1
|
Sarangi R, Maity S, Acharya A. Machine Learning Approach to Vertical Energy Gap in Redox Processes. J Chem Theory Comput 2024; 20:6747-6755. [PMID: 39044422 PMCID: PMC11325558 DOI: 10.1021/acs.jctc.4c00715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
A straightforward approach to calculating the free energy change (ΔG) and reorganization energy of a redox process is linear response approximation (LRA). However, accurate prediction of redox properties is still challenging due to difficulties in conformational sampling and vertical energy-gap sampling. Expensive hybrid quantum mechanical/molecular mechanical (QM/MM) calculations are typically employed in sampling energy gaps using conformations from simulations. To alleviate the computational cost associated with the expensive QM method in the QM/MM calculation, we propose machine learning (ML) methods to predict the vertical energy gaps (VEGs). We tested several ML models to predict the VEGs and observed that simple models like linear regression show excellent performance (mean absolute error ∼0.1 eV) in predicting VEGs in all test systems, even when using features extracted from cheaper semiempirical methods. Our best ML model (extra trees regressor) shows a mean absolute error of around 0.1 eV while using features from the cheapest QM method. We anticipate our approach can be generalized to larger macromolecular systems with more complex redox centers.
Collapse
Affiliation(s)
- Ronit Sarangi
- Department of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | - Suman Maity
- Department of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | - Atanu Acharya
- Department of Chemistry, Syracuse University, Syracuse, New York 13244, United States
- BioInspired Syracuse, Syracuse University, Syracuse, New York 13244, United States
| |
Collapse
|
2
|
Tarek Ibrahim M, Wait E, Ren P. Quantum Mechanics Characterization of Non-Covalent Interaction in Nucleotide Fragments. Molecules 2024; 29:3258. [PMID: 39064837 PMCID: PMC11279843 DOI: 10.3390/molecules29143258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/03/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024] Open
Abstract
Accurate calculation of non-covalent interaction energies in nucleotides is crucial for understanding the driving forces governing nucleic acid structure and function, as well as developing advanced molecular mechanics forcefields or machine learning potentials tailored to nucleic acids. Here, we dissect the nucleotides' structure into three main constituents: nucleobases (A, G, C, T, and U), sugar moieties (ribose and deoxyribose), and phosphate group. The interactions among these fragments and between fragments and water were analyzed. Different quantum mechanical methods were compared for their accuracy in capturing the interaction energy. The non-covalent interaction energy was decomposed into electrostatics, exchange-repulsion, dispersion, and induction using two ab initio methods: Symmetry-Adapted Perturbation Theory (SAPT) and Absolutely Localized Molecular Orbitals (ALMO). These calculations provide a benchmark for different QM methods, in addition to providing a valuable understanding of the roles of various intermolecular forces in hydrogen bonding and aromatic stacking. With SAPT, a higher theory level and/or larger basis set did not necessarily give more accuracy. It is hard to know which combination would be best for a given system. In contrast, ALMO EDA2 did not show dependence on theory level or basis set; additionally, it is faster.
Collapse
Affiliation(s)
- Mayar Tarek Ibrahim
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA;
| | - Elizabeth Wait
- Interdisciplinary Life Sciences Graduate Program, The University of Texas at Austin, Austin, TX 78712, USA;
| | - Pengyu Ren
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA;
- Interdisciplinary Life Sciences Graduate Program, The University of Texas at Austin, Austin, TX 78712, USA;
| |
Collapse
|
3
|
Capobianco A, Landi A, Peluso A. Duplex DNA Retains the Conformational Features of Single Strands: Perspectives from MD Simulations and Quantum Chemical Computations. Int J Mol Sci 2022; 23:ijms232214452. [PMID: 36430930 PMCID: PMC9697240 DOI: 10.3390/ijms232214452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/09/2022] [Accepted: 11/13/2022] [Indexed: 11/22/2022] Open
Abstract
Molecular dynamics simulations and geometry optimizations carried out at the quantum level as well as by quantum mechanical/molecular mechanics methods predict that short, single-stranded DNA oligonucleotides adopt conformations very similar to those observed in crystallographic double-stranded B-DNA, with rise coordinates close to ≈3.3 Å. In agreement with the experimental evidence, the computational results show that DNA single strands rich in adjacent purine nucleobases assume more regular arrangements than poly-thymine. The preliminary results suggest that single-stranded poly-cytosine DNA should also retain a substantial helical order in solution. A comparison of the structures of single and double helices confirms that the B-DNA motif is a favorable arrangement also for single strands. Indeed, the optimal geometry of the complementary single helices is changed to a very small extent in the formation of the duplex.
