1
|
Bowles J, Jähnigen S, Agostini F, Vuilleumier R, Zehnacker A, Calvo F, Clavaguéra C. Vibrational Circular Dichroism Spectroscopy with a Classical Polarizable Force Field: Alanine in the Gas and Condensed Phases. Chemphyschem 2024; 25:e202300982. [PMID: 38318765 DOI: 10.1002/cphc.202300982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/07/2024]
Abstract
Polarizable force fields are an essential component for the chemically accurate modeling of complex molecular systems with a significant degree of fluxionality, beyond harmonic or perturbative approximations. In this contribution we examine the performance of such an approach for the vibrational spectroscopy of the alanine amino acid, in the gas and condensed phases, from the Fourier transform of appropriate time correlation functions generated along molecular dynamics (MD) trajectories. While the infrared (IR) spectrum only requires the electric dipole moment, the vibrational circular dichroism (VCD) spectrum further requires knowledge of the magnetic dipole moment, for which we provide relevant expressions to be used with polarizable force fields. The AMOEBA force field was employed here to model alanine in the neutral and zwitterionic isolated forms, solvated by water or nitrogen, and as a crystal. Within this framework, comparison of the electric and magnetic dipole moments to those obtained with nuclear velocity perturbation theory based on density-functional theory for the same MD trajectories are found to agree well with one another. The statistical convergence of the IR and VCD spectra is examined and found to be more demanding in the latter case. Comparisons with experimental frequencies are also provided for the condensed phases.
Collapse
Affiliation(s)
- Jessica Bowles
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR8000, 91405, Orsay, France
| | - Sascha Jähnigen
- PASTEUR Laboratory, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France
| | - Federica Agostini
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR8000, 91405, Orsay, France
| | - Rodolphe Vuilleumier
- PASTEUR Laboratory, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France
| | - Anne Zehnacker
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay UMR8214, 91405, Orsay, France
| | - Florent Calvo
- Université Grenoble Alpes, CNRS, LIPhy, 38000, Grenoble, France
| | - Carine Clavaguéra
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR8000, 91405, Orsay, France
| |
Collapse
|
2
|
Taniguchi T, Agbo DO. Vibrational circular dichroism spectroscopy in the C-D, XY, and XYZ stretching region. Phys Chem Chem Phys 2023; 25:28567-28575. [PMID: 37861094 DOI: 10.1039/d3cp04287a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Vibrational circular dichroism (VCD) spectroscopy is a powerful technique for structural analysis of chiral molecules, but information available from VCD spectra of large molecular systems can be limited by severe overlap of vibrational bands. While common chiral molecules do not absorb in the 1900-2400 cm-1 region, observation of VCD signals in this spectrally-isolated region is possible for molecules containing C-D, XY, and XYZ chromophores. Thus, a strategic introduction of these chromophores to a target molecule may produce VCD signals informative for molecular structures. VCD spectroscopy in the 1900-2400 cm-1 region is a rather unexplored research field and its basic properties remain to be investigated. This perspective article discusses insight obtained so far on the usefulness and physicochemical aspects of VCD spectroscopy in this region with briefly summarizing previous experimental VCD studies including classic examples as well as our recent results. We show that anharmonic effects such as overtones and combination bands often complicate VCD patterns. On the other hand, some molecules exhibit characteristic VCD signals that can be well interpreted by harmonic DFT spectral calculations for structural analysis. This article also discusses several examples of the use of this region for studying solute-solvent interactions and for VCD signal augmentation.
Collapse
Affiliation(s)
- Tohru Taniguchi
- Frontier Research Center for Advanced Material and Life Science, Faculty of Advanced Life Science, Hokkaido University, North 21 West 11, Sapporo 001-0021, Japan.
