1
|
Mandal A, Herbert JM. Simplified Tuning of Long-Range Corrected Time-Dependent Density Functional Theory. J Phys Chem Lett 2025; 16:2672-2680. [PMID: 40047808 DOI: 10.1021/acs.jpclett.5c00086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Range-separated hybrid functionals have dramatically improved the description of charge-transfer excitations in time-dependent density functional theory (TD-DFT), especially when the range-separation parameter is adjusted in order to satisfy the ionization energy (IE) criterion, εHOMO = -IE. However, this "optimal tuning" procedure is molecule-specific, inconvenient, expensive for large systems, and problematic in extended or periodic systems. Here, we consider an alternative procedure known as global density-dependent (GDD) tuning, which sets the range-separation parameter in an automated way based on properties of the exchange hole. In small molecules, we find that long-range corrected functionals with either IE or GDD tuning afford remarkably similar TD-DFT excitation energies, for both valence and charge-transfer excitations. However, GDD tuning is more efficient and is well-behaved even for large systems. It provides a black-box solution to the optimal-tuning problem that can replace IE tuning for many applications of TD-DFT.
Collapse
Affiliation(s)
- Aniket Mandal
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - John M Herbert
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
2
|
Liu SS, Wei X, Zheng Y, Liu S, Xu DH, Li L, Cui G, Liu XY. Conformational and Solvent Effects on the Photoinduced Electron Transfer Dynamics of a Zinc Phthalocyanine-Benzoperylenetriimide Conjugate: A Nonadiabatic Dynamics Simulation. Chemphyschem 2025; 26:e202400631. [PMID: 39385521 DOI: 10.1002/cphc.202400631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/18/2024] [Accepted: 10/05/2024] [Indexed: 10/12/2024]
Abstract
Herein, we employed a combination of static electronic structure calculations and nonadiabatic dynamics simulations at linear-response time dependent density functional theory (LR-TDDFT) level with the optimally tuned range-separated hybrid (OT-RSH) functional to explore the ultrafast photoinduced dynamics of a zinc phthalocyanine-benzoperylenetriimide (ZnPc-BPTI) conjugate. Due to the flexibility of the linker, we identified two major conformations: the stacked conformation (ZnPc-BPTI-1) and the extended conformation (ZnPc-BPTI-2). Since the charge transfer states are much lower than the lowest local excitation in ZnPc-BPTI-1, which is contrary to ZnPc-BPTI-2, the ultrafast electron transfer (~3.6 ps) is only observed in the nonadiabatic simulations of ZnPc-BPTI-1 upon local excitation around the absorption maximum of ZnPc. However, when considering the solvent effects in benzonitrile: the lowest S1 states are both charge transfer states from ZnPc to BPTI for different conformers. Subsequent nonadiabatic dynamics simulations indicate that both conformers experience ultrafast electron transfer in benzonitrile with two time constants of 90 [100] fs and 1.40 [1.43] ps. Our present work not only agrees well with previous experimental study, but also points out the important role of conformational changes and solvent effects in regulating the photodynamics of organic donor-acceptor conjugates.
Collapse
Affiliation(s)
- Sha-Sha Liu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, 610068, China E-mail: xiangyang⋅
| | - Xin Wei
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, 610068, China E-mail: xiangyang⋅
| | - Yan Zheng
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, 610068, China E-mail: xiangyang⋅
| | - Shuai Liu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, 610068, China E-mail: xiangyang⋅
| | - Dong-Hui Xu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, 610068, China E-mail: xiangyang⋅
| | - Laicai Li
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, 610068, China E-mail: xiangyang⋅
| | - Ganglong Cui
- College of Chemistry, Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, Beijing Normal University, Beijing, 100875, China
| | - Xiang-Yang Liu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, 610068, China E-mail: xiangyang⋅
| |
Collapse
|
3
|
Bessong CDRA, Abe MTO, Ntieche Z, Noudem P, Fankam Fankam JB, Ndjaka JMB. Impact of doping with organic dopants and mixed doping with alkali metals and organic dopants on the absorption, electronic, optoelectronic, thermodynamic and nonlinear optical properties of dibenzo[b,def]chrysene in gaseous media: DFT and TD-DFT studies. J Mol Model 2024; 30:240. [PMID: 38954155 DOI: 10.1007/s00894-024-06026-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/14/2024] [Indexed: 07/04/2024]
Abstract
CONTEXT In this study, we evaluate the geometrical, absorption, optoelectronic, electronic, nonlinear optical (NLO) and thermodynamic properties of dibenzo[b,def]chrysene molecule derivatives by means of DFT and TD-DFT simulations. In view of the aim of producing new high-performance materials for non-linear optics (NLO) by doping test, two types of doping were used. We obtained six derivatives by doping with organic dopants (Nitro, amide and ticyanoethenyl) and mixed alkali metal (potassium) and organic dopants. Doping with organic dopants produced molecules A, B and C, respectively when substituting one hydrogen with nitro (NO2), amide (CONH2) and tricyanoethenyl (C5N3) groups, while mixed doping involved considering A, B and C and then substituting two hydrogens with two potassiums to obtain compounds D, E and F respectively. The negative values of the various interaction energies calculated for all the doped molecules show that they are all stable, but also that molecules C and F are the most stable in the case of both dopings. The gap energies calculated at the B3LYP level of theory are all below 3 eV, which means that all the molecules obtained are semiconductors. Better still, compounds C and F, with gap energies of 1.852 eV and 1.204 eV, respectively, corresponding to decreases of 35.67% and 58.18% in gap energy compared with the pristine molecule, are more reactive than the other doped molecules. Mixed doping is therefore a highly effective way of narrowing the energy gap and boosting the semiconducting character and reactivity of organic materials. Optoelectronic properties have also been improved, with refractive index values higher than those of the reference material, glass. This shows that our compounds could be used under very high electric field conditions of the order of 4.164 × 109 V.m-1 for C and 7.410 × 109 V.m-1 for F the highest values at the B3LYP level of theory. The maximum first-order hyperpolarizability values for both types of doping are obtained at the CAM-B3LYP level of theory by C:β mol = 92.088 × 10-30esu and by F:β mol = 129.449 × 10-30esu, and second-order values are also given by these same compounds. These values are higher than the reference value, which is urea, making our compounds potential candidates for high-performance NLO applications. In dynamic mode and at a frequency of 1064 nm, at the CAM-B3LYP level of theory, the highest dynamic hyperpolarizability coefficients were obtained by C and F. Hyper-Rayleigh scattering β HRS , coefficients of the electro-optical Pockel effect (EOPE), EFISHG, third-order NLO-response degree four-wave mixingγ DFWM , quadratic nonlinear refractive index n2 were also calculated. The maximum values of n2 are obtained by C (6.13 × 10-20 m2/W) and F (6.60 × 10-20 m2/W), these values are 2.24 times higher than that of fused silica which is the reference for degenerate four-wave mixing so our molecules could also have applications in optoelectronics as wavelength converters, optical pulse modulators and optical switches. METHODS Using the DFT method, we were able to determine the optimized and stable electronic structures of doped dibenzo[b,def]chrysene derivatives in the gas phase. We limited ourselves to using the proven B3LYP and CAMB3LYP levels of theory for calculating electronic properties, and non-linear optics with the 6-311G + + (d,p) basis set, which is a large basis set frequently used for these types of compound. Gaussian 09 software was used to run our calculations, and Gauss View 6.0.16 was used to visualize the output files. TD-DFT was also used to determine absorption properties at the B3LYP level of theory, using the same basis set.
Collapse
Affiliation(s)
- C D Ribouem A Bessong
- Faculty of Science, Department of Physics, University of Yaoundé I, P.M.B 812, Yaoundé, Cameroon.
| | - M T Ottou Abe
- Faculty of Science, Department of Physics, University of Yaoundé I, P.M.B 812, Yaoundé, Cameroon.
| | - Zounedou Ntieche
- Faculty of Science, Department of Physics, University of Yaoundé I, P.M.B 812, Yaoundé, Cameroon
- Local Material Promotion Authority (MIPROMALO), P.O. Box 2396, Yaoundé, Cameroon
| | - P Noudem
- Faculty of Science, Department of Physics, University of Yaoundé I, P.M.B 812, Yaoundé, Cameroon
| | - J B Fankam Fankam
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg, 2050, South Africa
| | - J M B Ndjaka
- Faculty of Science, Department of Physics, University of Yaoundé I, P.M.B 812, Yaoundé, Cameroon
| |
Collapse
|
4
|
Rohman S, Kar R. Understanding Photophysical Properties of Molecules Relevant in Organic Semiconductor Laser Diodes from Electron Localization Function-Tuned and Solvent-Tuned Range-Separated Functionals. J Phys Chem A 2023; 127:9069-9081. [PMID: 37862688 DOI: 10.1021/acs.jpca.3c05486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
Organic semiconductor laser diodes (OSLDs) are prevalent in optoelectronics because of their sustainable energy applications. Organic molecules used in such diodes are usually large; hence, their studies are computationally challenging with high-end benchmark methods. Computational methods with reliable accuracy and efficiency are always indispensable. In the present work, we have applied our computationally inexpensive, nonempirically tuned [electron localization function (ELF*) and solvent (Sol*)] range-separated (RS) functionals to study five molecules used in OSLDs. The emission energies in three different environments [toluene, CBP (4,4'-bis(n-carbazolyl)-1,1'-biphenyl) film, and gas] have been computed with the tuned functionals and compared with the experimental emission energies. ELF* and Sol* functionals can accurately reproduce emission energies in toluene and CBP film environments. On the other hand, both ELF* and IP-tuned functionals with excited-state geometry (IP*) perform better in the gas phase. In addition, a comparative study is performed between time-dependent density functional theory and the Tamm-Dancoff approximation. Along with the emission energy, oscillator strength values have also been reported. Different IP-tuned RS parameters were obtained with the ground- and excited-state geometries. Interestingly, it has been observed that the optimally tuned RS parameter with excited-state geometry (IP*) performs better compared to that with ground-state geometries (IP). Fractional occupation calculations show that the tuned functionals exhibit less localization and delocalization error. The study envisages that ELF* and Sol* functionals can be used to design future candidates for OSLDs.