Collapse
|
4
|
Nieuwland C, Hamlin TA, Fonseca Guerra C, Barone G, Bickelhaupt FM. B-DNA Structure and Stability: The Role of Nucleotide Composition and Order. ChemistryOpen 2022; 11:e202100231. [PMID: 35083880 PMCID: PMC8805170 DOI: 10.1002/open.202100231] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/10/2021] [Indexed: 11/08/2022] Open
Abstract
We have quantum chemically analyzed the influence of nucleotide composition and sequence (that is, order) on the stability of double-stranded B-DNA triplets in aqueous solution. To this end, we have investigated the structure and bonding of all 32 possible DNA duplexes with Watson-Crick base pairing, using dispersion-corrected DFT at the BLYP-D3(BJ)/TZ2P level and COSMO for simulating aqueous solvation. We find enhanced stabilities for duplexes possessing a higher GC base pair content. Our activation strain analyses unexpectedly identify the loss of stacking interactions within individual strands as a destabilizing factor in the duplex formation, in addition to the better-known effects of partial desolvation. Furthermore, we show that the sequence-dependent differences in the interaction energy for duplexes of the same overall base pair composition result from the so-called "diagonal interactions" or "cross terms". Whether cross terms are stabilizing or destabilizing depends on the nature of the electrostatic interaction between polar functional groups in the pertinent nucleobases.
Collapse
Affiliation(s)
- Celine Nieuwland
- Department of Theoretical ChemistryAmsterdam Institute of Molecular and Life Sciences (AIMMS)Amsterdam Center for Multiscale Modeling (ACMM)Vrije Universiteit AmsterdamDe Boelelaan 10831081 HVAmsterdam (TheNetherlands
| | - Trevor A. Hamlin
- Department of Theoretical ChemistryAmsterdam Institute of Molecular and Life Sciences (AIMMS)Amsterdam Center for Multiscale Modeling (ACMM)Vrije Universiteit AmsterdamDe Boelelaan 10831081 HVAmsterdam (TheNetherlands
| | - Célia Fonseca Guerra
- Department of Theoretical ChemistryAmsterdam Institute of Molecular and Life Sciences (AIMMS)Amsterdam Center for Multiscale Modeling (ACMM)Vrije Universiteit AmsterdamDe Boelelaan 10831081 HVAmsterdam (TheNetherlands
- Leiden Institute of ChemistryGorlaeus LaboratoriesLeiden UniversityEinsteinweg 552300 CCLeiden (TheNetherlands
| | - Giampaolo Barone
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e FarmaceuticheUniversità degli Studi di PalermoViale delle Scienze, Edificio 1790128PalermoItaly
| | - F. Matthias Bickelhaupt
- Department of Theoretical ChemistryAmsterdam Institute of Molecular and Life Sciences (AIMMS)Amsterdam Center for Multiscale Modeling (ACMM)Vrije Universiteit AmsterdamDe Boelelaan 10831081 HVAmsterdam (TheNetherlands
- Institute of Molecules and MaterialsRadboud University NijmegenHeyendaalseweg 1356525 AJNijmegen (TheNetherlands
| |
Collapse
|
5
|
Srivastava R. Chemical reactivity and binding interactions in ribonucleic acid-peptide complexes. Proteins 2021; 90:765-775. [PMID: 34714954 DOI: 10.1002/prot.26272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 11/09/2022]
Abstract
The covalent and noncovalent backbone binding interactions in RNA-peptide complexes were studied by DFT methods. Four RNA structures R1(GGCUAGCC), R2(AAUCGAUU), R3(GGGAUCCC), and R4(AAAGCUUU) has been selected for eight protonated peptides (DR, ER, GR, KR, NGR, RR, tmeGnd (tme), and VR) interactions based on an experimental study (Anal Chem. 2019; 91:1659-1664). Chemical reactivity theory is used to study the reactivity of eight peptides with global descriptors. Lower hardness values reflected low stability and high reactivity for the protonated peptides. DR, ER, GR, KR, NGR, RR, and VR show lower value of ω, μ while tme has high value of ω, μ. Larger highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) gap for ER, GR, and KR showed greater structural stability for peptides. AutoDock and PatchDock results indicated that R1, R2, and R4 retain hairpin structures while interacting with peptide complexes. The calculated binding energies of (R1-R4)-peptide complexes from AutoDock tools are (1.49-11.12) kcal/mol. Results showed that the noncovalent interactions are stronger than the covalent interactions for R1-peptide complexes. The reason might be the transfer of proton from protonated ligand to deprotonated RNA, which has initiated the loss of the ligand. Also it has been observed that proton transfer has become energetically unfavorable in presence of additional hydrogen bonds which is predicted in the experimental results.