| | - Davidson Obinna Agbo
- Graduate School of Life Science, Hokkaido University, North 21 West 11, Sapporo 001-0021, Japan
| |
Collapse
|
3
|
Blasius J, Kirchner B. Selective Chirality Transfer to the Bis(trifluoromethylsulfonyl)imide Anion of an Ionic Liquid. Chemistry 2023; 29:e202301239. [PMID: 37341169 DOI: 10.1002/chem.202301239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 06/22/2023]
Abstract
Chirality transfer from the chiral molecule (R)-1,2-propylene oxide to the achiral anion of the 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquid is observed. The chiral probe selectively affects one part of the binary ionic liquid, i. e., it has previously been shown experimentally and theoretically that this particular imidazolium cation can be affected by chirality transfer, but in the present system chirality is almost exclusively transferred to the anion and not to both parts of the solvent (anion and cation). This observation is of high relevance because of its selectivity and because anion effects are usually much more important in ionic liquid research than cation effects. From ab initio molecular dynamics simulations, a conformational analysis and dissected vibrational circular dichroism spectra are obtained to study the chirality transfer. While in the neat ionic liquid two mirror imaged trans conformers of the anion occur almost equally, we observe an excess of one of these conformers in the presence of the chiral solute, causing optical activity of the anion. Although the cis conformers are not tremendously affected by the chirality transfer, they gain in total population when (R)-1,2-propylene oxide is dissolved in the ionic liquid.
Collapse
Affiliation(s)
- Jan Blasius
- Mulliken Center for Theoretical Chemistry, Clausius-Institute for Physical and Theoretical Chemistry, University of Bonn, Beringstraße 4-6, D-53115, Bonn, Germany
| | - Barbara Kirchner
- Mulliken Center for Theoretical Chemistry, Clausius-Institute for Physical and Theoretical Chemistry, University of Bonn, Beringstraße 4-6, D-53115, Bonn, Germany
| |
Collapse
|
4
|
Chen X, Chen W, Zhang X, Cheng D, Ren Y. The study on the dielectric properties of structural changes of surfactant aqueous solution by molecular dynamics simulation. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
5
|
Yang XD, Chen W, Ren Y, Chu LY. Exploring dielectric spectra of polymer through molecular dynamics simulations. MOLECULAR SIMULATION 2022. [DOI: 10.1080/08927022.2022.2083122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Xue-Dan Yang
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, People's Republic of China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, People's Republic of China
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Wei Chen
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
- Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Dalian, Liaoning, People's Republic of China
| | - Ying Ren
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Liang-Yin Chu
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, People's Republic of China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, People's Republic of China
| |
Collapse
|
6
|
Jähnigen S, Sebastiani D, Vuilleumier R. The important role of non-covalent interactions for the vibrational circular dichroism of lactic acid in aqueous solution. Phys Chem Chem Phys 2021; 23:17232-17241. [PMID: 34369531 DOI: 10.1039/d1cp03106f] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We present a computational study of vibrational circular dichroism (VCD) in solutions of (S)-lactic acid, relying on ab initio molecular dynamics (AIMD) and full solvation with bulk water. We discuss the effect of the hydrogen bond network on the aggregation behaviour of the acid: while aggregates of the solute represent conditions encountered in a weakly interacting solvent, the presence of water drastically interferes with the clusters - more strongly than originally anticipated. For both scenarios we computed the VCD spectra by means of nuclear velocity perturbation theory (NVPT). The comparison with experimental data allows us to establish a VCD-structure relationship that includes the solvent network around the chiral solute. We suggest that fundamental modes with strong polarisation such as the carbonyl stretching vibration can borrow VCD from the chirally restructured solvent cage, which extends the common explanatory models of VCD generation in aqueous solution.
Collapse
Affiliation(s)
- Sascha Jähnigen
- PASTEUR, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France.
