PMCID: PMC9582926 DOI: 10.1016/j.physb.2022.414438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/08/2022] [Accepted: 10/15/2022] [Indexed: 06/16/2023]
Abstract
The rapid detection of SARS-CoV-2, the pathogen of the Covid-19 pandemic, is obviously of great importance for stopping the spread of the virus by detecting infected individuals. Here, we report the ab initio analysis results of graphene nanoribbon (GNR) and carbon nanotube (CNT) based SARS-CoV-2 detection sensors which are experimentally demonstrated in the literature. The investigated structures are the realistic molecular models of the sensors that are employing 1-pyrenebutyric acid N-hydroxysuccinimide ester as the antibody linker. Density functional theory in conjunction with non-equilibrium Green's function formalism (DFT-NEGF) is used to obtain the transmission spectra, current-voltage and resistance-voltage characteristics of the sensors before and after the attachment of the SARS-CoV-2 spike protein. The operation mechanism of the GNR and CNT based SARS-CoV-2 sensors are exposed using the transmission spectrum analysis. Moreover, it is observed that GNR based sensor has more definitive detection characteristics compared to its CNT based counterpart.
Collapse
Affiliation(s)
- Serhan Yamacli
- Nuh Naci Yazgan University, Dept. of Electrical-Electronics Engineering, Kayseri, Turkey
| | - Mutlu Avci
- Cukurova University, Dept. of Biomedical Engineering, Adana, Turkey
| |
Collapse
|
4
|
Wäscher M, Classen T, Pietruszka J. Simple Enzyme Immobilization for Flow Chemistry? An Assessment of Available Strategies for an Acetaldehyde-Dependent Aldolase. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196483. [PMID: 36235018 PMCID: PMC9570893 DOI: 10.3390/molecules27196483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022]
Abstract
Enzyme immobilization is a technology that enables (bio-)catalysts to be applied in continuous-flow systems. However, there is a plethora of immobilization methods available with individual advantages and disadvantages. Here, we assessed the influence of simple and readily available methods with respect to the performance of 2-deoxy-d-ribose-5-phosphate aldolase (DERA) in continuous-flow conditions. The investigated immobilization strategies cover the unspecific attachment to carriers via epoxides, affinity-based attachment via metal ion affinity, StrepTag™-StrepTactin™ interaction as well as the covalent affinity attachment of an enzyme to a matrix tethered by the HaloTag®. The metal-ion-affinity-based approach outperformed the other methods in terms of immobilized activity and stability under applied conditions. As most enzymes examined today already have a HisTag for purification purposes, effective immobilization may be applied, as simple as a standard purification, if needed.
Collapse
Affiliation(s)
- Martin Wäscher
- Institute for Bioorganic Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Thomas Classen
- Institute for Bio- and Geosciences 1: Bioorganic Chemistry, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Jörg Pietruszka
- Institute for Bioorganic Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
- Institute for Bio- and Geosciences 1: Bioorganic Chemistry, Forschungszentrum Jülich, 52425 Jülich, Germany
- Correspondence: ; Tel.: +49-(0)2461-61-4158
| |
Collapse
|
5
|
Hindges J, Döbber J, Hayes MR, Classen T, Pohl M, Pietruszka J. Covalently Immobilized 2‐Deoxyribose‐5‐phosphate Aldolase (DERA) for Biocatalysis in Flow: Utilization of the 3‐Hydroxyaldehyde Intermediate in Reaction Cascades. ChemCatChem 2022. [DOI: 10.1002/cctc.202200390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Julia Hindges
- Heinrich-Heine-Universitat Dusseldorf Institute for bioorganic chemistry GERMANY
| | - Johannes Döbber
- Forschungszentrum Julich Institut fur Bio und Geowissenschaften Biotechnologie GERMANY
| | - Marc Richard Hayes
- Heinrich-Heine-Universitat Dusseldorf Institute for bioorganic chemistry GERMANY
| | - Thomas Classen
- Forschungszentrum Julich Institut fur Bio und Geowissenschaften Biotechnologie GERMANY
| | - Martina Pohl