Collapse
Affiliation(s)
- Satter Rohman
- Department of Chemistry, Dibrugarh University, Dibrugarh, Assam 786004, India
| | - Rahul Kar
- Department of Chemistry, Dibrugarh University, Dibrugarh, Assam 786004, India
| |
Collapse
|
5
|
Liu S, Liu SS, Tang XM, Liu XY, Yang JJ, Cui G, Li L. Solvent effects on the photoinduced charge separation dynamics of directly linked zinc phthalocyanine-perylenediimide dyads: a nonadiabatic dynamics simulation with an optimally tuned screened range-separated hybrid functional. Phys Chem Chem Phys 2023; 25:28452-28464. [PMID: 37846460 DOI: 10.1039/d3cp03517d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Herein, we have employed a combination of the optimally tuned screened range-separated hybrid (OT-SRSH) functional, the polarizable continuum model (PCM), and nonadiabatic dynamics (NAMD) simulations to investigate the photoinduced dynamics of directly linked donor-acceptor dyads formed using zinc phthalocyanine (ZnPc) and perylenediimide (PDI), in which ZnPc is the donor while PDI is the acceptor. Our simulations aim to analyze the behavior of these dyads upon local excitation of the ZnPc moiety in the gas phase and in benzonitrile. Our findings indicate that the presence of a solvent can significantly influence the excited state dynamics of ZnPc-PDI dyads. Specifically, the polar solvent benzonitrile effectively lowers the vertical excitation energies of the charge transfer (CT) state from ZnPc to PDI. As a result, the energetic order of the locally excited (LE) states of ZnPc and the CT states is reversed compared to the gas phase. Consequently, the photoinduced electron transfer (PET) dynamics from ZnPc to PDI, which is absent in the gas phase, takes place in benzonitrile with a time constant of 10.4 ps. Importantly, our present work not only qualitatively agrees with experimental results but also provides in-depth insights into the underlying mechanisms responsible for the photoinduced dynamics of ZnPc-PDI. Moreover, this study emphasizes the importance of appropriately considering solvent effects in NAMD simulation of organic donor-acceptor systems, taking into account the distinct excited state dynamics observed in the gas phase and benzonitrile. Furthermore, the combination of the OT-SRSH functional, the PCM solvent model, and nonadiabatic dynamics simulations shows promise as a strategy for investigating the complex excited state dynamics of organic donor-acceptor systems in solvents. These findings will be valuable for the future design of novel organic donor-acceptor structures with improved performance.
Collapse
Affiliation(s)
- Shuai Liu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China.
| | - Sha-Sha Liu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China.
| | - Xiao-Mei Tang
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China.
| | - Xiang-Yang Liu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China.
| | - Jia-Jia Yang
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China.
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
- Hefei National Laboratory, Hefei 230088, China
| | - Laicai Li
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China.
| |
Collapse
|
6
|
Parsons T, Balduf T, Caricato M. On the choice of coordinate origin in length gauge optical rotation calculations. Chirality 2023; 35:708-717. [PMID: 37137811 DOI: 10.1002/chir.23575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 04/11/2023] [Indexed: 05/05/2023]
Abstract
In this work, we explore the issue of origin dependence in optical rotation (OR) calculations in the length dipole gauge (LG) using standard approximate methods belonging to density functional theory (DFT) and coupled cluster (CC) theory. We use the origin-invariant LG approach, LG(OI), that we recently proposed as reference for the calculations, and we study whether a proper choice of coordinate origin and molecular orientation can be made such that diagonal elements of the LG-OR tensor match those of the LG(OI) tensor. Using a numerical search algorithm, we show that multiple spatial orientations can be found where the LG and LG(OI) results match. However, a simple analytical procedure provides a spatial orientation where the origin of the coordinate system is close to the center of mass of the molecule. At the same time, we also show that putting the origin at the center of mass is not an ideal choice for every molecule (relative errors in the OR up to 70% can be obtained in out test set). Finally, we show that the choice of coordinate origin based on the analytical procedure is transferable across different methods and it is superior to putting the origin in the center of mass or center of nuclear charge. This is important because the LG(OI) approach is trivial to implement for DFT, but not necessarily for nonvariational methods in the CC family. Therefore, one can determine an optimal coordinate origin at DFT level and use it for standard LG-CC response calculations.
Collapse
Affiliation(s)
- Taylor Parsons
- Department of Chemistry, University of Kansas, Lawrence, Kansas, USA
| | - Ty Balduf
- Department of Chemistry, University of Kansas, Lawrence, Kansas, USA
| | - Marco Caricato
- Department of Chemistry, University of Kansas, Lawrence, Kansas, USA
| |
Collapse
|
7
|
Freixas VM, Rouxel JR, Nam Y, Tretiak S, Govind N, Mukamel S. X-ray and Optical Circular Dichroism as Local and Global Ultrafast Chiral Probes of [12]Helicene Racemization. J Am Chem Soc 2023; 145:21012-21019. [PMID: 37704187 DOI: 10.1021/jacs.3c07032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Chirality is a fundamental molecular property that plays a crucial role in biophysics and drug design. Optical circular dichroism (OCD) is a well-established chiral spectroscopic probe in the UV-visible regime. Chirality is most commonly associated with a localized chiral center. However, some compounds such as helicenes (Figure 1) are chiral due to their screwlike global structure. In these highly conjugated systems, some electric and magnetic allowed transitions are distributed across the entire molecule, and OCD thus probes the global molecular chirality. Recent advances in X-ray sources, in particular the control of their polarization and spatial profiles, have enabled X-ray circular dichroism (XCD), which, in contrast to OCD, can exploit the localized and element-specific nature of X-ray electronic transitions. XCD therefore is more sensitive to local structures, and the chirality probed with it can be referred to as local. During the racemization of helicene, between opposite helical structures, the screw handedness can flip locally, making the molecule globally achiral while retaining a local handedness. Here, we use the racemization mechanism of [12]helicene as a model to demonstrate the capabilities of OCD and XCD as time-dependent probes for global and local chiralities, respectively. Our simulations demonstrate that XCD provides an excellent spectroscopic probe for the time-dependent local chirality of molecules.
Collapse
Affiliation(s)
- Victor M Freixas
- Department of Chemistry and Physics and Astronomy, University of California, Irvine, California 92697-2025, United States
| | - Jérémy R Rouxel
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Yeonsig Nam
- Department of Chemistry and Physics and Astronomy, University of California, Irvine, California 92697-2025, United States
| | - Sergei Tretiak
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Niranjan Govind
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Shaul Mukamel
- Department of Chemistry and Physics and Astronomy, University of California, Irvine, California 92697-2025, United States
| |
Collapse
|
8
|
Villot C, Huang T, Lao KU. Accurate prediction of global-density-dependent range-separation parameters based on machine learning. J Chem Phys 2023; 159:044103. [PMID: 37486048 DOI: 10.1063/5.0157340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 07/03/2023] [Indexed: 07/25/2023] Open
Abstract
In this work, we develop an accurate and efficient XGBoost machine learning model for predicting the global-density-dependent range-separation parameter, ωGDD, for long-range corrected functional (LRC)-ωPBE. This ωGDDML model has been built using a wide range of systems (11 466 complexes, ten different elements, and up to 139 heavy atoms) with fingerprints for the local atomic environment and histograms of distances for the long-range atomic correlation for mapping the quantum mechanical range-separation values. The promising performance on the testing set with 7046 complexes shows a mean absolute error of 0.001 117 a0-1 and only five systems (0.07%) with an absolute error larger than 0.01 a0-1, which indicates the good transferability of our ωGDDML model. In addition, the only required input to obtain ωGDDML is the Cartesian coordinates without electronic structure calculations, thereby enabling rapid predictions. LRC-ωPBE(ωGDDML) is used to predict polarizabilities for a series of oligomers, where polarizabilities are sensitive to the asymptotic density decay and are crucial in a variety of applications, including the calculations of dispersion corrections and refractive index, and surpasses the performance of all other popular density functionals except for the non-tuned LRC-ωPBE. Finally, LRC-ωPBE (ωGDDML) combined with (extended) symmetry-adapted perturbation theory is used in calculating noncovalent interactions to further show that the traditional ab initio system-specific tuning procedure can be bypassed. The present study not only provides an accurate and efficient way to determine the range-separation parameter for LRC-ωPBE but also shows the synergistic benefits of fusing the power of physically inspired density functional LRC-ωPBE and the data-driven ωGDDML model.
Collapse
Affiliation(s)
- Corentin Villot
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, USA
| | - Tong Huang
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, USA
| | - Ka Un Lao
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, USA
| |
Collapse
|
9
|
Kretz B, Egger D. Accurate Non-Adiabatic Couplings from Optimally-Tuned Range-Separated Hybrid Functionals. J Chem Phys 2022; 157:101104. [DOI: 10.1063/5.0099854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Precise theoretical calculations of non-adiabatic couplings, which describe the interaction between two Born-Oppenheimer surfaces, are important for the modeling of radiationless decay mechanisms in photochemical processes. Here, we demonstrate that accurate non-adiabatic couplings can be calculated in the framework of linear-response time-dependent density functional theory by using non-empirical, optimally-tuned range-separated hybrid (OT-RSH) functionals. We focus on molecular radicals, in which ultrafast non-radiative decay plays a crucial role, to find that the OT-RSH functional compares well to wave-function based reference data and competes with the accuracy of semi-empirical CAM-B3LYP calculations. Our findings show that the OT-RSH approach provides very accurate non-adiabatic couplings and, therefore, provides a computationally efficient alternative to wave-function based techniques.
Collapse
|
10
|
Rohman S, Kar R. Excited-State Properties of Some Thermally Activated Delayed Fluorescence Emitters: Quest for an Accurate and Reliable Computational Method. J Phys Chem A 2022; 126:3452-3462. [PMID: 35609339 DOI: 10.1021/acs.jpca.2c01463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Thermally activated delayed fluorescence (TADF) finds application in organic light-emitting diodes. The molecules exhibiting TADF are characterized by small singlet-triplet energy gaps that help reverse intersystem crossing. Recently, ionization potential (IP)-tuned range-separated (RS) density functionals have been well accepted for studying excited-state properties. In the present work, two efficient descriptor-based tuning schemes [electron localization function (ELF) and Sol] of RS density functionals have been used to accurately reproduce the excited-state properties of TADF emitters by performing a single self-consistent field calculation. The lowest singlet vertical excitation energies (EVA(S1)) and the vertical singlet-triplet energy gaps (ΔEVST) are computed with ELF-, Sol-, and IP-tuned RS functionals (LC-BLYP, ωB97, ωB97X, and ωB97XD). Encouraging mean absolute deviations from the experimental values with ELF*-, Sol*-, and IP-tuned functionals are observed. Consistent performance of the non-empirical tuned functionals is noted in different solvent dielectrics. In addition to these, fractional occupation calculations have shown that our tuned functionals almost satisfy the energy linearity curve. Thus, ELF*- and Sol*-tuned functionals are promising and reliable alternatives in computing the excited-state properties. Considering the small experimental singlet-triplet gap, we recommend ELF* to calculate EVA(S1) and Sol* to calculate ΔEVST.