| | | | | |
Collapse
|
7
|
Kirchner B, Blasius J, Esser L, Reckien W. Predicting Vibrational Spectroscopy for Flexible Molecules and Molecules with Non‐Idle Environments. ADVANCED THEORY AND SIMULATIONS 2020. [DOI: 10.1002/adts.202000223] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Barbara Kirchner
- Mulliken Center for Theoretical Chemistry Rheinische Friedrich‐Wilhelms‐Universität Bonn Beringstr. 4+6 D‐53115 Bonn Germany
| | - Jan Blasius
- Mulliken Center for Theoretical Chemistry Rheinische Friedrich‐Wilhelms‐Universität Bonn Beringstr. 4+6 D‐53115 Bonn Germany
| | - Lars Esser
- Mulliken Center for Theoretical Chemistry Rheinische Friedrich‐Wilhelms‐Universität Bonn Beringstr. 4+6 D‐53115 Bonn Germany
| | - Werner Reckien
- Mulliken Center for Theoretical Chemistry Rheinische Friedrich‐Wilhelms‐Universität Bonn Beringstr. 4+6 D‐53115 Bonn Germany
| |
Collapse
|
8
|
Blasius J, Kirchner B. Cluster-Weighting in Bulk Phase Vibrational Circular Dichroism. J Phys Chem B 2020; 124:7272-7283. [DOI: 10.1021/acs.jpcb.0c06313] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jan Blasius
- Mulliken Center for Theoretical Chemistry, Rheinische Friedrich-Wilhelms-Universität Bonn, Beringstr. 4+6, D-53115 Bonn, Germany
| | - Barbara Kirchner
- Mulliken Center for Theoretical Chemistry, Rheinische Friedrich-Wilhelms-Universität Bonn, Beringstr. 4+6, D-53115 Bonn, Germany
| |
Collapse
|
9
|
Ghidinelli S, Abbate S, Koshoubu J, Araki Y, Wada T, Longhi G. Solvent Effects and Aggregation Phenomena Studied by Vibrational Optical Activity and Molecular Dynamics: The Case of Pantolactone. J Phys Chem B 2020; 124:4512-4526. [PMID: 32396357 PMCID: PMC8007093 DOI: 10.1021/acs.jpcb.0c01483] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Raman and Raman optical activity (ROA), IR, and vibrational circular dichroism (VCD) spectra of (R)- and (S)-pantolactone have been recorded in three solvents. ROA has been employed on water and DMSO solutions, VCD on DMSO and CCl4 solutions. In the last solvent, monomer-dimer equilibrium is present. Due to the low conformational flexibility of the isolated molecule and to the possibility of aggregation, this compound has been used here to test different protocols for computation of the spectroscopic responses taking into account solvent effects. Molecular dynamics (MD) simulations have been carried out together with statistical clustering methods based on collective variables to extract the structures needed to calculate the spectra. Quantum mechanical DFT calculations based on PCM are compared with approaches based on different representations of the solvent shell (MM or QM level). Appropriate treatment of the solvent permits obtaining of good band-shapes, with the added advantage that the MD analysis allows one to take into account flexibility of dimeric structures justifying the broadness of observed bands and the absence of intense VCD couplets in the carbonyl and OH stretching regions.
Collapse
Affiliation(s)
- Simone Ghidinelli
- Dipartimento di Medicina Molecolare e Traslazionale, Università di Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Sergio Abbate
- Dipartimento di Medicina Molecolare e Traslazionale, Università di Brescia, Viale Europa 11, 25123 Brescia, Italy.,Istituto Nazionale di Ottica (INO), CNR, Research Unit of Brescia, c/o CSMT, Via Branze 45, 25123 Brescia, Italy
| | - Jun Koshoubu
- JASCO Corporation, 2967-5 Ishikawa-machi, Hachioji, Tokyo 192-8537, Japan
| | - Yasuyuki Araki
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Takehiko Wada
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Giovanna Longhi
- Dipartimento di Medicina Molecolare e Traslazionale, Università di Brescia, Viale Europa 11, 25123 Brescia, Italy.,Istituto Nazionale di Ottica (INO), CNR, Research Unit of Brescia, c/o CSMT, Via Branze 45, 25123 Brescia, Italy
| |
Collapse
|
10
|
Keiderling TA. Structure of Condensed Phase Peptides: Insights from Vibrational Circular Dichroism and Raman Optical Activity Techniques. Chem Rev 2020; 120:3381-3419. [DOI: 10.1021/acs.chemrev.9b00636] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Timothy A. Keiderling
- Department of Chemistry, University of Illinois at Chicago 845 West Taylor Street m/c 111, Chicago, Illinois 60607-7061, United States
| |
Collapse
|
11
|
Le Barbu-Debus K, Bowles J, Jähnigen S, Clavaguéra C, Calvo F, Vuilleumier R, Zehnacker A. Assessing cluster models of solvation for the description of vibrational circular dichroism spectra: synergy between static and dynamic approaches. Phys Chem Chem Phys 2020; 22:26047-26068. [DOI: 10.1039/d0cp03869e] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Solvation effects are essential for defining the shape of vibrational circular dichroism (VCD) spectra.