Collapse
Affiliation(s)
- Ruby Srivastava
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| |
Collapse
|
6
|
Gutten O, Jurečka P, Aliakbar Tehrani Z, Buděšínský M, Řezáč J, Rulíšek L. Conformational energies and equilibria of cyclic dinucleotides in vacuo and in solution: computational chemistry vs. NMR experiments. Phys Chem Chem Phys 2021; 23:7280-7294. [PMID: 33876088 DOI: 10.1039/d0cp05993e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Performance of computational methods in modelling cyclic dinucleotides - an important and challenging class of compounds - has been evaluated by two different benchmarks: (1) gas-phase conformational energies and (2) qualitative agreement with NMR observations of the orientation of the χ-dihedral angle in solvent. In gas-phase benchmarks, where CCSD(T) and DLPNO-CCSD(T) methods have been used as the reference, most of the (dispersion corrected) density functional approximations are accurate enough to justify prioritizing computational cost and compatibility with other modelling options as the criterion of choice. NMR experiments of 3'3'-c-di-AMP, 3'3'-c-GAMP, and 3'3'-c-di-GMP show the overall prevalence of the anti-conformation of purine bases, but some population of syn-conformations is observed for guanines. Implicit solvation models combined with quantum-chemical methods struggle to reproduce this behaviour, probably due to a lack of dynamics and explicitly modelled solvent, leading to structures that are too compact. Molecular dynamics simulations overrepresent the syn-conformation of guanine due to the overestimation of an intramolecular hydrogen bond. Our combination of experimental and computational benchmarks provides "error bars" for modelling cyclic dinucleotides in solvent, where such information is generally difficult to obtain, and should help gauge the interpretability of studies dealing with binding of cyclic dinucleotides to important pharmaceutical targets. At the same time, the presented analysis calls for improvement in both implicit solvation models and force-field parameters.
Collapse
Affiliation(s)
- Ondrej Gutten
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 166 10, Praha 6, Czech Republic.
| | | | | | | | | | | |
Collapse
|
7
|
Tiwari G, Kumar A, Dwivedi KK, Sharma D. In Silico Investigation of Electronic Structure, Binding Patterns and Molecular Docking of Nevirapine: An anti-HIV Type-1 Drug. Polycycl Aromat Compd 2020. [DOI: 10.1080/10406638.2020.1852268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Gargi Tiwari
- P.G. Department of Physics, Patna University, Patna, India
| | - Abhishek Kumar
- Department of Physics, University of Lucknow, Lucknow, India
| | - K. K. Dwivedi
- Department of Physics, D.D.U. Gorakhpur University, Gorakhpur, India
| | - Dipendra Sharma
- Department of Physics, D.D.U. Gorakhpur University, Gorakhpur, India
| |
Collapse
|
8
|
Gorb L, Pekh A, Nyporko A, Ilchenko M, Golius A, Zubatiuk T, Zubatyuk R, Dubey I, Hovorun DM, Leszczynski J. Effect of Microenvironment on the Geometrical Structure of d(A)5 d(T)5 and d(G)5 d(C)5 DNA Mini-Helixes and the Dickerson Dodecamer: A Density Functional Theory Study. J Phys Chem B 2020; 124:9343-9353. [DOI: 10.1021/acs.jpcb.0c06154] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Leonid Gorb
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150 Vul. Zabolotnogo, Kyiv 03143, Ukraine
- Interdisciplinary Center for Nanotoxicity, Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University, P.O. Box 17910, 1325 Lynch Street, Jackson, Mississippi 39217, United States
| | - Anatolii Pekh
- Department of Molecular Biotechnology and Bioinformatics, Institute of High Technologies, Taras Shevchenko National University of Kyiv, Kyiv 03022, Ukraine
| | - Alexey Nyporko
- Department of Molecular Biotechnology and Bioinformatics, Institute of High Technologies, Taras Shevchenko National University of Kyiv, Kyiv 03022, Ukraine
| | - Mykola Ilchenko
- Department of Synthetic Bioregulators, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150 Vul. Zabolotnogo, Kyiv 03143, Ukraine
| | - Anastasiia Golius
- Interdisciplinary Center for Nanotoxicity, Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University, P.O. Box 17910, 1325 Lynch Street, Jackson, Mississippi 39217, United States
| | - Tetiana Zubatiuk
- Interdisciplinary Center for Nanotoxicity, Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University, P.O. Box 17910, 1325 Lynch Street, Jackson, Mississippi 39217, United States