Collapse
Affiliation(s)
- Satter Rohman
- Department of Chemistry, Dibrugarh University, Dibrugarh, Assam 786004, India
| | - Rahul Kar
- Department of Chemistry, Dibrugarh University, Dibrugarh, Assam 786004, India
| |
Collapse
|
11
|
de Albuquerque Barros G, Henrique Morgon N. Finding reliable methodology for optical rotation and correct predictions of (s)-methyloxirane and (1R,5R)-β-pinene. Chirality 2022; 34:1197-1208. [PMID: 35670135 DOI: 10.1002/chir.23479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 12/25/2022]
Abstract
Theoretical calculations of optical rotation (OR), although important to predict absolute configurations (ACs) and corroborate experiments, require efficient methodology able to reproduce enantiomer specificity and real OR values. Also, troublesome molecules are recurring in the literature, such as (S)-methyloxirane and (1R,5R)-β-pinene. This study evaluates DFT functionals B3LYP, CAM-B3LYP, ωB97X-D, M06-2X, and PBE0 considering basis sets aug-cc-pVDZ, aug-cc-pVTZ, 6-311++G(2d,p), and 6-311++G(3df,2p) in OR prediction of 42 rigid organic molecules assessing cases with wrong enantiomeric determination comparing to available experimental data at wavelengths 355, 589, and 633 nm. Functionals CAM-B3LYP and ωB97X-D with aug-cc-pVTZ are indicated here to reproduce experimental values more accurately considering fewer number of wrong AC predictions, normalized RMSD values below 0.70, and a good approximation to experimental values in hierarchical cluster analysis. Methyloxirane AC was reproduced in CAM-B3LYP and PBE0, with [ α ] 355 = 6 . 94 $$ {\left[\alpha \right]}_{355}=6.94 $$ for CAM-B3LYP/aug-cc-pVTZ close to experimental value [ α ] 355 = 7 . 49 ± 0 . 30 $$ {\left[\alpha \right]}_{355}=7.49\pm 0.30 $$ . Good results were found for AC of β-pinene in M06-2X, CAM-B3LYP, and ωB97X-D while the latter in 6-311++G(3df,2p) obtained OR values of [ α ] 589 = 3 . 44 $$ {\left[\alpha \right]}_{589}=3.44 $$ and [ α ] 689 = 4 . 20 $$ {\left[\alpha \right]}_{689}=4.20 $$ close to experimental values [ α ] 589 = 2 . 8 $$ {\left[\alpha \right]}_{589}=2.8 $$ and [ α ] 689 = 4 . 66 ± 0 . 60 $$ {\left[\alpha \right]}_{689}=4.66\pm 0.60 $$ . The two molecules aforementioned are, for the first time, reported to give valid theoretical OR values in such simple methodologies. OR calculations were all performed after geometry optimization at the same level of theory, and analysis of different functional combinations for each step in β-pinene showed it can interfere with AC prediction even in rigid molecules.
Collapse
Affiliation(s)
| | - Nelson Henrique Morgon
- Department of Physical Chemistry, Institute of Chemistry, Campinas State University, Campinas, Brazil
| |
Collapse
|
12
|
Morgante P, Ludowieg HD, Autschbach J. Comparative Study of Vibrational Raman Optical Activity with Different Time-Dependent Density Functional Approximations: The VROA36 Database. J Phys Chem A 2022; 126:2909-2927. [PMID: 35512708 DOI: 10.1021/acs.jpca.2c00951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A new database, VROA36, is introduced to investigate the performance of computational approaches for vibrational Raman optical activity (VROA) calculations. The database is composed of 36 molecules with known experimental VROA spectra. It includes 93 conformers. Normal modes calculated with B3LYP-D3(BJ)/def2-TZVP are used to compute the VROA spectra with four functionals, B3LYP-D3(BJ), ωB97X-D, M11, and optimally tuned LC-PBE, as well as several basis sets. SimROA indices and frequency scaling factors are used to compare calculated spectra with each other and with experimental data. The four functionals perform equally well independently of the basis set and usually achieve good agreement with the experimental data. For molecules in near- or at-resonance conditions, the inclusion of a complex (damped) linear response approach is important to obtain physically meaningful VROA intensities. The use of any of the tested functional approximations with the def2-SVPD Gaussian-type basis set, or a basis of similar flexibility, can be recommended for efficient and reliable theoretical VROA studies.
Collapse
Affiliation(s)
- Pierpaolo Morgante
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260-3000, United States
| | - Herbert D Ludowieg
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260-3000, United States
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260-3000, United States
| |
Collapse
|
13
|
Parsons T, Balduf T, Cheeseman JR, Caricato M. Basis Set Dependence of Optical Rotation Calculations with Different Choices of Gauge. J Phys Chem A 2022; 126:1861-1870. [PMID: 35271772 DOI: 10.1021/acs.jpca.2c00201] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this work, the basis set dependence of optical rotation (OR) calculations is examined for various choices of gauge/level of theory. The OR is calculated for a set of 50 molecules using B3LYP and CAM-B3LYP and 17 molecules using coupled cluster with single and double excitations (CCSD). The calculations employ the correlation-consistent basis sets, aug-cc-pVζZ with ζ = D, T, Q. An inverse-power extrapolation formula is then utilized to obtain OR values at the complete basis set (CBS) limit. We investigate the basis set convergence for these methods and three choices of gauge: length gauge (with gauge-including atomic orbitals, LG(GIAOs), for DFT), the origin-invariant length gauge [LG(OI)], and the modified velocity gauge (MVG). The results show that all methods converge smoothly to the CBS limit and that the LG(OI) approach has a slightly faster convergence rate than the other choices of gauge. While the DFT methods reach gauge invariance at the CBS limit, CCSD does not. The significant difference between the MVG and LG(OI) results at the CBS limit, 26%, indicates that CCSD is not quite at convergence in the description of electron correlation for this property. On the other hand, gauge invariance at the CBS limit for DFT does not lead to the same OR values for the two density functionals, which is also due to electron correlation incompleteness. A limited comparison to gas-phase experimental OR values for the DFT methods shows that CAM-B3LYP seems more accurate than B3LYP. Overall, this study shows that the LG(OI) approach with the aug-cc-pVTZ basis set for DFT, and with the CBS(DT) extrapolation for CCSD, provides a good cost/accuracy balance.
Collapse
Affiliation(s)
- Taylor Parsons
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Ty Balduf
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - James R Cheeseman
- Gaussian, Inc., 340 Quinnipiac Street, Building 40, Wallingford, Connecticut 06492, United States
| | - Marco Caricato
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| |
Collapse
|
14
|
Bohle F, Seibert J, Grimme S. Automated Quantum Chemistry-Based Calculation of Optical Rotation for Large Flexible Molecules. J Org Chem 2021; 86:15522-15531. [PMID: 34612629 DOI: 10.1021/acs.joc.1c02008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The calculation of optical rotation (OR, [α]D) for nonrigid molecules was limited to small systems due to the challenging problem of generating reliable conformer ensembles, calculating accurate Boltzmann populations and the extreme sensitivity of the OR to the molecules' three-dimensional structure. Herein, we describe and release the crenso workflow for the automated computation of conformer ensembles in solution and corresponding [α]D values for flexible molecules. A comprehensive set of 28 organic drug molecules (28-144 atoms) with experimentally determined values is used in our assessment. In all cases, the correct OR sign is obtained with an overall mean relative deviation of 72% (mean absolute deviation of 82 °[dm(g/cm3)]-1 for experimental values in the range -160 to 287 °[dm(g/cm3)]-1). We show that routine [α]D computations for very flexible, biologically active molecules are both feasible and reproducible in about a day of computation time on a standard workstation computer. Furthermore, we observed that the effect of energetically higher-lying structures in the ensemble on the OR is often averaged out and that in 23 out of 28 cases, the correct OR sign is obtained by just considering only the lowest free energy conformer. In four example cases, we show that the approach can also describe the OR of pairs of flexible diastereomers properly. In summary, even very sensitive, multifactorial physicochemical properties appear reliably predictable with minimal user input from efficiently automated quantum chemical methods.
Collapse
Affiliation(s)
- Fabian Bohle
- Mulliken Center for Theoretical Chemistry, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn 53115, Germany
| | - Jakob Seibert
- Mulliken Center for Theoretical Chemistry, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn 53115, Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn 53115, Germany
| |
Collapse
|
15
|
Darquié B, Saleh N, Tokunaga SK, Srebro-Hooper M, Ponzi A, Autschbach J, Decleva P, Garcia GA, Crassous J, Nahon L. Valence-shell photoelectron circular dichroism of ruthenium(III)-tris-(acetylacetonato) gas-phase enantiomers. Phys Chem Chem Phys 2021; 23:24140-24153. [PMID: 34666343 DOI: 10.1039/d1cp02921e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chiral transition-metal complexes are of interest in many fields ranging from asymmetric catalysis and molecular materials science to optoelectronic applications or fundamental physics including parity violation effects. We present here a combined theoretical and experimental investigation of gas-phase valence-shell photoelectron circular dichroism (PECD) on the challenging open-shell ruthenium(III)-tris-(acetylacetonato) complex, Ru(acac)3. Enantiomerically pure Δ- or Λ-Ru(acac)3, characterized by electronic circular dichroism (ECD), were vaporized and adiabatically expanded to produce a supersonic beam and photoionized by circularly-polarized VUV light from the DESIRS beamline at Synchrotron SOLEIL. Photoelectron spectroscopy (PES) and PECD experiments were conducted using a double imaging electron/ion coincidence spectrometer, and compared to density functional theory (DFT) and time-dependent DFT (TDDFT) calculations. The open-shell character of Ru(acac)3, which is not taken into account in our DFT approach, is expected to give rise to a wide multiplet structure, which is not resolved in our PES signals but whose presence might be inferred from the additional striking features observed in the PECD curves. Nevertheless, the DFT-based assignment of the electronic bands leads to the characterisation of the ionized orbitals. In line with other recent works, the results confirm that PECD persists independently on the localization and/or on the achiral or chiral nature of the initial orbital, but is rather a probe of the molecular potential as a whole. Overall, the measured PECD signals on Ru(acac)3, a system exhibiting D3 propeller-type chirality, are of similar magnitude compared to those on asymmetric-carbon-based chiral organic molecules which constitute the vast majority of species investigated so far, thus suggesting that PECD is a universal mechanism, inherent to any type of chirality.
Collapse
Affiliation(s)
- Benoît Darquié
- Laboratoire de Physique des Lasers, Université Sorbonne Paris Nord, CNRS, Villetaneuse, France.
| | - Nidal Saleh
- Univ Rennes CNRS, ISCR-UMR 6226 ScanMat - UMS 2001, 35000 Rennes, France.
| | - Sean K Tokunaga
- Laboratoire de Physique des Lasers, Université Sorbonne Paris Nord, CNRS, Villetaneuse, France.
| | - Monika Srebro-Hooper
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland.
| | - Aurora Ponzi
- CNR IOM and Dipartimento di Scienze Chimiche e Farmaceutiche, Universita' di Trieste, I-34127 Trieste, Italy.