- Forschungszentrum Julich Institut fur Bio und Geowissenschaften Biotechnologie GERMANY
| | - Joerg Pietruszka
- Heinrich-Heine-Universitat Dusseldorf Institut für Bioorganische Chemie Im Forschungszentrum JülichGeb. 15.8 52426 Jülich GERMANY
| |
Collapse
|
6
|
Lee SH, Yeom SJ, Kim SE, Oh DK. Development of aldolase-based catalysts for the synthesis of organic chemicals. Trends Biotechnol 2021; 40:306-319. [PMID: 34462144 DOI: 10.1016/j.tibtech.2021.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/01/2021] [Accepted: 08/02/2021] [Indexed: 11/28/2022]
Abstract
Aldol chemicals are synthesized by condensation reactions between the carbon units of ketones and aldehydes using aldolases. The efficient synthesis of diverse organic chemicals requires intrinsic modification of aldolases via engineering and design, as well as extrinsic modification through immobilization or combination with other catalysts. This review describes the development of aldolases, including their engineering and design, and the selection of desired aldolases using high-throughput screening, to enhance their catalytic properties and perform novel reactions. Aldolase-containing catalysts, which catalyze the aldol reaction combined with other enzymatic and/or chemical reactions, can efficiently synthesize diverse complex organic chemicals using inexpensive and simple materials as substrates. We also discuss the current challenges and emerging solutions for aldolase-based catalysts.
Collapse
Affiliation(s)
- Seon-Hwa Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Soo-Jin Yeom
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Seong-Eun Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Deok-Kun Oh
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
7
|
Current state of and need for enzyme engineering of 2-deoxy-D-ribose 5-phosphate aldolases and its impact. Appl Microbiol Biotechnol 2021; 105:6215-6228. [PMID: 34410440 PMCID: PMC8403123 DOI: 10.1007/s00253-021-11462-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/13/2021] [Accepted: 07/19/2021] [Indexed: 01/28/2023]
Abstract
Abstract Deoxyribose-5-phosphate aldolases (DERAs, EC 4.1.2.4) are acetaldehyde-dependent, Class I aldolases catalyzing in nature a reversible aldol reaction between an acetaldehyde donor (C2 compound) and glyceraldehyde-3-phosphate acceptor (C3 compound, C3P) to generate deoxyribose-5-phosphate (C5 compound, DR5P). DERA enzymes have been found to accept also other types of aldehydes as their donor, and in particular as acceptor molecules. Consequently, DERA enzymes can be applied in C–C bond formation reactions to produce novel compounds, thus offering a versatile biocatalytic alternative for synthesis. DERA enzymes, found in all kingdoms of life, share a common TIM barrel fold despite the low overall sequence identity. The catalytic mechanism is well-studied and involves formation of a covalent enzyme-substrate intermediate. A number of protein engineering studies to optimize substrate specificity, enzyme efficiency, and stability of DERA aldolases have been published. These have employed various engineering strategies including structure-based design, directed evolution, and recently also machine learning–guided protein engineering. For application purposes, enzyme immobilization and usage of whole cell catalysis are preferred methods as they improve the overall performance of the biocatalytic processes, including often also the stability of the enzyme. Besides single-step enzymatic reactions, DERA aldolases have also been applied in multi-enzyme cascade reactions both in vitro and in vivo. The DERA-based applications range from synthesis of commodity chemicals and flavours to more complicated and high-value pharmaceutical compounds. Key points • DERA aldolases are versatile biocatalysts able to make new C–C bonds. • Synthetic utility of DERAs has been improved by protein engineering approaches. • Computational methods are expected to speed up the future DERA engineering efforts. Graphical abstract ![]()
Collapse
|
8
|