| | - Roman Zubatyuk
- Interdisciplinary Center for Nanotoxicity, Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University, P.O. Box 17910, 1325 Lynch Street, Jackson, Mississippi 39217, United States
| | - Igor Dubey
- Department of Synthetic Bioregulators, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150 Vul. Zabolotnogo, Kyiv 03143, Ukraine
| | - Dmytro M. Hovorun
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150 Vul. Zabolotnogo, Kyiv 03143, Ukraine
| | - Jerzy Leszczynski
- Interdisciplinary Center for Nanotoxicity, Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University, P.O. Box 17910, 1325 Lynch Street, Jackson, Mississippi 39217, United States
| |
Collapse
|
9
|
Density functional theory studies on cytosine analogues for inducing double-proton transfer with guanine. Sci Rep 2020; 10:9671. [PMID: 32541653 PMCID: PMC7295794 DOI: 10.1038/s41598-020-66530-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 05/14/2020] [Indexed: 01/29/2023] Open
Abstract
To induce double-proton transfer (DPT) with guanine in a biological environment, 12 cytosine analogues (Ca) were formed by atomic substitution. The DPT reactions in the Watson-Crick cytosine-guanine model complex (Ca0G) and 12 modified cytosine-guanine complexes (Ca1-12G) were investigated using density functional theory methods at the M06-2X/def2svp level. The intramolecular proton transfers within the analogues are not facile due to high energy barriers. The hydrogen bond lengths of the Ca1-12G complexes are shorter than those in the Ca0G complex, which are conducive to DPT reactions. The DPT energy barriers of Ca1-12G complexes are also lower than that of the Ca0G complex, in particular, the barriers in the Ca7G and Ca11G complexes were reduced to -1.33 and -2.02 kcal/mol, respectively, indicating they are significantly more prone to DPT reactions. The DPT equilibrium constants of Ca1-12G complexes range from 1.60 × 100 to 1.28 × 107, among which the equilibrium constants of Ca7G and Ca11G are over 1.0 × 105, so their DPT reactions may be adequate. The results demonstrate that those cytosine analogues, especially Ca7 and Ca11, are capable of inducing DPT with guanine, and then the guanine tautomer will form mismatches with thymine during DNA replication, which may provide new strategies for gene therapy.
Collapse
|
10
|
Kruse H, Šponer J. Revisiting the Potential Energy Surface of the Stacked Cytosine Dimer: FNO-CCSD(T) Interaction Energies, SAPT Decompositions, and Benchmarking. J Phys Chem A 2019; 123:9209-9222. [PMID: 31560201 DOI: 10.1021/acs.jpca.9b05940] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nucleobase stacking interactions are crucial for the stability of nucleic acids. This study investigates base stacking energies of the cytosine homodimer in different configurations, including intermolecular separation plots, detailed twist dependence, and displaced structures. Highly accurate ab initio quantum chemical single point energies using an energy function based on MP2 complete basis set extrapolation ([6 → 7]ZaPa-NR) and a CCSD(T)/cc-pVTZ-F12 high-level correction are presented as new reference data, providing the most accurate stacking energies of nucleobase dimers currently available. Accurate SAPT2+(3)δMP2 energy decomposition is used to obtain detailed insights into the nature of base stacking interactions at varying vertical distances and twist values. The ab initio symmetry adapted perturbation theory (SAPT) energy decomposition suggests that the base stacking originates from an intricate interplay between dispersion attraction, short-range exchange-repulsion, and Coulomb interaction. The interpretation of the SAPT data is a complex issue as key energy terms vary substantially in the region of optimal (low energy) base stacking geometries. Thus, attempts to highlight one leading stabilizing SAPT base stacking term may be misleading and the outcome strongly depends on the used geometries within the range of geometries sampled in nucleic acids upon thermal fluctuations. Modern dispersion-corrected density functional theory (among them DSD-BLYP-D3, ωB97M-V, and ωB97M-D3BJ) is benchmarked and often reaches up to spectroscopic accuracy (below 1 kJ/mol). The classical AMBER force field is benchmarked with multiple different sets of point-charges (e.g. HF, DFT, and MP2-based) and is found to produce reasonable agreement with the benchmark data.