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA
| | - Piero Decleva
- CNR IOM and Dipartimento di Scienze Chimiche e Farmaceutiche, Universita' di Trieste, I-34127 Trieste, Italy.
| | - Gustavo A Garcia
- Synchrotron SOLEIL, L'Orme des Merisiers, St. Aubin, BP 48, 91192 Gif sur Yvette, France.
| | - Jeanne Crassous
- Univ Rennes CNRS, ISCR-UMR 6226 ScanMat - UMS 2001, 35000 Rennes, France.
| | - Laurent Nahon
- Synchrotron SOLEIL, L'Orme des Merisiers, St. Aubin, BP 48, 91192 Gif sur Yvette, France.
| |
Collapse
|
16
|
Carmona-Espíndola J. Photoabsorption spectra of helicenes. COMPUT THEOR CHEM 2021. [DOI: 10.1016/j.comptc.2021.113272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
17
|
Galeano Carrano RS, Provasi PF, Ferraro MB, Alkorta I, Elguero J, Sauer SPA. A Density Functional Theory Study of Optical Rotation in Some Aziridine and Oxirane Derivatives. Chemphyschem 2021; 22:764-774. [PMID: 33528071 DOI: 10.1002/cphc.202001010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/01/2021] [Indexed: 12/25/2022]
Abstract
We present time-dependent density functional theory (TDDFT) calculations of the electronic optical rotation (ORP) for seven oxirane and two aziridine derivatives in the gas phase and in solution and compare the results with the available experimental values. For seven of the studied molecules it is the first time that their optical rotation was studied theoretically and we have therefore investigated the influence of several settings in the TDDFT calculations on the results. This includes the choice of the one-electron basis set, the exchange-correlation functional or the particular polarizable continuum model (PCM). We can confirm that polarized quadruple zeta basis sets augmented with diffuse functions are necessary for converged results and find that the aug-pc-3 basis set is a viable alternative to the frequently employed aug-cc-pVQZ basis set. Based on our study, we cannot recommend the generalized gradient functional KT3 for calculations of the ORP in these compounds, whereas the hybrid functional PBE0 gives results quite similar to the long-range correct CAM-B3LYP functional. Finally, we observe large differences in the solvent effects predicted by the integral equation formalism of PCM and the SMD variant of PCM. For the majority of solute/solvent combinations in this study, we find that the SMD model in combination with the PBE0 functional and the aug-pc-3 basis set gives the best agreement with the experimental values.
Collapse
Affiliation(s)
- Ramiro S Galeano Carrano
- Facultad de Ciencias Exactas, Químicas y Naturales, Universidad Nacional de Misiones, Posadas, Argentina
| | - Patricio F Provasi
- Department of Physics, IMIT, Northeastern University, CONICET, Corrientes, Argentina
| | - Marta B Ferraro
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IFIBA, CONICET, Buenos Aires, Argentina
| | - Ibon Alkorta
- Instituto de Química Médica (C.S.I.C.), Madrid, Spain
| | - José Elguero
- Instituto de Química Médica (C.S.I.C.), Madrid, Spain
| | - Stephan P A Sauer
- Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
18
|
Zhang K, Balduf T, Caricato M. Full optical rotation tensor at coupled cluster with single and double excitations level in the modified velocity gauge. Chirality 2021; 33:303-314. [PMID: 33826196 DOI: 10.1002/chir.23310] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/11/2021] [Accepted: 03/06/2021] [Indexed: 11/07/2022]
Abstract
This work presents the first simulations of the full optical rotation (OR) tensor at coupled cluster with single and double excitations (CCSD) level in the modified velocity gauge (MVG) formalism. The CCSD-MVG OR tensor is origin independent, and each tensor element can in principle be related directly to experimental measurements on oriented systems. We compare the CCSD results with those from two density functionals, B3LYP and CAM-B3LYP, on a test set of 22 chiral molecules. The results show that the functionals consistently overestimate the CCSD results for the individual tensor components and for the trace (which is related to the isotropic OR), by 10%-20% with CAM-B3LYP and 20%-30% with B3LYP. The data show that the contribution of the electric dipole-magnetic dipole polarizability tensor to the OR tensor is on average twice as large as that of the electric dipole-electric quadrupole polarizability tensor. The difficult case of (1S,4S)-(-)-norbornenone also reveals that the evaluation of the former polarizability tensor is more sensitive than the latter. We attribute the better agreement of CAM-B3LYP with CCSD to the ability of this functional to better reproduce electron delocalization compared with B3LYP, consistent with previous reports on isotropic OR. The CCSD-MVG approach allows the computation of reference data of the full OR tensor, which may be used to test more computationally efficient approximate methods that can be employed to study realistic models of optically active materials.
Collapse
Affiliation(s)
- Kaihua Zhang
- Department of Chemistry, University of Kansas, Lawrence, Kansas, USA
| | - Ty Balduf
- Department of Chemistry, University of Kansas, Lawrence, Kansas, USA
| | - Marco Caricato
- Department of Chemistry, University of Kansas, Lawrence, Kansas, USA
| |
Collapse
|
19
|
Kretz B, Egger DA. Accurate Molecular Geometries in Complex Excited-State Potential Energy Surfaces from Time-Dependent Density Functional Theory. J Chem Theory Comput 2021; 17:357-366. [PMID: 33284603 DOI: 10.1021/acs.jctc.0c00858] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The interplay of electronic excitations and structural changes in molecules impacts nonradiative decay and charge transfer in the excited state, thus influencing excited-state lifetimes and photocatalytic reaction rates in optoelectronic and energy devices. To capture such effects requires computational methods providing an accurate description of excited-state potential energy surfaces and geometries. We suggest time-dependent density functional theory using optimally tuned range-separated hybrid (OT-RSH) functionals as an accurate approach to obtain excited-state molecular geometries. We show that OT-RSH provides accurate molecular geometries in excited-state potential energy surfaces that are complex and involve an interplay of local and charge-transfer excitations, for which conventional semilocal and hybrid functionals fail. At the same time, the nonempirical OT-RSH approach maintains the high accuracy of parametrized functionals (e.g., B3LYP) for predicting excited-state geometries of small organic molecules showing valence excited states.
Collapse
Affiliation(s)
- Bernhard Kretz
- Department of Physics, Technical University of Munich, James-Franck-Str. 1, 85748 Garching, Germany
| | - David A Egger
- Department of Physics, Technical University of Munich, James-Franck-Str. 1, 85748 Garching, Germany
| |
Collapse
|
20
|
Affiliation(s)
- Tadashi Mori
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University,2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
21
|
Pal AK, Bhattacharyya K, Datta A. Polymorphism Dependent 9-Phosphoanthracene Derivative Exhibiting Thermally Activated Delayed Fluorescence: A Computational Investigation. J Phys Chem A 2020; 124:11025-11037. [PMID: 33332131 DOI: 10.1021/acs.jpca.0c10203] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Polymorphs of anthracene derivatives exhibit diverse photophysical properties that can help to develop efficient organic-based photovoltaic devices. 10-Anthryl-9-phosphoanthracene (10-APA) shows different photophysical behaviors for the solid state due to its variety in crystalline arrangement. Herein, we investigate the ground and excited-state properties of the monomer and two different polymorphs of 10-APA from first-principles. Calculations reveal that strong spin-orbit coupling (SOC) between first excited singlet state (S1) and triplet manifolds at their S1-optimized geometries enabling the reverse intersystem crossing (RISC). The electron-vibration coupling (Huang-Rhys factor) in the excited state is the most relevant factor here. For both ISC and RISC, a similarity in Huang-Rhys factors for the molecular vibration along the π···π stacking at low-frequency region makes the rates effective. On the other side, the nonvanishing vibronic relaxation modes provide a relatively slower RISC rate in the red crystal. However, for the red crystal, small reorganization energy (λ) and large Huang-Rhys factor toward S1 → S0 conversion reduce nonradiative decay, leading to a prompt fluorescence. As the feasibility of S1 ↔ T1 conversion increases in the yellow dimer, it allows a delay in fluorescence emission, leading to thermally activated delayed fluorescence (TADF).
Collapse
Affiliation(s)
- Arun K Pal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, WB, India
| | - Kalishankar Bhattacharyya
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, WB, India
| | - Ayan Datta
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, WB, India
| |
Collapse
|
22
|
Shee J, Head-Gordon M. Predicting Excitation Energies of Twisted Intramolecular Charge-Transfer States with the Time-Dependent Density Functional Theory: Comparison with Experimental Measurements in the Gas Phase and Solvents Ranging from Hexanes to Acetonitrile. J Chem Theory Comput 2020; 16:6244-6255. [DOI: 10.1021/acs.jctc.0c00635] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- James Shee
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Martin Head-Gordon
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
23
|
Aprà E, Bylaska EJ, de Jong WA, Govind N, Kowalski K, Straatsma TP, Valiev M, van Dam HJJ, Alexeev Y, Anchell J, Anisimov V, Aquino FW, Atta-Fynn R, Autschbach J, Bauman NP, Becca JC, Bernholdt DE, Bhaskaran-Nair K, Bogatko S, Borowski P, Boschen J, Brabec J, Bruner A, Cauët E, Chen Y, Chuev GN, Cramer CJ, Daily J, Deegan MJO, Dunning TH, Dupuis M, Dyall KG, Fann GI, Fischer SA, Fonari A, Früchtl H, Gagliardi L, Garza J, Gawande N, Ghosh S, Glaesemann K, Götz AW, Hammond J, Helms V, Hermes ED, Hirao K, Hirata S, Jacquelin M, Jensen L, Johnson BG, Jónsson H, Kendall RA, Klemm M, Kobayashi R, Konkov V, Krishnamoorthy S, Krishnan M, Lin Z, Lins RD, Littlefield RJ, Logsdail AJ, Lopata K, Ma W, Marenich AV, Martin Del Campo J, Mejia-Rodriguez D, Moore JE, Mullin JM, Nakajima T, Nascimento DR, Nichols JA, Nichols PJ, Nieplocha J, Otero-de-la-Roza A, Palmer B, Panyala A, Pirojsirikul T, Peng B, Peverati R, Pittner J, Pollack L, Richard RM, Sadayappan P, Schatz GC, Shelton WA, Silverstein DW, Smith DMA, Soares TA, Song D, Swart M, Taylor HL, Thomas GS, Tipparaju V, Truhlar DG, Tsemekhman K, Van Voorhis T, Vázquez-Mayagoitia Á, Verma P, Villa O, Vishnu A, et alAprà E, Bylaska EJ, de Jong WA, Govind N, Kowalski K, Straatsma TP, Valiev M, van Dam HJJ, Alexeev Y, Anchell J, Anisimov V, Aquino FW, Atta-Fynn R, Autschbach J, Bauman NP, Becca JC, Bernholdt DE, Bhaskaran-Nair K, Bogatko S, Borowski P, Boschen J, Brabec J, Bruner A, Cauët E, Chen Y, Chuev GN, Cramer CJ, Daily J, Deegan MJO, Dunning TH, Dupuis M, Dyall KG, Fann GI, Fischer SA, Fonari A, Früchtl H, Gagliardi L, Garza J, Gawande N, Ghosh S, Glaesemann K, Götz AW, Hammond J, Helms V, Hermes ED, Hirao K, Hirata S, Jacquelin M, Jensen L, Johnson BG, Jónsson H, Kendall RA, Klemm M, Kobayashi R, Konkov V, Krishnamoorthy S, Krishnan M, Lin Z, Lins RD, Littlefield RJ, Logsdail AJ, Lopata K, Ma W, Marenich AV, Martin Del Campo J, Mejia-Rodriguez D, Moore JE, Mullin JM, Nakajima T, Nascimento DR, Nichols JA, Nichols PJ, Nieplocha J, Otero-de-la-Roza A, Palmer B, Panyala A, Pirojsirikul T, Peng B, Peverati R, Pittner J, Pollack L, Richard RM, Sadayappan P, Schatz GC, Shelton WA, Silverstein DW, Smith DMA, Soares TA, Song D, Swart M, Taylor HL, Thomas GS, Tipparaju V, Truhlar DG, Tsemekhman K, Van Voorhis T, Vázquez-Mayagoitia Á, Verma P, Villa O, Vishnu A, Vogiatzis KD, Wang D, Weare JH, Williamson MJ, Windus TL, Woliński K, Wong AT, Wu Q, Yang C, Yu Q, Zacharias M, Zhang Z, Zhao Y, Harrison RJ. NWChem: Past, present, and future. J Chem Phys 2020; 152:184102. [PMID: 32414274 DOI: 10.1063/5.0004997] [Show More Authors] [Citation(s) in RCA: 348] [Impact Index Per Article: 69.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Specialized computational chemistry packages have permanently reshaped the landscape of chemical and materials science by providing tools to support and guide experimental efforts and for the prediction of atomistic and electronic properties. In this regard, electronic structure packages have played a special role by using first-principle-driven methodologies to model complex chemical and materials processes. Over the past few decades, the rapid development of computing technologies and the tremendous increase in computational power have offered a unique chance to study complex transformations using sophisticated and predictive many-body techniques that describe correlated behavior of electrons in molecular and condensed phase systems at different levels of theory. In enabling these simulations, novel parallel algorithms have been able to take advantage of computational resources to address the polynomial scaling of electronic structure methods. In this paper, we briefly review the NWChem computational chemistry suite, including its history, design principles, parallel tools, current capabilities, outreach, and outlook.