Zhang S, Bramski J, Tutus M, Pietruszka J, Böker A, Reinicke S. A Biocatalytically Active Membrane Obtained from Immobilization of 2-Deoxy-d-ribose-5-phosphate Aldolase on a Porous Support. ACS APPLIED MATERIALS & INTERFACES 2019; 11:34441-34453. [PMID: 31448894 DOI: 10.1021/acsami.9b12029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Aldol reactions play an important role in organic synthesis, as they belong to the class of highly beneficial C-C-linking reactions. Aldol-type reactions can be efficiently and stereoselectively catalyzed by the enzyme 2-deoxy-d-ribose-5-phosphate aldolase (DERA) to gain key intermediates for pharmaceuticals such as atorvastatin. The immobilization of DERA would open the opportunity for a continuous operation mode which gives access to an efficient, large-scale production of respective organic intermediates. In this contribution, we synthesize and utilize DERA/polymer conjugates for the generation and fixation of a DERA bearing thin film on a polymeric membrane support. The conjugation strongly increases the tolerance of the enzyme toward the industrial relevant substrate acetaldehyde while UV-cross-linkable groups along the conjugated polymer chains provide the opportunity for covalent binding to the support. First, we provide a thorough characterization of the conjugates followed by immobilization tests on representative, nonporous cycloolefinic copolymer supports. Finally, immobilization on the target supports constituted of polyacrylonitrile (PAN) membranes is performed, and the resulting enzymatically active membranes are implemented in a simple membrane module setup for the first assessment of biocatalytic performance in the continuous operation mode using the combination hexanal/acetaldehyde as the substrate.
Collapse
Affiliation(s)
- Shuhao Zhang
- Chair of Polymer Materials and Polymer Technologies , University of Potsdam, Institute of Chemistry , Karl-Liebknecht-Straße 24-25 , 14476 Potsdam , Germany
| | - Julia Bramski
- Institute of Bioorganic Chemistry , Heinrich Heine University of Düsseldorf at Forschungszentrum Jülich , Stetternicher Forst , 52426 Jülich , Germany
| | | | - Jörg Pietruszka
- Institute of Bioorganic Chemistry , Heinrich Heine University of Düsseldorf at Forschungszentrum Jülich , Stetternicher Forst , 52426 Jülich , Germany
- IBG-1: Biotechnology, Forschungszentrum Jülich GmbH , 52425 Jülich , Germany
| | - Alexander Böker
- Chair of Polymer Materials and Polymer Technologies , University of Potsdam, Institute of Chemistry , Karl-Liebknecht-Straße 24-25 , 14476 Potsdam , Germany
| | | |
Collapse
|
9
|
Ranjan B, Pillai S, Permaul K, Singh S. Simultaneous removal of heavy metals and cyanate in a wastewater sample using immobilized cyanate hydratase on magnetic-multiwall carbon nanotubes. JOURNAL OF HAZARDOUS MATERIALS 2019; 363:73-80. [PMID: 30308367 DOI: 10.1016/j.jhazmat.2018.07.116] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 06/27/2018] [Accepted: 07/25/2018] [Indexed: 05/05/2023]
Abstract
Global environmental problems allied with waste management require novel approaches for the simultaneous removal of heavy metals and other associated compounds including cyanate. In this study, iron-oxide filled multi-walled carbon nanotubes (m-MWCNTs) were successfully synthesized and characterized by field emission gun scanning electron microscopy (FEGSEM), high-resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD). The m-MWCNTs were amino-functionalized for the covalent immobilization of a recombinant cyanate hydratase (rTl-Cyn), and were characterized by fourier transform infrared (FTIR) spectroscopy. The immobilized rTl-Cyn on the m-MWCNTs (m-MWCNT-rTl-Cyn) had long term storage stability and showed great potential towards cyanate biodegradability. We found that m-MWCNT-rTl-Cyn retained >94% of the initial activity even after 10 repeated cycles of bio-catalysis. Strikingly, the m-MWCNT-rTl-Cyn simultaneously reduced the concentration of chromium (Cr), iron (Fe), lead (Pb) and copper (Cu) by 39.31, 35.53, 34.48 and 29.63%, respectively as well as the concentration of cyanate by ≥84%, in a synthetic wastewater sample.