Collapse
Affiliation(s)
- Holger Kruse
- Institute of Biophysics of the Czech Academy of Sciences , Královopolská 135 , CZ-61265 Brno , Czech Republic
| | - Jiří Šponer
- Institute of Biophysics of the Czech Academy of Sciences , Královopolská 135 , CZ-61265 Brno , Czech Republic.,Central European Institute of Technology , Masaryk University , Kamenice 753/5 , 62500 Brno , Czech Republic
| |
Collapse
|
11
|
Kruse H, Banáš P, Šponer J. Investigations of Stacked DNA Base-Pair Steps: Highly Accurate Stacking Interaction Energies, Energy Decomposition, and Many-Body Stacking Effects. J Chem Theory Comput 2018; 15:95-115. [DOI: 10.1021/acs.jctc.8b00643] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Holger Kruse
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| | - Pavel Banáš
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University, 17 Listopadu 12, 77146 Olomouc, Czech Republic
| | - Jiřı́ Šponer
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University, 17 Listopadu 12, 77146 Olomouc, Czech Republic
| |
Collapse
|
12
|
Šponer J, Bussi G, Krepl M, Banáš P, Bottaro S, Cunha RA, Gil-Ley A, Pinamonti G, Poblete S, Jurečka P, Walter NG, Otyepka M. RNA Structural Dynamics As Captured by Molecular Simulations: A Comprehensive Overview. Chem Rev 2018; 118:4177-4338. [PMID: 29297679 PMCID: PMC5920944 DOI: 10.1021/acs.chemrev.7b00427] [Citation(s) in RCA: 377] [Impact Index Per Article: 53.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Indexed: 12/14/2022]
Abstract
With both catalytic and genetic functions, ribonucleic acid (RNA) is perhaps the most pluripotent chemical species in molecular biology, and its functions are intimately linked to its structure and dynamics. Computer simulations, and in particular atomistic molecular dynamics (MD), allow structural dynamics of biomolecular systems to be investigated with unprecedented temporal and spatial resolution. We here provide a comprehensive overview of the fast-developing field of MD simulations of RNA molecules. We begin with an in-depth, evaluatory coverage of the most fundamental methodological challenges that set the basis for the future development of the field, in particular, the current developments and inherent physical limitations of the atomistic force fields and the recent advances in a broad spectrum of enhanced sampling methods. We also survey the closely related field of coarse-grained modeling of RNA systems. After dealing with the methodological aspects, we provide an exhaustive overview of the available RNA simulation literature, ranging from studies of the smallest RNA oligonucleotides to investigations of the entire ribosome. Our review encompasses tetranucleotides, tetraloops, a number of small RNA motifs, A-helix RNA, kissing-loop complexes, the TAR RNA element, the decoding center and other important regions of the ribosome, as well as assorted others systems. Extended sections are devoted to RNA-ion interactions, ribozymes, riboswitches, and protein/RNA complexes. Our overview is written for as broad of an audience as possible, aiming to provide a much-needed interdisciplinary bridge between computation and experiment, together with a perspective on the future of the field.
Collapse
Affiliation(s)
- Jiří Šponer
- Institute of Biophysics of the Czech Academy of Sciences , Kralovopolska 135 , Brno 612 65 , Czech Republic
| | - Giovanni Bussi
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Miroslav Krepl
- Institute of Biophysics of the Czech Academy of Sciences , Kralovopolska 135 , Brno 612 65 , Czech Republic
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| | - Pavel Banáš
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| | - Sandro Bottaro
- Structural Biology and NMR Laboratory, Department of Biology , University of Copenhagen , Copenhagen 2200 , Denmark
| | - Richard A Cunha
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Alejandro Gil-Ley
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Giovanni Pinamonti
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Simón Poblete
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Petr Jurečka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| | - Nils G Walter
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| |
Collapse
|
13
|
Šponer JE, Szabla R, Góra RW, Saitta AM, Pietrucci F, Saija F, Di Mauro E, Saladino R, Ferus M, Civiš S, Šponer J. Prebiotic synthesis of nucleic acids and their building blocks at the atomic level - merging models and mechanisms from advanced computations and experiments. Phys Chem Chem Phys 2018; 18:20047-66. [PMID: 27136968 DOI: 10.1039/c6cp00670a] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The origin of life on Earth is one of the most fascinating questions of contemporary science. Extensive research in the past decades furnished diverse experimental proposals for the emergence of first informational polymers that could form the basis of the early terrestrial life. Side by side with the experiments, the fast development of modern computational chemistry methods during the last 20 years facilitated the use of in silico modelling tools to complement the experiments. Modern computations can provide unique atomic-level insights into the structural and electronic aspects as well as the energetics of key prebiotic chemical reactions. Many of these insights are not directly obtainable from the experimental techniques and the computations are thus becoming indispensable for proper interpretation of many experiments and for qualified predictions. This review illustrates the synergy between experiment and theory in the origin of life research focusing on the prebiotic synthesis of various nucleic acid building blocks and on the self-assembly of nucleotides leading to the first functional oligonucleotides.