Collapse
Affiliation(s)
- E Aprà
- Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | - E J Bylaska
- Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | - W A de Jong
- Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - N Govind
- Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | - K Kowalski
- Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | - T P Straatsma
- National Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - M Valiev
- Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | - H J J van Dam
- Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Y Alexeev
- Argonne Leadership Computing Facility, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - J Anchell
- Intel Corporation, Santa Clara, California 95054, USA
| | - V Anisimov
- Argonne Leadership Computing Facility, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - F W Aquino
- QSimulate, Cambridge, Massachusetts 02139, USA
| | - R Atta-Fynn
- Department of Physics, The University of Texas at Arlington, Arlington, Texas 76019, USA
| | - J Autschbach
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, USA
| | - N P Bauman
- Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | - J C Becca
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - D E Bernholdt
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | | | - S Bogatko
- 4G Clinical, Wellesley, Massachusetts 02481, USA
| | - P Borowski
- Faculty of Chemistry, Maria Curie-Skłodowska University in Lublin, 20-031 Lublin, Poland
| | - J Boschen
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA
| | - J Brabec
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, 18223 Prague 8, Czech Republic
| | - A Bruner
- Department of Chemistry and Physics, University of Tennessee at Martin, Martin, Tennessee 38238, USA
| | - E Cauët
- Service de Chimie Quantique et Photophysique (CP 160/09), Université libre de Bruxelles, B-1050 Brussels, Belgium
| | - Y Chen
- Facebook, Menlo Park, California 94025, USA
| | - G N Chuev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Science, Pushchino, Moscow Region 142290, Russia
| | - C J Cramer
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - J Daily
- Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | - M J O Deegan
- SKAO, Jodrell Bank Observatory, Macclesfield SK11 9DL, United Kingdom
| | - T H Dunning
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | - M Dupuis
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, USA
| | - K G Dyall
- Dirac Solutions, Portland, Oregon 97229, USA
| | - G I Fann
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - S A Fischer
- Chemistry Division, U. S. Naval Research Laboratory, Washington, DC 20375, USA
| | - A Fonari
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - H Früchtl
- EaStCHEM and School of Chemistry, University of St. Andrews, St. Andrews KY16 9ST, United Kingdom
| | - L Gagliardi
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - J Garza
- Departamento de Química, División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana-Iztapalapa, Col. Vicentina, Iztapalapa, C.P. 09340 Ciudad de México, Mexico
| | - N Gawande
- Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | - S Ghosh
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 5545, USA
| | - K Glaesemann
- Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | - A W Götz
- San Diego Supercomputer Center, University of California, San Diego, La Jolla, California 92093, USA
| | - J Hammond
- Intel Corporation, Santa Clara, California 95054, USA
| | - V Helms
- Center for Bioinformatics, Saarland University, D-66041 Saarbrücken, Germany
| | - E D Hermes
- Combustion Research Facility, Sandia National Laboratories, Livermore, California 94551, USA
| | - K Hirao
- Next-generation Molecular Theory Unit, Advanced Science Institute, RIKEN, Saitama 351-0198, Japan
| | - S Hirata
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - M Jacquelin
- Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - L Jensen
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - B G Johnson
- Acrobatiq, Pittsburgh, Pennsylvania 15206, USA
| | - H Jónsson
- Faculty of Physical Sciences, University of Iceland, Reykjavík, Iceland and Department of Applied Physics, Aalto University, FI-00076 Aalto, Espoo, Finland
| | - R A Kendall
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - M Klemm
- Intel Corporation, Santa Clara, California 95054, USA
| | - R Kobayashi
- ANU Supercomputer Facility, Australian National University, Canberra, Australia
| | - V Konkov
- Chemistry Program, Florida Institute of Technology, Melbourne, Florida 32901, USA
| | - S Krishnamoorthy
- Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | - M Krishnan
- Facebook, Menlo Park, California 94025, USA
| | - Z Lin
- Department of Physics, University of Science and Technology of China, Hefei, China
| | - R D Lins
- Aggeu Magalhaes Institute, Oswaldo Cruz Foundation, Recife, Brazil
| | | | - A J Logsdail
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff, Wales CF10 3AT, United Kingdom
| | - K Lopata
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | - W Ma
- Institute of Software, Chinese Academy of Sciences, Beijing, China
| | - A V Marenich
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - J Martin Del Campo
- Departamento de Física y Química Teórica, Facultad de Química, Universidad Nacional Autónoma de México, México City, Mexico
| | - D Mejia-Rodriguez
- Quantum Theory Project, Department of Physics, University of Florida, Gainesville, Florida 32611, USA
| | - J E Moore
- Intel Corporation, Santa Clara, California 95054, USA
| | - J M Mullin
- DCI-Solutions, Aberdeen Proving Ground, Maryland 21005, USA
| | - T Nakajima
- Computational Molecular Science Research Team, RIKEN Center for Computational Science, Kobe, Hyogo 650-0047, Japan
| | - D R Nascimento
- Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | - J A Nichols
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - P J Nichols
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - J Nieplocha
- Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | - A Otero-de-la-Roza
- Departamento de Química Física y Analítica, Facultad de Química, Universidad de Oviedo, 33006 Oviedo, Spain
| | - B Palmer
- Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | - A Panyala
- Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | - T Pirojsirikul
- Department of Chemistry, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - B Peng
- Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | - R Peverati
- Chemistry Program, Florida Institute of Technology, Melbourne, Florida 32901, USA
| | - J Pittner
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., 18223 Prague 8, Czech Republic
| | - L Pollack
- StudyPoint, Boston, Massachusetts 02114, USA
| | | | - P Sadayappan
- School of Computing, University of Utah, Salt Lake City, Utah 84112, USA
| | - G C Schatz
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| | - W A Shelton
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | | | - D M A Smith
- Intel Corporation, Santa Clara, California 95054, USA
| | - T A Soares
- Dept. of Fundamental Chemistry, Universidade Federal de Pernambuco, Recife, Brazil
| | - D Song
- Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | - M Swart
- ICREA, 08010 Barcelona, Spain and Universitat Girona, Institut de Química Computacional i Catàlisi, Campus Montilivi, 17003 Girona, Spain
| | - H L Taylor
- CD-adapco/Siemens, Melville, New York 11747, USA
| | - G S Thomas
- Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | - V Tipparaju
- Cray Inc., Bloomington, Minnesota 55425, USA
| | - D G Truhlar
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | - T Van Voorhis
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Á Vázquez-Mayagoitia
- Argonne Leadership Computing Facility, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - P Verma
- 1QBit, Vancouver, British Columbia V6E 4B1, Canada
| | - O Villa
- NVIDIA, Santa Clara, California 95051, USA
| | - A Vishnu
- Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | - K D Vogiatzis
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - D Wang
- College of Physics and Electronics, Shandong Normal University, Jinan, Shandong 250014, China
| | - J H Weare
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA
| | - M J Williamson
- Department of Chemistry, Cambridge University, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - T L Windus
- Department of Chemistry, Iowa State University and Ames Laboratory, Ames, Iowa 50011, USA
| | - K Woliński
- Faculty of Chemistry, Maria Curie-Skłodowska University in Lublin, 20-031 Lublin, Poland
| | - A T Wong
- Qwil, San Francisco, California 94107, USA
| | - Q Wu
- Brookhaven National Laboratory, Upton, New York 11973, USA
| | - C Yang
- Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Q Yu
- AMD, Santa Clara, California 95054, USA
| | - M Zacharias
- Department of Physics, Technical University of Munich, 85748 Garching, Germany
| | - Z Zhang
- Stanford Research Computing Center, Stanford University, Stanford, California 94305, USA
| | - Y Zhao
- State Key Laboratory of Silicate Materials for Architectures, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - R J Harrison
- Institute for Advanced Computational Science, Stony Brook University, Stony Brook, New York 11794, USA
| |
Collapse
|
24
|
Fabrizio A, Meyer B, Corminboeuf C. Machine learning models of the energy curvature vs particle number for optimal tuning of long-range corrected functionals. J Chem Phys 2020; 152:154103. [DOI: 10.1063/5.0005039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Affiliation(s)
- Alberto Fabrizio
- Laboratory for Computational Molecular Design, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
- National Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Benjamin Meyer
- Laboratory for Computational Molecular Design, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
- National Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Clemence Corminboeuf
- Laboratory for Computational Molecular Design, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
- National Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
25
|
Niemeyer N, Tölle J, Neugebauer J. Approximate versus Exact Embedding for Chiroptical Properties: Reconsidering Failures in Potential and Response. J Chem Theory Comput 2020; 16:3104-3120. [PMID: 32301613 DOI: 10.1021/acs.jctc.0c00125] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We investigate the suitability of subsystem time-dependent density-functional theory (sTDDFT) for describing chiroptical properties with a focus on optical rotation parameters. Our starting point is a new implementation of the recently proposed projection-based, coupled frozen-density embedding (FDEc) framework. We adapt the generalized, non-Hermitian formulation of TDDFT and derive corresponding expressions for regular and damped response properties from subsystem TDDFT. We verify that our implementation of this "exact" formulation allows to reproduce supermolecular results of electronic circular dichroism (ECD) spectra, of optical rotatory dispersion, and of polarizabilities. We present a systematic test of the main approximations typically introduced in practical frozen-density embedding (FDE) calculations of response properties: (i) the use of approximate nonadditive kinetic-energy (NAKE) functionals, which can be avoided through projection techniques, (ii) the use of monomer (subsystem) basis sets rather than supersystem basis sets, and (iii) the neglect of intersubsystem response coupling within the so-called uncoupled FDE (or FDEu) approximation. While approximation (i) is known to generally lead to large errors for covalently bound subsystems, we present cases in which either the basis set or the coupling step are similarly or even (much) more important. In particular, we explicitly demonstrate by comparison to a fully coupled calculation that missing intersubsystem response couplings are responsible for the failure of FDE reported in a previous study [ J. Chem. Theory Comput. 2015, 11, 5305-5315]. We show that good agreement with reference results can be obtained in this case even with standard NAKE approximations for the FDE potentials and efficient monomer basis sets, making calculations for larger systems well accessible.