Collapse
Affiliation(s)
- Bibhuti Ranjan
- Department of Biotechnology and Food Technology, Faculty of Applied Sciences, Durban University of Technology, Durban, 4000, South Africa
| | - Santhosh Pillai
- Department of Biotechnology and Food Technology, Faculty of Applied Sciences, Durban University of Technology, Durban, 4000, South Africa
| | - Kugenthiren Permaul
- Department of Biotechnology and Food Technology, Faculty of Applied Sciences, Durban University of Technology, Durban, 4000, South Africa
| | - Suren Singh
- Department of Biotechnology and Food Technology, Faculty of Applied Sciences, Durban University of Technology, Durban, 4000, South Africa.
| |
Collapse
|
10
|
Haridas M, Abdelraheem EMM, Hanefeld U. 2-Deoxy-D-ribose-5-phosphate aldolase (DERA): applications and modifications. Appl Microbiol Biotechnol 2018; 102:9959-9971. [PMID: 30284013 PMCID: PMC6244999 DOI: 10.1007/s00253-018-9392-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/11/2018] [Accepted: 09/12/2018] [Indexed: 11/25/2022]
Abstract
2-Deoxy-D-ribose-5-phosphate aldolase (DERA) is a class I aldolase that offers access to several building blocks for organic synthesis. It catalyzes the stereoselective C-C bond formation between acetaldehyde and numerous other aldehydes. However, the practical application of DERA as a biocatalyst is limited by its poor tolerance towards industrially relevant concentrations of aldehydes, in particular acetaldehyde. Therefore, the development of proper experimental conditions, including protein engineering and/or immobilization on appropriate supports, is required. The present review is aimed to provide a brief overview of DERA, its history, and progress made in understanding the functioning of the enzyme. Furthermore, the current understanding regarding aldehyde resistance of DERA and the various optimizations carried out to modify this property are discussed.
Collapse
Affiliation(s)
- Meera Haridas
- Biokatalyse, Afdeling Biotechnologie, Technische Universiteit Delft, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Eman M M Abdelraheem
- Biokatalyse, Afdeling Biotechnologie, Technische Universiteit Delft, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
- Chemistry Department, Faculty of Science, Sohag University, Sohag, 82524, Egypt
| | - Ulf Hanefeld
- Biokatalyse, Afdeling Biotechnologie, Technische Universiteit Delft, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands.
| |
Collapse
|
11
|
Zhang S, Bisterfeld C, Bramski J, Vanparijs N, De Geest BG, Pietruszka J, Böker A, Reinicke S. Biocatalytically Active Thin Films via Self-Assembly of 2-Deoxy-d-ribose-5-phosphate Aldolase-Poly(N-isopropylacrylamide) Conjugates. Bioconjug Chem 2017; 29:104-116. [PMID: 29182313 DOI: 10.1021/acs.bioconjchem.7b00645] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
2-Deoxy-d-ribose-5-phosphate aldolase (DERA) is a biocatalyst that is capable of converting acetaldehyde and a second aldehyde as acceptor into enantiomerically pure mono- and diyhydroxyaldehydes, which are important structural motifs in a number of pharmaceutically active compounds. However, substrate as well as product inhibition requires a more-sophisticated process design for the synthesis of these motifs. One way to do so is to the couple aldehyde conversion with transport processes, which, in turn, would require an immobilization of the enzyme within a thin film that can be deposited on a membrane support. Consequently, we developed a fabrication process for such films that is based on the formation of DERA-poly(N-isopropylacrylamide) conjugates that are subsequently allowed to self-assemble at an air-water interface to yield the respective film. In this contribution, we discuss the conjugation conditions, investigate the interfacial properties of the conjugates, and, finally, demonstrate a successful film formation under the preservation of enzymatic activity.