Collapse
Affiliation(s)
- Judit E Šponer
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, CZ-612 65 Brno, Czech Republic. and CEITEC - Central European Institute of Technology, Masaryk University, Campus Bohunice, Kamenice 5, CZ-62500 Brno, Czech Republic
| | - Rafał Szabla
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, CZ-612 65 Brno, Czech Republic.
| | - Robert W Góra
- Theoretical Chemistry Group, Institute of Physical and Theoretical Chemistry, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - A Marco Saitta
- Sorbonne Universités, Université Pierre et Marie Curie Paris 6, CNRS, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Muséum National d'Histoire Naturelle, Institut de Recherche pour le Développement, UMR 7590, F-75005 Paris, France
| | - Fabio Pietrucci
- Sorbonne Universités, Université Pierre et Marie Curie Paris 6, CNRS, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Muséum National d'Histoire Naturelle, Institut de Recherche pour le Développement, UMR 7590, F-75005 Paris, France
| | - Franz Saija
- CNR-IPCF, Viale Ferdinando Stagno d'Alcontres 37, 98158 Messina, Italy
| | - Ernesto Di Mauro
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", "Sapienza" Università di Roma, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Raffaele Saladino
- Dipartimento di Scienze Ecologiche e Biologiche Università della Tuscia, Via San Camillo De Lellis, 01100 Viterbo, Italy
| | - Martin Ferus
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Dolejškova 3, CZ-182 23 Prague 8, Czech Republic
| | - Svatopluk Civiš
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Dolejškova 3, CZ-182 23 Prague 8, Czech Republic
| | - Jiří Šponer
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, CZ-612 65 Brno, Czech Republic. and CEITEC - Central European Institute of Technology, Masaryk University, Campus Bohunice, Kamenice 5, CZ-62500 Brno, Czech Republic
| |
Collapse
|
14
|
Pokorná P, Krepl M, Kruse H, Šponer J. MD and QM/MM Study of the Quaternary HutP Homohexamer Complex with mRNA, l-Histidine Ligand, and Mg2+. J Chem Theory Comput 2017; 13:5658-5670. [DOI: 10.1021/acs.jctc.7b00598] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Pavlína Pokorná
- Institute
of Biophysics
of the Czech Academy of Sciences, Královopolská
135, 612 65 Brno, Czech Republic
| | - Miroslav Krepl
- Institute
of Biophysics
of the Czech Academy of Sciences, Královopolská
135, 612 65 Brno, Czech Republic
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacky University Olomouc, 17. listopadu
12, 771 46 Olomouc, Czech Republic
| | - Holger Kruse
- Institute
of Biophysics
of the Czech Academy of Sciences, Královopolská
135, 612 65 Brno, Czech Republic
| | - Jiří Šponer
- Institute
of Biophysics
of the Czech Academy of Sciences, Královopolská
135, 612 65 Brno, Czech Republic
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacky University Olomouc, 17. listopadu
12, 771 46 Olomouc, Czech Republic
| |
Collapse
|
15
|
Comparison of DFT, MP2/CBS, and CCSD(T)/CBS methods for a dual-level QM/MM Monte Carlo simulation approach calculating the free energy of activation of reactions in solution and “on water”: a case study. Theor Chem Acc 2017. [DOI: 10.1007/s00214-017-2103-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
16
|
Venkataramanan NS, Suvitha A. Theoretical Investigation of the Binding of Nucleobases to Cucurbiturils by Dispersion Corrected DFT Approaches. J Phys Chem B 2017; 121:4733-4744. [DOI: 10.1021/acs.jpcb.7b01808] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Natarajan Sathiyamoorthy Venkataramanan
- Centre
for Computational Chemistry and Materials Science, SASTRA University, Thanjavur 614 001, India
- Department
of Chemistry, School of Chemical and Biotechnology (SCBT), SASTRA University, Thanjavur 614 001, India
| | - Ambigapathy Suvitha
- Department
of Chemistry, School of Chemical and Biotechnology (SCBT), SASTRA University, Thanjavur 614 001, India
| |
Collapse
|
17
|