Collapse
Affiliation(s)
- Niklas Niemeyer
- Theoretische Organische Chemie, Organisch-Chemisches Institut and Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität Münster Corrensstraße 40, 48149 Münster, Germany
| | - Johannes Tölle
- Theoretische Organische Chemie, Organisch-Chemisches Institut and Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität Münster Corrensstraße 40, 48149 Münster, Germany
| | - Johannes Neugebauer
- Theoretische Organische Chemie, Organisch-Chemisches Institut and Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität Münster Corrensstraße 40, 48149 Münster, Germany
| |
Collapse
|
26
|
Hirao K, Chan B, Song J, Bhattarai K, Tewary S. Excitation energies expressed as orbital energies of Kohn–Sham density functional theory with long‐range corrected functionals. J Comput Chem 2020; 41:1368-1383. [DOI: 10.1002/jcc.26181] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/05/2020] [Accepted: 02/13/2020] [Indexed: 01/28/2023]
Affiliation(s)
- Kimihiko Hirao
- RIKEN Center for Computational Science Chuo‐ku Kobe Japan
- Fukui Institute for Fundamental ChemistryKyoto University Sakyo‐ku Kyoto Japan
| | - Bun Chan
- Graduate School of EngineeringNagasaki University Nagasaki Japan
| | - Jong‐Won Song
- Department of Chemistry EducationDaegu University Gyeongsan South Korea
| | - Kamala Bhattarai
- Department of Chemistry EducationDaegu University Gyeongsan South Korea
| | - Subrata Tewary
- RIKEN Center for Computational Science Chuo‐ku Kobe Japan
| |
Collapse
|
27
|
Bokareva OS, Baig O, Al-Marri MJ, Kühn O, González L. The effect of N-heterocyclic carbene units on the absorption spectra of Fe(ii) complexes: a challenge for theory. Phys Chem Chem Phys 2020; 22:27605-27616. [DOI: 10.1039/d0cp04781c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The absorption spectra of five Fe(ii) homoleptic and heteroleptic complexes containing strong sigma-donating N-heterocyclic carbene (NHC) and polypyridyl ligands have been theoretically characterized using a tuned range-separation functional.
Collapse
Affiliation(s)
- Olga S. Bokareva
- Institut für Physik
- Universität Rostock
- Rostock
- Germany
- Department of Physical Chemistry
| | - Omar Baig
- Institut für Theoretische Chemie
- Fakultät für Chemie
- Universität Wien
- A-1090 Wien
- Austria
| | | | - Oliver Kühn
- Institut für Physik
- Universität Rostock
- Rostock
- Germany
| | - Leticia González
- Institut für Theoretische Chemie
- Fakultät für Chemie
- Universität Wien
- A-1090 Wien
- Austria
| |
Collapse
|
28
|
Kronik L, Kümmel S. Piecewise linearity, freedom from self-interaction, and a Coulomb asymptotic potential: three related yet inequivalent properties of the exact density functional. Phys Chem Chem Phys 2020; 22:16467-16481. [DOI: 10.1039/d0cp02564j] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Three properties of the exact energy functional of DFT are important in general and for spectroscopy in particular, but are not necessarily obeyed by approximate functionals. We explain what they are, why they are important, and how they are related yet inequivalent.
Collapse
Affiliation(s)
- Leeor Kronik
- Department of Materials and Interfaces
- Weizmann Institute of Science
- Rehovoth 76100
- Israel
| | - Stephan Kümmel
- Theoretical Physics IV
- University of Bayreuth
- 95440 Bayreuth
- Germany
| |
Collapse
|
29
|
Besalú-Sala P, Sitkiewicz SP, Salvador P, Matito E, Luis JM. A new tuned range-separated density functional for the accurate calculation of second hyperpolarizabilities. Phys Chem Chem Phys 2020; 22:11871-11880. [DOI: 10.1039/d0cp01291b] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Among the nine functionals benchmarked, the most accurate γ are obtained by Tα-LC-BLYP, reducing about half the errors of LC-BLYP.
Collapse
Affiliation(s)
- Pau Besalú-Sala
- Departament de Química and Institut de Química Computacional i Catàlisi (IQCC)
- Universitat de Girona
- Girona
- Spain
| | - Sebastian P. Sitkiewicz
- Departament de Química and Institut de Química Computacional i Catàlisi (IQCC)
- Universitat de Girona
- Girona
- Spain
- Donostia International Physics Center (DIPC)
| | - Pedro Salvador
- Departament de Química and Institut de Química Computacional i Catàlisi (IQCC)
- Universitat de Girona
- Girona
- Spain
| | - Eduard Matito
- Donostia International Physics Center (DIPC)
- 20018 Donostia
- Spain
- Ikerbasque
- Basque Foundation for Science
| | - Josep M. Luis
- Departament de Química and Institut de Química Computacional i Catàlisi (IQCC)
- Universitat de Girona
- Girona
- Spain
| |
Collapse
|
30
|
Boruah A, Borpuzari MP, Kar R. Performance of Range Separated Density Functional in Solvent Continuum: Tuning Long‐range Hartree–Fock Exchange for Improved Orbital Energies. J Comput Chem 2019; 41:295-304. [DOI: 10.1002/jcc.26101] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 10/10/2019] [Accepted: 10/16/2019] [Indexed: 11/05/2022]
Affiliation(s)
- Abhijit Boruah
- Department of ChemistryDibrugarh University Dibrugarh Assam 786004 India
| | | | - Rahul Kar
- Department of ChemistryDibrugarh University Dibrugarh Assam 786004 India
| |
Collapse
|
31
|
Isla H, Saleh N, Ou-Yang JK, Dhbaibi K, Jean M, Dziurka M, Favereau L, Vanthuyne N, Toupet L, Jamoussi B, Srebro-Hooper M, Crassous J. Bis-4-aza[6]helicene: A Bis-helicenic 2,2′-Bipyridine with Chemically Triggered Chiroptical Switching Activity. J Org Chem 2019; 84:5383-5393. [DOI: 10.1021/acs.joc.9b00389] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Helena Isla
- Université Rennes, Institut des Sciences Chimiques de Rennes, UMR CNRS, 6226 Campus de Beaulieu, 35042 Rennes Cedex, France
| | - Nidal Saleh
- Université Rennes, Institut des Sciences Chimiques de Rennes, UMR CNRS, 6226 Campus de Beaulieu, 35042 Rennes Cedex, France
| | - Jiang-Kun Ou-Yang
- Université Rennes, Institut des Sciences Chimiques de Rennes, UMR CNRS, 6226 Campus de Beaulieu, 35042 Rennes Cedex, France
| | - Kais Dhbaibi
- Université Rennes, Institut des Sciences Chimiques de Rennes, UMR CNRS, 6226 Campus de Beaulieu, 35042 Rennes Cedex, France
- Faculty of Science of Gabès, University of Gabès, Zrig, 6072 Gabès, Tunisia
| | - Marion Jean
- Aix Marseille Université, CNRS, Centrale Marseille, iSm2, 13397 Marseille, France
| | - Magdalena Dziurka
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Ludovic Favereau
- Université Rennes, Institut des Sciences Chimiques de Rennes, UMR CNRS, 6226 Campus de Beaulieu, 35042 Rennes Cedex, France
| | - Nicolas Vanthuyne
- Aix Marseille Université, CNRS, Centrale Marseille, iSm2, 13397 Marseille, France
| | - Loïc Toupet
- Université Rennes, Institut des Sciences Chimiques de Rennes, UMR CNRS, 6226 Campus de Beaulieu, 35042 Rennes Cedex, France
| | - Bassem Jamoussi
- Faculty of Science of Gabès, University of Gabès, Zrig, 6072 Gabès, Tunisia
- Université Virtuelle de Tunis, UR17ES01 Didactique des Sciences Expérimentales et de Chimie Supramoléculaire, Tunis, Tunisia
| | - Monika Srebro-Hooper
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Jeanne Crassous
- Université Rennes, Institut des Sciences Chimiques de Rennes, UMR CNRS, 6226 Campus de Beaulieu, 35042 Rennes Cedex, France
| |
Collapse
|
32
|
Yavari K, Delaunay W, De Rycke N, Reynaldo T, Aillard P, Srebro-Hooper M, Chang VY, Muller G, Tondelier D, Geffroy B, Voituriez A, Marinetti A, Hissler M, Crassous J. Phosphahelicenes: From Chiroptical and Photophysical Properties to OLED Applications. Chemistry 2019; 25:5303-5310. [PMID: 30714652 DOI: 10.1002/chem.201806140] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/04/2019] [Indexed: 01/06/2023]
Abstract
Herein, the experimental physicochemical and chiroptical properties of a series of phosphahelicenes are reported, focusing on their UV/Vis absorption, luminescence, electronic circular dichroism, optical rotations, and circularly polarized luminescence. Furthermore, detailed analysis of absorption and ECD spectra performed with the help of quantum-chemical calculations allowed us to highlight general features of these helicenic phosphines. Finally, due to well-suited electrochemical properties and thermal stability, the systems were successfully used as emitters in organic light-emitting diodes.