Collapse
Affiliation(s)
- Shuhao Zhang
- Department of Functional Protein Systems and Biotechnology, Fraunhofer Institute for Applied Polymer Research (IAP) , Geiselbergstraße 69, 14476 Potsdam-Golm, Germany.,Polymer Materials and Polymer Technologies, University of Potsdam , 14476, Potsdam-Golm, Germany
| | - Carolin Bisterfeld
- Institute of Bioorganic Chemistry, Heinrich Heine University of Düsseldorf at Forschungszentrum Jülich , Stetternicher Forst, 52426 Jülich, Germany
| | - Julia Bramski
- Institute of Bioorganic Chemistry, Heinrich Heine University of Düsseldorf at Forschungszentrum Jülich , Stetternicher Forst, 52426 Jülich, Germany
| | - Nane Vanparijs
- Department of Pharmaceutics, Ghent University , Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Bruno G De Geest
- Department of Pharmaceutics, Ghent University , Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Jörg Pietruszka
- Institute of Bioorganic Chemistry, Heinrich Heine University of Düsseldorf at Forschungszentrum Jülich , Stetternicher Forst, 52426 Jülich, Germany.,IBG-1: Biotechnology, Forschungszentrum Jülich GmbH , 52425 Jülich, Germany
| | - Alexander Böker
- Department of Functional Protein Systems and Biotechnology, Fraunhofer Institute for Applied Polymer Research (IAP) , Geiselbergstraße 69, 14476 Potsdam-Golm, Germany.,Polymer Materials and Polymer Technologies, University of Potsdam , 14476, Potsdam-Golm, Germany
| | - Stefan Reinicke
- Department of Functional Protein Systems and Biotechnology, Fraunhofer Institute for Applied Polymer Research (IAP) , Geiselbergstraße 69, 14476 Potsdam-Golm, Germany
| |
Collapse
|
12
|
|
13
|
Botta L, Bizzarri BM, Crucianelli M, Saladino R. Advances in biotechnological synthetic applications of carbon nanostructured systems. J Mater Chem B 2017; 5:6490-6510. [PMID: 32264413 DOI: 10.1039/c7tb00764g] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In the last few years carbon nanostructures have been applied for the immobilization of enzymes and biomimetic organo-metallic species useful for biotechnological applications. The nature of the support and the method of immobilization are responsible for the stability, reactivity and selectivity of the system. In this review, we focus on the recent advances in the use of carbon nanostructures, carbon nanotubes, carbon nanorods, fullerene and graphene for the preparation of biocatalytic and biomimetic systems and for their application in the development of green chemical processes.
Collapse
Affiliation(s)
- Lorenzo Botta
- Department of Biological and Ecological Sciences (DEB), University of Tuscia, Via S. Camillo de Lellis snc, 01100 Viterbo, Italy.
| | | | | | | |
Collapse
|
14
|
Reinicke S, Rees HC, Espeel P, Vanparijs N, Bisterfeld C, Dick M, Rosencrantz RR, Brezesinski G, de Geest BG, Du Prez FE, Pietruszka J, Böker A. Immobilization of 2-Deoxy-d-ribose-5-phosphate Aldolase in Polymeric Thin Films via the Langmuir-Schaefer Technique. ACS APPLIED MATERIALS & INTERFACES 2017; 9:8317-8326. [PMID: 28186396 DOI: 10.1021/acsami.6b13632] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A synthetic protocol for the fabrication of ultrathin polymeric films containing the enzyme 2-deoxy-d-ribose-5-phosphate aldolase from Escherichia coli (DERAEC) is presented. Ultrathin enzymatically active films are useful for applications in which only small quantities of active material are needed and at the same time quick response and contact times without diffusion limitation are wanted. We show how DERA as an exemplary enzyme can be immobilized in a thin polymer layer at the air-water interface and transferred to a suitable support by the Langmuir-Schaefer technique under full conservation of enzymatic activity. The polymer in use is a poly(N-isopropylacrylamide-co-N-2-thiolactone acrylamide) (P(NIPAAm-co-TlaAm)) statistical copolymer in which the thiolactone units serve a multitude of purposes including hydrophobization of the polymer, covalent binding of the enzyme and the support and finally cross-linking of the polymer matrix. The application of this type of polymer keeps the whole approach simple as additional cocomponents such as cross-linkers are avoided.