Collapse
Affiliation(s)
- Katia Le Barbu-Debus
- Institut des Sciences Moléculaires d’Orsay (ISMO)
- CNRS
- Université Paris-Saclay
- F-91405 Orsay
- France
| | - Jessica Bowles
- Université Paris-Saclay
- CNRS
- Institut de Chimie Physique
- UMR8000
- 91405 Orsay
| | - Sascha Jähnigen
- PASTEUR
- Département de Chimie
- Ecole Normale Supérieure
- PSL University
- Sorbonne Université
| | - Carine Clavaguéra
- Université Paris-Saclay
- CNRS
- Institut de Chimie Physique
- UMR8000
- 91405 Orsay
| | - Florent Calvo
- Université Grenoble Alpes
- CNRS
- LiPhy
- F-38000 Grenoble
- France
| | - Rodolphe Vuilleumier
- PASTEUR
- Département de Chimie
- Ecole Normale Supérieure
- PSL University
- Sorbonne Université
| | - Anne Zehnacker
- Institut des Sciences Moléculaires d’Orsay (ISMO)
- CNRS
- Université Paris-Saclay
- F-91405 Orsay
- France
| |
Collapse
|
12
|
Escribano R, Gómez PC, Maté B, Molpeceres G, Artacho E. Prediction of the near-IR spectra of ices by ab initio molecular dynamics. Phys Chem Chem Phys 2019; 21:9433-9440. [DOI: 10.1039/c9cp00857h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Use of ab initio molecular dynamics to predict the near-IR spectra of ices and application to astronomical models.
Collapse
Affiliation(s)
- Rafael Escribano
- Instituto de Estructura de la Materia
- IEM-CSIC, and Unidad Asociada Physical Chemistry UCM-CSIC
- 28006 Madrid
- Spain
| | - Pedro C. Gómez
- Departamento de Química Física
- Facultad de C. Químicas
- Universidad Complutense, and Unidad Asociada Physical Chemistry UCM-CSIC
- 28040 Madrid
- Spain
| | - Belén Maté
- Instituto de Estructura de la Materia
- IEM-CSIC, and Unidad Asociada Physical Chemistry UCM-CSIC
- 28006 Madrid
- Spain
| | - Germán Molpeceres
- Instituto de Estructura de la Materia
- IEM-CSIC, and Unidad Asociada Physical Chemistry UCM-CSIC
- 28006 Madrid
- Spain
- Institut für Theoretische Chemie
| | - Emilio Artacho
- Theory of Condensed Matter
- Cavendish Laboratory
- University of Cambridge
- Cambridge
- UK
| |
Collapse
|
13
|
Rode JE, Górecki M, Witkowski S, Frelek J. Solvation of 2-(hydroxymethyl)-2,5,7,8-tetramethyl-chroman-6-ol revealed by circular dichroism: a case of chromane helicity rule breaking. Phys Chem Chem Phys 2018; 20:22525-22536. [PMID: 30140796 DOI: 10.1039/c8cp02491j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The primary goal of this work is to clarify why 2-(hydroxymethyl)-2,5,7,8-tetramethyl-chroman-6-ol {(S)-TMChM} deviates from the chromane helicity rule under solvent change. The rule, applicable to determining the absolute configuration of molecules containing the chromane chromophore, binds the sign of the 1Lb Cotton effect (CE) with the helicity of the dihydropyran ring. In case of TMChM, however, this CE exhibits extreme solvent dependence: it is negative in non-coordinating solvents and positive in coordinating ones, irrespective of the helicity of the heterocyclic ring. TD-DFT calculations using PCM and hybrid solvation models were performed to explain origin of this phenomenon. It turned out that the 1Lb CE sign directly depends on the position of the phenolic OH group at carbon atom C6 (OHC6). In the absence of interactions with solvents (as in CCl4 or nC6H14) or when a solvent plays proton donor role (as in CHCl3), the OHC6 lies in the phenyl plane and the 1Lb CE sign follows the P/M helicity rule. In contrast, in proton acceptor solvents, like DMSO, CH3OH or CH3CN, the OHC6 group is deflected from the phenyl plane, and the 1Lb CE sign of individual (S)-TMChM conformers depends on the sector in which the OHC6 is located. Thus, in solution, the 1Lb CE sign is an average over different orientations of the OHC6 group and can be positive (as in DMSO and CH3OH) or negative (as in CH3CN) which means that it does not follow the chromane helicity rule. The impact of OHC6 on the 1Lb CE sign and thus the conclusions for the stereochemistry of chromans are demonstrated here for the first time. Additionally, a comparison of experimental and simulated ECD spectra, supported by VCD data, allowed to determine the geometry of intermolecular clusters formed in different solvents.