Collapse
Affiliation(s)
- Keihann Yavari
- Institut de Chimie des Substances Naturelles CNRS UPR 2301, Université Paris-Sud, Université Paris-Saclay, 1, av. de la Terrasse, 91198, Gif-sur-Yvette, France
| | - Wylliam Delaunay
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-, UMR 6226, F-35000, Rennes, France
| | - Nicolas De Rycke
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-, UMR 6226, F-35000, Rennes, France.,Laboratoire de Chimie, Université de Lyon, CNRS, Ecole Normale Supérieure de Lyon, UMR 5182, 46, Allée d'Italie, 69364, Lyon CEDEX 07, France
| | - Thibault Reynaldo
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-, UMR 6226, F-35000, Rennes, France
| | - Paul Aillard
- Institut de Chimie des Substances Naturelles CNRS UPR 2301, Université Paris-Sud, Université Paris-Saclay, 1, av. de la Terrasse, 91198, Gif-sur-Yvette, France
| | - Monika Srebro-Hooper
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Krakow, Poland
| | - Victoria Y Chang
- Department of Chemistry, San José State University, San José, CA, 95192-0101, USA
| | - Gilles Muller
- Department of Chemistry, San José State University, San José, CA, 95192-0101, USA
| | - Denis Tondelier
- LPICM, Ecole Polytechnique, CNRS, F-91128, Palaiseau, France
| | - Bernard Geffroy
- LICSEN, NIMBE, CEA, CNRS, Université Paris-Saclay, CEA Saclay, Gif-sur-Yvette CEDEX, 91191, France
| | - Arnaud Voituriez
- Institut de Chimie des Substances Naturelles CNRS UPR 2301, Université Paris-Sud, Université Paris-Saclay, 1, av. de la Terrasse, 91198, Gif-sur-Yvette, France
| | - Angela Marinetti
- Institut de Chimie des Substances Naturelles CNRS UPR 2301, Université Paris-Sud, Université Paris-Saclay, 1, av. de la Terrasse, 91198, Gif-sur-Yvette, France
| | - Muriel Hissler
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-, UMR 6226, F-35000, Rennes, France
| | - Jeanne Crassous
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-, UMR 6226, F-35000, Rennes, France
| |
Collapse
|
33
|
Hait D, Head-Gordon M. Delocalization Errors in Density Functional Theory Are Essentially Quadratic in Fractional Occupation Number. J Phys Chem Lett 2018; 9:6280-6288. [PMID: 30339010 DOI: 10.1021/acs.jpclett.8b02417] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Approximate functionals used in practical density functional theory (DFT) deviate from the piecewise linear behavior of the exact functional for fractional charges. This deviation causes excess charge delocalization, which leads to incorrect densities, molecular properties, barrier heights, band gaps, and excitation energies. We present a simple delocalization function for characterizing this error and find it to be almost perfectly linear vs the fractional electron number for systems spanning in size from the H atom to the C12H14 polyene. This causes the delocalization energy error to be a quadratic polynomial in the fractional electron number, which permits us to assess the comparative performance of 47 popular and recent functionals through the curvature. The quadratic form further suggests that information about a single fractional charge is sufficient to eliminate the principal source of delocalization error. Generalizing traditional two-point information like ionization potentials or electron affinities to account for a third, fractional charge-based data point could therefore permit fitting/tuning of functionals with lower delocalization error.
Collapse
Affiliation(s)
- Diptarka Hait
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry , University of California , Berkeley , California 94720 , United States
| | - Martin Head-Gordon
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry , University of California , Berkeley , California 94720 , United States
- Chemical Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| |
Collapse
|
34
|
Möhle T, Bokareva OS, Grell G, Kühn O, Bokarev SI. Tuned Range-Separated Density Functional Theory and Dyson Orbital Formalism for Photoelectron Spectra. J Chem Theory Comput 2018; 14:5870-5880. [DOI: 10.1021/acs.jctc.8b00707] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- T. Möhle
- Institut für Physik, Universität Rostock, Albert-Einstein-Strasse 23-24, 18059 Rostock, Germany, and
| | - O. S. Bokareva
- Institut für Physik, Universität Rostock, Albert-Einstein-Strasse 23-24, 18059 Rostock, Germany, and
- Department of Physical Chemistry, Kazan Federal University, Kremlevskaya Street 18, 420008, Kazan, Russia
| | - G. Grell
- Institut für Physik, Universität Rostock, Albert-Einstein-Strasse 23-24, 18059 Rostock, Germany, and
| | - O. Kühn
- Institut für Physik, Universität Rostock, Albert-Einstein-Strasse 23-24, 18059 Rostock, Germany, and
| | - S. I. Bokarev
- Institut für Physik, Universität Rostock, Albert-Einstein-Strasse 23-24, 18059 Rostock, Germany, and
| |
Collapse
|
35
|
Elmaslmane AR, Watkins MB, McKenna KP. First-Principles Modeling of Polaron Formation in TiO2 Polymorphs. J Chem Theory Comput 2018; 14:3740-3751. [DOI: 10.1021/acs.jctc.8b00199] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- A. R. Elmaslmane
- Department of Physics, University of York, Heslington, York YO10 5DD, United Kingdom
| | - M. B. Watkins
- School of Mathematics and Physics, University of Lincoln, Brayford Pool, Lincoln LN6 7TS, United Kingdom
| | - K. P. McKenna
- Department of Physics, University of York, Heslington, York YO10 5DD, United Kingdom
| |
Collapse
|
36
|
Kollmann B, Chen Z, Lüftner D, Siri O, Puschnig P. Synthesis and Combined Experimental and Theoretical Characterization of Dihydro-tetraaza-acenes. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2018; 122:6475-6482. [PMID: 29623149 PMCID: PMC5880508 DOI: 10.1021/acs.jpcc.8b00985] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 02/22/2018] [Indexed: 06/08/2023]
Abstract
We present a combined experimental and theoretical study of electronic and optical properties of dihydro-tetraaza-acenes (DHTAn). Using solvent-free condensation, we are able to synthesize not only DHTA5 but also the longer DHTA6 and DHTA7 molecules. We then investigate their gas-phase electronic structures by means of ab initio density functional calculations employing an optimally tuned range-separated hybrid functional. By comparing with the parent linear oligoacenes (nA) and based on computed ionization potentials and electron affinities, we predict DHTAn molecules to be more stable than acenes of the same length, where we expect DHTAn molecules to be persistent at least up to n = 7 rings. We further exploit the analogy with nA by analyzing the entire intramolecular π-band structure of the DHTAn molecules. This clearly reveals that the additional two electrons donated by the dihydropyrazine group are delocalized over the entire molecule and contribute to its π-electron system. As a consequence, the symmetry of the frontier orbitals of DHTAn differs from that of the parent nA molecule. This also affects the UV-vis absorption spectra which have been measured for DHTA5, 6, and 7 dissolved in dimethyl sulfoxide and analyzed by means of excited state calculations within a time-dependent density functional theory framework.
Collapse
Affiliation(s)
- Bernd Kollmann
- Institute
of Physics, University of Graz, NAWI-Graz, Universitätsplatz 5. 8010 Graz, Austria
| | - Zhongrui Chen
- Aix
Marseille Universite, CNRS, CINaM UMR 7325, 13288 Marseille, France
| | - Daniel Lüftner
- Institute
of Physics, University of Graz, NAWI-Graz, Universitätsplatz 5. 8010 Graz, Austria
| | - Olivier Siri
- Aix
Marseille Universite, CNRS, CINaM UMR 7325, 13288 Marseille, France
| | - Peter Puschnig
- Institute
of Physics, University of Graz, NAWI-Graz, Universitätsplatz 5. 8010 Graz, Austria
| |
Collapse
|
37
|
Lourenço Neto M, Agra KL, Suassuna Filho J, Jorge FE. TDDFT calculations and photoacoustic spectroscopy experiments used to identify phenolic acid functional biomolecules in Brazilian tropical fruits in natura. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 193:249-257. [PMID: 29258020 DOI: 10.1016/j.saa.2017.12.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 11/27/2017] [Accepted: 12/08/2017] [Indexed: 06/07/2023]
Abstract
Time-dependent density functional theory (TDDFT) calculations of electronic transitions have been widely used to determine molecular structures. The excitation wavelengths and oscillator strengths obtained with the hybrid exchange-correlation functional B3LYP in conjunction with the ADZP basis set are employed to simulate the UV-Vis spectra of eight phenolic acids. Experimental and theoretical UV-Vis spectra reported previously in the literature are compared with our results. The fast, sensitive and non-destructive technique of photoacoustic spectroscopy (PAS) is used to determine the UV-Vis spectra of four Brazilian tropical fresh fruits in natura. Then, the PAS along with the TDDFT results are for the first time used to investigate and identify the presence of phenolic acids in the fruits studied in this work. This theoretical method with this experimental technique show to be a powerful and cheap tool to detect the existence of phenolic acids in fruits, vegetables, cereals, and grains. Comparison with high performance liquid chromatography results, when available, is also carried out.
Collapse
Affiliation(s)
- M Lourenço Neto
- Departamento de Ciências Básicas e Sociais, Universidade Federal da Paraíba, Campus III, 58220-000 Bananeiras, Brazil
| | - K L Agra
- Unidade Acadêmica de Física, Universidade Federal de Campina Grande, 58429-900 Campina Grande, Brazil
| | - J Suassuna Filho
- Unidade Acadêmica de Física, Universidade Federal de Campina Grande, 58429-900 Campina Grande, Brazil
| | - F E Jorge
- Unidade Acadêmica de Física, Universidade Federal de Campina Grande, 58429-900 Campina Grande, Brazil; Departamento de Física, Universidade Federal do Espírito Santo, 29060-900 Vitória, Brazil.
| |
Collapse
|
38
|
Wong ZC, Fan WY, Chwee TS, Sullivan MB. Using non-empirically tuned range-separated functionals with simulated emission bands to model fluorescence lifetimes. Phys Chem Chem Phys 2018; 19:21046-21057. [PMID: 28748247 DOI: 10.1039/c7cp03418k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fluorescence lifetimes were evaluated using TD-DFT under different approximations for the emitting molecule and various exchange-correlation functionals, such as B3LYP, BMK, CAM-B3LYP, LC-BLYP, M06, M06-2X, M11, PBE0, ωB97, ωB97X, LC-BLYP*, and ωB97X* where the range-separation parameters in the last two functionals were tuned in a non-empirical fashion. Changes in the optimised molecular geometries between the ground and electronically excited states were found to affect the quality of the calculated lifetimes significantly, while the inclusion of vibronic features led to further improvements over the assumption of a vertical electronic transition. The LC-BLYP* functional was found to return the most accurate fluorescence lifetimes with unsigned errors that are mostly within 1.5 ns of experimental values.
Collapse
Affiliation(s)
- Z C Wong
- Institute of High Performance Computing, Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, 138632, Singapore. and NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, 28 Medical Drive, 117456, Singapore
| | - W Y Fan
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - T S Chwee
- Institute of High Performance Computing, Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, 138632, Singapore.
| | - Michael B Sullivan
- Institute of High Performance Computing, Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, 138632, Singapore. and Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| |
Collapse
|
39
|
Pal AK, Duignan TJ, Autschbach J. Calculation of linear and nonlinear optical properties of azobenzene derivatives with Kohn–Sham and coupled-cluster methods. Phys Chem Chem Phys 2018; 20:7303-7316. [DOI: 10.1039/c7cp08655e] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A non-empirically tuned generalized Kohn–Sham functional allows the prediction of accurate low-energy excitation energies and linear polarizabilities. Second hyperpolarizabilities are not improved when compared to coupled-cluster benchmark data.