Collapse
Affiliation(s)
- Stefan Reinicke
- Department of Functional Protein Systems and Biotechnology, Fraunhofer Institute of Applied Polymer Research (IAP) , Geiselbergstraße 69, 14476, Potsdam-Golm, Germany
| | - Huw C Rees
- Department of Chemistry, University of Chicago , Chicago, Illinois 60637, United States
| | - Pieter Espeel
- Department of Organic and Macromolecular Chemistry, Polymer Chemistry Research Group, Ghent University , Krijgslaan 281 S4-bis, 9000 Ghent, Belgium
| | - Nane Vanparijs
- Department of Pharmaceutics, Ghent University , Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Carolin Bisterfeld
- Institut of Bioorganic Chemistry, Heinrich Heine University of Düsseldorf at Forschungszentrum Jülich , Stetternicher Forst, D-52426 Jülich, Germany
| | - Markus Dick
- Institut of Bioorganic Chemistry, Heinrich Heine University of Düsseldorf at Forschungszentrum Jülich , Stetternicher Forst, D-52426 Jülich, Germany
| | - Ruben R Rosencrantz
- Department of Functional Protein Systems and Biotechnology, Fraunhofer Institute of Applied Polymer Research (IAP) , Geiselbergstraße 69, 14476, Potsdam-Golm, Germany
- Polymer Materials and Polymer Technologies, University of Potsdam , 14476, Potsdam-Golm, Germany
| | - Gerald Brezesinski
- Max Planck Institute of Colloids and Interfaces , Science Park Potsdam-Golm, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Bruno G de Geest
- Department of Pharmaceutics, Ghent University , Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Filip E Du Prez
- Department of Organic and Macromolecular Chemistry, Polymer Chemistry Research Group, Ghent University , Krijgslaan 281 S4-bis, 9000 Ghent, Belgium
| | - Jörg Pietruszka
- Institut of Bioorganic Chemistry, Heinrich Heine University of Düsseldorf at Forschungszentrum Jülich , Stetternicher Forst, D-52426 Jülich, Germany
- IBG-1: Biotechnology, Forschungszentrum Jülich GmbH , 52425 Jülich, Germany
| | - Alexander Böker
- Department of Functional Protein Systems and Biotechnology, Fraunhofer Institute of Applied Polymer Research (IAP) , Geiselbergstraße 69, 14476, Potsdam-Golm, Germany
- Polymer Materials and Polymer Technologies, University of Potsdam , 14476, Potsdam-Golm, Germany
| |
Collapse
|
15
|
Britton J, Meneghini LM, Raston CL, Weiss GA. Accelerating Enzymatic Catalysis Using Vortex Fluidics. Angew Chem Int Ed Engl 2016; 55:11387-91. [PMID: 27493015 PMCID: PMC5524626 DOI: 10.1002/anie.201604014] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Indexed: 11/09/2022]
Abstract
Enzymes catalyze chemical transformations with outstanding stereo- and regio-specificities, but many enzymes are limited by their long reaction times. A general method to accelerate enzymes using pressure waves contained within thin films is described. Each enzyme responds best to specific frequencies of pressure waves, and an acceleration landscape for each protein is reported. A vortex fluidic device introduces pressure waves that drive increased rate constants (kcat ) and enzymatic efficiency (kcat /Km ). Four enzymes displayed an average seven-fold acceleration, with deoxyribose-5-phosphate aldolase (DERA) achieving an average 15-fold enhancement using this approach. In solving a common problem in enzyme catalysis, a powerful, generalizable tool for enzyme acceleration has been uncovered. This research provides new insights into previously uncontrolled factors affecting enzyme function.