Zgarbová M, Jurečka P, Banáš P, Havrila M, Šponer J, Otyepka M. Noncanonical α/γ Backbone Conformations in RNA and the Accuracy of Their Description by the AMBER Force Field. J Phys Chem B 2017; 121:2420-2433. [PMID: 28290207 DOI: 10.1021/acs.jpcb.7b00262] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The sugar-phosphate backbone of RNA can exist in diverse rotameric substates, giving RNA molecules enormous conformational variability. The most frequent noncanonical backbone conformation in RNA is α/γ = t/t, which is derived from the canonical backbone by a crankshaft motion and largely preserves the standard geometry of the RNA duplex. A similar conformation also exists in DNA, where it has been extensively studied and shown to be involved in DNA-protein interactions. However, the function of the α/γ = t/t conformation in RNA is poorly understood. Here, we present molecular dynamics simulations of several prototypical RNA structures obtained from X-ray and NMR experiments, including canonical and mismatched RNA duplexes, UUCG and GAGA tetraloops, Loop E, the sarcin-ricin loop, a parallel guanine quadruplex, and a viral pseudoknot. The stability of various noncanonical α/γ backbone conformations was analyzed with two AMBER force fields, ff99bsc0χOL3 and ff99bsc0χOL3 with the recent εζOL1 and βOL1 corrections for DNA. Although some α/γ substates were stable with seemingly well-described equilibria, many were unstable in our simulations. Notably, the most frequent noncanonical conformer α/γ = t/t was unstable in both tested force fields. Possible reasons for this instability are discussed. Our work reveals a potentially important artifact in RNA force fields and highlights a need for further force field refinement.
Collapse
Affiliation(s)
- Marie Zgarbová
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University , 17. listopadu 12, 77146 Olomouc, Czech Republic
| | - Petr Jurečka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University , 17. listopadu 12, 77146 Olomouc, Czech Republic
| | - Pavel Banáš
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University , 17. listopadu 12, 77146 Olomouc, Czech Republic
| | - Marek Havrila
- Institute of Biophysics, Academy of Sciences of the Czech Republic , Královopolská 135, 612 65 Brno, Czech Republic
| | - Jiří Šponer
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University , 17. listopadu 12, 77146 Olomouc, Czech Republic.,Institute of Biophysics, Academy of Sciences of the Czech Republic , Královopolská 135, 612 65 Brno, Czech Republic
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University , 17. listopadu 12, 77146 Olomouc, Czech Republic
| |
Collapse
|
18
|
Hamlin TA, Poater J, Fonseca Guerra C, Bickelhaupt FM. B-DNA model systems in non-terran bio-solvents: implications for structure, stability and replication. Phys Chem Chem Phys 2017; 19:16969-16978. [DOI: 10.1039/c7cp01908d] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We have computationally analyzed a comprehensive series of Watson–Crick and mismatched B-DNA base pairs, in the gas phase and in several solvents, including toluene, chloroform, ammonia, methanol and water, using dispersion-corrected density functional theory and implicit solvation.
Collapse
Affiliation(s)
- Trevor A. Hamlin
- Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling (ACMM)
- Vrije Universiteit Amsterdam
- NL-1081 HV Amsterdam
- The Netherlands
| | - Jordi Poater
- Departament de Química Inorgànica i Orgánica & Institut de Química Teòrica i Computacional (IQTCUB)
- Universitat de Barcelona
- 08028 Barcelona
- Spain
- ICREA
| | - Célia Fonseca Guerra
- Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling (ACMM)
- Vrije Universiteit Amsterdam
- NL-1081 HV Amsterdam
- The Netherlands
- Leiden Institute of Chemistry
| | - F. Matthias Bickelhaupt
- Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling (ACMM)
- Vrije Universiteit Amsterdam
- NL-1081 HV Amsterdam
- The Netherlands
- Institute of Molecules and Materials
| |
Collapse
|
19
|
Šponer J, Krepl M, Banáš P, Kührová P, Zgarbová M, Jurečka P, Havrila M, Otyepka M. How to understand atomistic molecular dynamics simulations of RNA and protein-RNA complexes? WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 8. [PMID: 27863061 DOI: 10.1002/wrna.1405] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/13/2016] [Accepted: 10/10/2016] [Indexed: 01/01/2023]
Abstract