Collapse
Affiliation(s)
- Arun K. Pal
- Department of Chemistry
- University at Buffalo
- State University of New York
- Buffalo
- USA
| | - Thomas J. Duignan
- Department of Chemistry
- University at Buffalo
- State University of New York
- Buffalo
- USA
| | - Jochen Autschbach
- Department of Chemistry
- University at Buffalo
- State University of New York
- Buffalo
- USA
| |
Collapse
|
40
|
Lahiri P, Wiberg KB, Vaccaro PH. Dispersive Optical Activity of (R)-Methylene Norbornene: Intrinsic Response and Solvation Effects. J Phys Chem A 2017; 121:8251-8266. [DOI: 10.1021/acs.jpca.7b08193] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Priyanka Lahiri
- Department of Chemistry, Yale University, P.O.
Box 208107, New Haven, Connecticut 06520-8107, United States
| | - Kenneth B. Wiberg
- Department of Chemistry, Yale University, P.O.
Box 208107, New Haven, Connecticut 06520-8107, United States
| | - Patrick H. Vaccaro
- Department of Chemistry, Yale University, P.O.
Box 208107, New Haven, Connecticut 06520-8107, United States
| |
Collapse
|
41
|
Bois J, Körzdörfer T. Size-Dependence of Nonempirically Tuned DFT Starting Points for G0W0 Applied to π-Conjugated Molecular Chains. J Chem Theory Comput 2017; 13:4962-4971. [DOI: 10.1021/acs.jctc.7b00557] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Juliana Bois
- Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Straße 24-25, 14476 Potsdam, Germany
| | - Thomas Körzdörfer
- Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Straße 24-25, 14476 Potsdam, Germany
| |
Collapse
|
42
|
Duignan TJ, Autschbach J, Batista E, Yang P. Assessment of Tuned Range Separated Exchange Functionals for Spectroscopies and Properties of Uranium Complexes. J Chem Theory Comput 2017; 13:3614-3625. [DOI: 10.1021/acs.jctc.7b00526] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Thomas J. Duignan
- Department
of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260-3000, United States
- Theoretical Division Los Alamos National Laboratory, Los Alamos, New Mexico 87544, United States
| | - Jochen Autschbach
- Department
of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260-3000, United States
| | - Enrique Batista
- Theoretical Division Los Alamos National Laboratory, Los Alamos, New Mexico 87544, United States
| | - Ping Yang
- Theoretical Division Los Alamos National Laboratory, Los Alamos, New Mexico 87544, United States
| |
Collapse
|
43
|
Haghdani S, Hoff BH, Koch H, Åstrand PO. Solvent Effects on Optical Rotation: On the Balance between Hydrogen Bonding and Shifts in Dihedral Angles. J Phys Chem A 2017; 121:4765-4777. [DOI: 10.1021/acs.jpca.6b12149] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shokouh Haghdani
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), N-7491 Trondheim, Norway
| | - Bård Helge Hoff
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), N-7491 Trondheim, Norway
| | - Henrik Koch
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), N-7491 Trondheim, Norway
| | - Per-Olof Åstrand
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), N-7491 Trondheim, Norway
| |
Collapse
|
44
|
Srebro-Hooper M, Autschbach J. Calculating Natural Optical Activity of Molecules from First Principles. Annu Rev Phys Chem 2017; 68:399-420. [DOI: 10.1146/annurev-physchem-052516-044827] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260
| |
Collapse
|
45
|
Boruah A, Borpuzari MP, Kawashima Y, Hirao K, Kar R. Assessment of range-separated functionals in the presence of implicit solvent: Computation of oxidation energy, reduction energy, and orbital energy. J Chem Phys 2017; 146:164102. [DOI: 10.1063/1.4981529] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Abhijit Boruah
- Department of Chemistry, Dibrugarh University, Dibrugarh, Assam 786004, India
| | | | - Yukio Kawashima
- RIKEN Advanced Institute for Computational Science, Kobe, Hyogo 6500047, Japan
| | - Kimihiko Hirao
- RIKEN Advanced Institute for Computational Science, Kobe, Hyogo 6500047, Japan
| | - Rahul Kar
- Department of Chemistry, Dibrugarh University, Dibrugarh, Assam 786004, India
| |
Collapse
|
46
|
Shen C, Srebro-Hooper M, Jean M, Vanthuyne N, Toupet L, Williams JAG, Torres AR, Riives AJ, Muller G, Autschbach J, Crassous J. Synthesis and Chiroptical Properties of Hexa-, Octa-, and Deca-azaborahelicenes: Influence of Helicene Size and of the Number of Boron Atoms. Chemistry 2016; 23:407-418. [PMID: 27754565 DOI: 10.1002/chem.201604398] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Indexed: 11/09/2022]
Abstract
Four members of a new class of cycloborylated hexa-, octa-, and deca-helicenes (1 a-d) have been prepared in enantiopure form, along with two cycloplatinated deca-helicenes (1 d', 1 d1 ), further extending the family of cycloplatinated hexa- and octa-helicenes reported previously. The azabora[n]helicenes display intense electronic circular dichroism and large optical rotations; the dependence of the optical activity on the size of the helix (n=6, 8, 10) and the number of boron atoms (1 or 2) has been examined in detail both experimentally and theoretically. The photophysical properties (nonpolarized and circularly polarized luminescence) of these new fluorescent organic helicenes have been measured and compared with the corresponding organometallic phosphorescent cycloplatinated derivatives (1 a1 -d1 ).
Collapse
Affiliation(s)
- Chengshuo Shen
- Institut des Sciences Chimiques de Rennes, UMR 6226, Institut de Physique de Rennes, UMR 6251, Campus de Beaulieu, CNRS-Université de Rennes 1, 35042, Rennes Cedex, France
| | - Monika Srebro-Hooper
- Faculty of Chemistry, Jagiellonian University, R. Ingardena 3, 30-060, Krakow, Poland
| | - Marion Jean
- Aix Marseille University, CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Nicolas Vanthuyne
- Aix Marseille University, CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Loïc Toupet
- Institut des Sciences Chimiques de Rennes, UMR 6226, Institut de Physique de Rennes, UMR 6251, Campus de Beaulieu, CNRS-Université de Rennes 1, 35042, Rennes Cedex, France
| | | | - Alexis R Torres
- Department of Chemistry, San José State University, San José, CA, 95192-0101, USA
| | - Adrian J Riives
- Department of Chemistry, San José State University, San José, CA, 95192-0101, USA
| | - Gilles Muller
- Department of Chemistry, San José State University, San José, CA, 95192-0101, USA
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo - State University of New York, Buffalo, NY, 14260, USA
| | - Jeanne Crassous
- Institut des Sciences Chimiques de Rennes, UMR 6226, Institut de Physique de Rennes, UMR 6251, Campus de Beaulieu, CNRS-Université de Rennes 1, 35042, Rennes Cedex, France
| |
Collapse
|
47
|
Haghdani S, Hoff BH, Koch H, Åstrand PO. Optical Rotation Calculations for Fluorinated Alcohols, Amines, Amides, and Esters. J Phys Chem A 2016; 120:7973-7986. [DOI: 10.1021/acs.jpca.6b08899] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shokouh Haghdani
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), N-7491 Trondheim, Norway
| | - Bård Helge Hoff
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), N-7491 Trondheim, Norway
| | - Henrik Koch
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), N-7491 Trondheim, Norway
| | - Per-Olof Åstrand
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), N-7491 Trondheim, Norway
| |
Collapse
|
48
|
Haghdani S, Gautun OR, Koch H, Åstrand PO. Optical Rotation Calculations for a Set of Pyrrole Compounds. J Phys Chem A 2016; 120:7351-60. [PMID: 27571252 DOI: 10.1021/acs.jpca.6b07004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Optical rotation of 14 molecules containing the pyrrole group is calculated by employing both time-dependent density functional theory (TDDFT) with the CAM-B3LYP functional and the second-order approximate coupled-cluster singles and doubles (CC2) method. All optical rotations have been provided using the aug-cc-pVDZ basis set at λ = 589 nm. The two methods predict similar results for both sign and magnitude for the optical rotation of all molecules. The obtained signs are consistent with experiments as well, although several conformers for four molecules needed to be studied to reproduce the experimental sign. We have also calculated excitation energies and rotatory strengths for the six lowest lying electronic transitions for several conformers of the two smallest molecules and found that each rotatory strength has various contributions for each conformer which can cause different optical rotations for different conformers of a molecule. Our results illustrate that both methods are able to reproduce the experimental optical rotations, and that the CAM-B3LYP functional, the least computationally expensive method used here, is an applicable and reliable method to predict the optical rotation for these molecules in line with previous studies.
Collapse
Affiliation(s)
- Shokouh Haghdani
- Department of Chemistry, Norwegian University of Science and Technology (NTNU) , N-7491 Trondheim, Norway
| | - Odd R Gautun
- Department of Chemistry, Norwegian University of Science and Technology (NTNU) , N-7491 Trondheim, Norway
| | - Henrik Koch
- Department of Chemistry, Norwegian University of Science and Technology (NTNU) , N-7491 Trondheim, Norway
| | - Per-Olof Åstrand
- Department of Chemistry, Norwegian University of Science and Technology (NTNU) , N-7491 Trondheim, Norway
| |
Collapse
|
49
|
Kulesza AJ, Titov E, Daly S, Włodarczyk R, Megow J, Saalfrank P, Choi CM, MacAleese L, Antoine R, Dugourd P. Excited States of Xanthene Analogues: Photofragmentation and Calculations by CC2 and Time-Dependent Density Functional Theory. Chemphyschem 2016; 17:3129-3138. [DOI: 10.1002/cphc.201600650] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Alexander Jan Kulesza
- Univ Lyon; Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière; F-69622 Lyon France
| | - Evgenii Titov
- Universität Potsdam, Institut für Chemie; Karl-Liebknecht-Straße 24-25, Haus 25 D-14476 Potsdam Germany
| | - Steven Daly
- Univ Lyon; Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière; F-69622 Lyon France
| | - Radosław Włodarczyk
- Universität Potsdam, Institut für Chemie; Karl-Liebknecht-Straße 24-25, Haus 25 D-14476 Potsdam Germany
| | - Jörg Megow
- Universität Potsdam, Institut für Chemie; Karl-Liebknecht-Straße 24-25, Haus 25 D-14476 Potsdam Germany
| | - Peter Saalfrank
- Universität Potsdam, Institut für Chemie; Karl-Liebknecht-Straße 24-25, Haus 25 D-14476 Potsdam Germany
| | - Chang Min Choi
- Univ Lyon; Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière; F-69622 Lyon France
| | - Luke MacAleese
- Univ Lyon; Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière; F-69622 Lyon France
| | - Rodolphe Antoine
- Univ Lyon; Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière; F-69622 Lyon France
| | - Philippe Dugourd
- Univ Lyon; Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière; F-69622 Lyon France
| |
Collapse
|
50
|
Verma P, Bartlett RJ. Increasing the applicability of density functional theory. V. X-ray absorption spectra with ionization potential corrected exchange and correlation potentials. J Chem Phys 2016; 145:034108. [DOI: 10.1063/1.4955194] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Prakash Verma
- Quantum Theory Project, University of Florida, Gainesville, Florida 32611, USA
| | - Rodney J. Bartlett
- Quantum Theory Project, University of Florida, Gainesville, Florida 32611, USA
| |
Collapse
|