Collapse
Affiliation(s)
- Joanna E Rode
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | | | | | | |
Collapse
|
14
|
Taniguchi T. Analysis of Molecular Configuration and Conformation by (Electronic and) Vibrational Circular Dichroism: Theoretical Calculation and Exciton Chirality Method. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2017. [DOI: 10.1246/bcsj.20170113] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Tohru Taniguchi
- Faculty of Advanced Life Science, Frontier Research Center for Advanced Material and Life Science, Hokkaido University, Kita 21 Nishi 11, Sapporo, Hokkaido 001-0021
| |
Collapse
|
15
|
Håkansson P. Prediction of low-field nuclear singlet lifetimes with molecular dynamics and quantum-chemical property surface. Phys Chem Chem Phys 2017; 19:10237-10254. [DOI: 10.1039/c6cp08394c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Molecular dynamics and quantum chemistry methods are implemented to quantify nuclear spin-1/2 pair singlet-state relaxation rates. Illustrated is the relevant spin-internal-motion mechanism (SIM).
Collapse
Affiliation(s)
- Pär Håkansson
- School of Chemistry
- University of Southampton
- SO17 1BJ Southampton
- UK
| |
Collapse
|
16
|
Merten C. Vibrational optical activity as probe for intermolecular interactions. Phys Chem Chem Phys 2017; 19:18803-18812. [DOI: 10.1039/c7cp02544k] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A detailed VCD spectroscopic analysis of well-selected chiral model systems can give valuable and unprecedented insights into intermolecular interactions such as solvation or reactant–substrate binding in catalysis.
Collapse
|
17
|
Thomas M, Kirchner B. Classical Magnetic Dipole Moments for the Simulation of Vibrational Circular Dichroism by ab Initio Molecular Dynamics. J Phys Chem Lett 2016; 7:509-513. [PMID: 26771403 DOI: 10.1021/acs.jpclett.5b02752] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We present a new approach for calculating vibrational circular dichroism spectra by ab initio molecular dynamics. In the context of molecular dynamics, these spectra are given by the Fourier transform of the cross-correlation function of magnetic dipole moment and electric dipole moment. We obtain the magnetic dipole moment from the electric current density according to the classical definition. The electric current density is computed by solving a partial differential equation derived from the continuity equation and the condition that eddy currents should be absent. In combination with a radical Voronoi tessellation, this yields an individual magnetic dipole moment for each molecule in a bulk phase simulation. Using the chiral alcohol 2-butanol as an example, we show that experimental spectra are reproduced very well. Our approach requires knowing only the electron density in each simulation step, and it is not restricted to any particular electronic structure method.