Collapse
Affiliation(s)
- Joshua Britton
- Chemical and Physical Sciences, Flinders University, Bedford Park, Adelaide, 5001, Australia
- Department of Chemistry, University of California, Irvine, Irvine, CA, 92697-2025, USA
| | - Luz M Meneghini
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, 92697-2025, USA
| | - Colin L Raston
- Chemical and Physical Sciences, Flinders University, Bedford Park, Adelaide, 5001, Australia.
| | - Gregory A Weiss
- Department of Chemistry, University of California, Irvine, Irvine, CA, 92697-2025, USA.
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, 92697-2025, USA.
| |
Collapse
|
16
|
Britton J, Meneghini LM, Raston CL, Weiss GA. Accelerating Enzymatic Catalysis Using Vortex Fluidics. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201604014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Joshua Britton
- Chemical and Physical Sciences Flinders University Bedford Park Adelaide 5001 Australia
- Department of Chemistry University of California, Irvine Irvine CA 92697-2025 USA
| | - Luz M. Meneghini
- Department of Molecular Biology and Biochemistry University of California, Irvine Irvine CA 92697-2025 USA
| | - Colin L. Raston
- Chemical and Physical Sciences Flinders University Bedford Park Adelaide 5001 Australia
| | - Gregory A. Weiss
- Department of Chemistry University of California, Irvine Irvine CA 92697-2025 USA
- Department of Molecular Biology and Biochemistry University of California, Irvine Irvine CA 92697-2025 USA
| |
Collapse
|
17
|
Jiao XC, Pan J, Xu GC, Kong XD, Chen Q, Zhang ZJ, Xu JH. Efficient synthesis of a statin precursor in high space-time yield by a new aldehyde-tolerant aldolase identified from Lactobacillus brevis. Catal Sci Technol 2015. [DOI: 10.1039/c5cy00537j] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel 2-deoxyribose-5-phosphate aldolase (LbDERA) was identified from Lactobacillus brevis, with high activity, excellent thermostability and high tolerance against aldehyde substrates.
Collapse
Affiliation(s)
- Xue-Cheng Jiao
- State Key Laboratory of Bioreactor Engineering and Shanghai Collaborative Innovation Centre for Biomanufacturing
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Jiang Pan
- State Key Laboratory of Bioreactor Engineering and Shanghai Collaborative Innovation Centre for Biomanufacturing
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Guo-Chao Xu
- State Key Laboratory of Bioreactor Engineering and Shanghai Collaborative Innovation Centre for Biomanufacturing
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Xu-Dong Kong
- State Key Laboratory of Bioreactor Engineering and Shanghai Collaborative Innovation Centre for Biomanufacturing
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Qi Chen
- State Key Laboratory of Bioreactor Engineering and Shanghai Collaborative Innovation Centre for Biomanufacturing
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Zhi-Jun Zhang
- State Key Laboratory of Bioreactor Engineering and Shanghai Collaborative Innovation Centre for Biomanufacturing
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Jian-He Xu
- State Key Laboratory of Bioreactor Engineering and Shanghai Collaborative Innovation Centre for Biomanufacturing
- East China University of Science and Technology
- Shanghai 200237
- China
| |
Collapse
|
18
|
Yao P, Li J, Yuan J, Han C, Liu X, Feng J, Wu Q, Zhu D. Enzymatic Synthesis of a Key Intermediate for Rosuvastatin by Nitrilase-Catalyzed Hydrolysis of Ethyl (R)-4-Cyano-3-hydroxybutyate at High Substrate Concentration. ChemCatChem 2014. [DOI: 10.1002/cctc.201402877] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|