Collapse
Affiliation(s)
- Martin Thomas
- Mulliken Center for Theoretical Chemistry, Rheinische Friedrich-Wilhelms-Universität Bonn , Beringstraße 4, 53115 Bonn, Germany
| | - Barbara Kirchner
- Mulliken Center for Theoretical Chemistry, Rheinische Friedrich-Wilhelms-Universität Bonn , Beringstraße 4, 53115 Bonn, Germany
| |
Collapse
|
18
|
Choi JH, Cho M. Terahertz Chiroptical Spectroscopy of an α-Helical Polypeptide: A Molecular Dynamics Simulation Study. J Phys Chem B 2014; 118:12837-43. [DOI: 10.1021/jp508547y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jun-Ho Choi
- Department
of Chemistry, Korea University, Seoul 136-713, Korea
| | - Minhaeng Cho
- Department
of Chemistry, Korea University, Seoul 136-713, Korea
| |
Collapse
|
19
|
Hudecová J, Profant V, Novotná P, Baumruk V, Urbanová M, Bouř P. CH Stretching Region: Computational Modeling of Vibrational Optical Activity. J Chem Theory Comput 2013; 9:3096-108. [PMID: 26583989 DOI: 10.1021/ct400285n] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Most organic compounds provide vibrational spectra within the CH stretching region, yet the signal is difficult to interpret because of multiple difficulties in experiment and modeling. To better understand various factors involved, the ability of several harmonic and anharmonic computational approaches to describe these vibrations was explored for α-pinene, fenchone, and camphor as test compounds. Raman, Raman optical activity (ROA), infrared absorption (IR), and vibrational circular dichroism (VCD) spectra were measured and compared to quantum chemical computations. Surprisingly, the harmonic vibrational approach reasonably well reproduced the measured spectral patterns, including the vibrational optical activity (VOA). The CH stretching, however, appeared to be more sensitive to the basis set and solvent variations than lower-frequency vibrations. For a higher accuracy in frequencies and spectral shapes, anharmonic corrections were necessary. Accurate harmonic and anharmonic force fields were obtained with the mPW2PLYP double-hybrid functional. A limited vibrational configuration interaction (LVCI) where the CH stretching motion was decoupled from other vibrations provided the best simulated spectra. A balanced harmonic oscillator basis set had to be used, containing also states indirectly interacting with fundamental vibrations. A simpler second-order perturbational approach (PT2) appeared less useful. The modeling provided unprecedented agreement with experimental vibrational frequencies; spectral shapes were reproduced less faithfully. The possibility of ab initio interpretation of the CH spectral region for relatively large molecules further broadens the application span of vibrational spectroscopy.
Collapse
Affiliation(s)
- Jana Hudecová
- Faculty of Mathematics and Physics, Institute of Physics, Charles University , Ke Karlovu 5, 12116, Prague 2, Czech Republic.,Institute of Organic Chemistry and Biochemistry, Academy of Sciences , Flemingovo náměstí 2, 16610 Prague, Czech Republic
| | - Václav Profant
- Faculty of Mathematics and Physics, Institute of Physics, Charles University , Ke Karlovu 5, 12116, Prague 2, Czech Republic
| | - Pavlína Novotná
- Department of Physics and Measurements and Department of Analytical Chemistry, Institute of Chemical Technology , Technická 5, 16628 Prague, Czech Republic
| | - Vladimír Baumruk
- Faculty of Mathematics and Physics, Institute of Physics, Charles University , Ke Karlovu 5, 12116, Prague 2, Czech Republic
| | - Marie Urbanová
- Department of Physics and Measurements and Department of Analytical Chemistry, Institute of Chemical Technology , Technická 5, 16628 Prague, Czech Republic
| | - Petr Bouř
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences , Flemingovo náměstí 2, 16610 Prague, Czech Republic
| |
Collapse
|
20
|
Mennucci B. Modeling environment effects on spectroscopies through QM/classical models. Phys Chem Chem Phys 2013; 15:6583-94. [DOI: 10.1039/c3cp44417a] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Ivanov SD, Witt A, Marx D. Theoretical spectroscopy using molecular dynamics: theory and application to CH5+ and its isotopologues. Phys Chem Chem Phys 2013; 15:10270-99. [DOI: 10.1039/c3cp44523b] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
22
|
Ghosh MK, Lee J, Choi CH, Cho M. Direct Simulations of Anharmonic Infrared Spectra Using Quantum Mechanical/Effective Fragment Potential Molecular Dynamics (QM/EFP-MD): Methanol in Water. J Phys Chem A 2012; 116:8965-71. [DOI: 10.1021/jp306807v] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Manik Kumer Ghosh
- Department of Chemistry
and
Green-Nano Materials Research Center, College of Natural Sciences, Kyungpook National University, Taegu 702-701, South
Korea
| | - Jooyong Lee
- Department of Chemistry, Korea University, Seoul 136-713, Korea
| | - Cheol Ho Choi
- Department of Chemistry
and
Green-Nano Materials Research Center, College of Natural Sciences, Kyungpook National University, Taegu 702-701, South
Korea
| | - Minhaeng Cho
- Department of Chemistry, Korea University, Seoul 136-713, Korea
- Multidimensional Spectroscopy
Laboratory, Korea Basic Science Institute, Seoul 136-713, Korea
| |
Collapse
|