We provide a critical assessment of explicit-solvent atomistic molecular dynamics (MD) simulations of RNA and protein/RNA complexes, written primarily for non-specialists with an emphasis to explain the limitations of MD. MD simulations can be likened to hypothetical single-molecule experiments starting from single atomistic conformations and investigating genuine thermal sampling of the biomolecules. The main advantage of MD is the unlimited temporal and spatial resolution of positions of all atoms in the simulated systems. Fundamental limitations are the short physical time-scale of simulations, which can be partially alleviated by enhanced-sampling techniques, and the highly approximate atomistic force fields describing the simulated molecules. The applicability and present limitations of MD are demonstrated on studies of tetranucleotides, tetraloops, ribozymes, riboswitches and protein/RNA complexes. Wisely applied simulations respecting the approximations of the model can successfully complement structural and biochemical experiments. WIREs RNA 2017, 8:e1405. doi: 10.1002/wrna.1405 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Jiří Šponer
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | - Miroslav Krepl
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | - Pavel Banáš
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Petra Kührová
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Marie Zgarbová
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Petr Jurečka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Marek Havrila
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University, Olomouc, Czech Republic
| |
Collapse
|
20
|
Szabla R, Havrila M, Kruse H, Šponer J. Comparative Assessment of Different RNA Tetranucleotides from the DFT-D3 and Force Field Perspective. J Phys Chem B 2016; 120:10635-10648. [PMID: 27681853 DOI: 10.1021/acs.jpcb.6b07551] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Classical force field (FF) molecular dynamics (MD) simulations of RNA tetranucleotides have substantial problems in reproducing conformer populations indicated by NMR experiments. To provide more information about the possible sources of errors, we performed quantum mechanical (QM, TPSS-D3/def2-TZVP) and molecular mechanics (MM, AMBER parm99bsc0+χOL3) calculations of different r(CCCC), r(GACC), and r(UUUU) conformers obtained from explicit solvent MD simulations. Solvent effects in the static QM and MM calculations were mimicked using implicit solvent models (COSMO and Poisson-Boltzmann, respectively). The comparison of QM and MM geometries and energies revealed that the two methodologies provide qualitatively consistent results in most of the cases. Even though we found some differences, these were insufficient to indicate any systematic corrections of the RNA FF terms that could improve the performance of classical MD in simulating tetranucleotides. On the basis of these findings, we inferred that the overpopulation of intercalated conformers in the MD simulations of RNA tetramers, which were not observed experimentally, might be predominantly caused by imbalanced water-solvent and water-water interactions. Apart from the large-scale QM calculations performed to assess the performance of the AMBER FF, a representative spectrum of faster QM methods was tested.
Collapse
Affiliation(s)
- Rafał Szabla
- Institute of Biophysics, Academy of Sciences of the Czech Republic , Královopolská 135, CZ-61265 Brno, Czech Republic
| | - Marek Havrila
- Institute of Biophysics, Academy of Sciences of the Czech Republic , Královopolská 135, CZ-61265 Brno, Czech Republic.,CEITEC - Central European Institute of Technology, Masaryk University , Campus Bohunice, Kamenice 5, CZ-62500 Brno, Czech Republic
| | - Holger Kruse
- Institute of Biophysics, Academy of Sciences of the Czech Republic , Královopolská 135, CZ-61265 Brno, Czech Republic
| | - Jiří Šponer
- Institute of Biophysics, Academy of Sciences of the Czech Republic , Královopolská 135, CZ-61265 Brno, Czech Republic.,CEITEC - Central European Institute of Technology, Masaryk University , Campus Bohunice, Kamenice 5, CZ-62500 Brno, Czech Republic
| |
Collapse
|
21
|
Dans PD, Walther J, Gómez H, Orozco M. Multiscale simulation of DNA. Curr Opin Struct Biol 2016; 37:29-45. [DOI: 10.1016/j.sbi.2015.11.011] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 11/23/2015] [Accepted: 11/25/2015] [Indexed: 01/05/2023]
|
22
|
Gkionis K, Kruse H, Šponer J. Derivation of Reliable Geometries in QM Calculations of DNA Structures: Explicit Solvent QM/MM and Restrained Implicit Solvent QM Optimizations of G-Quadruplexes. J Chem Theory Comput 2016; 12:2000-16. [DOI: 10.1021/acs.jctc.5b01025] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Konstantinos Gkionis
- Institute of Biophysics,
Academy of Sciences of the Czech Republic, Královopolská 135, 612
65 Brno, Czech Republic
| | - Holger Kruse
- Institute of Biophysics,
Academy of Sciences of the Czech Republic, Královopolská 135, 612
65 Brno, Czech Republic
| | - Jiří Šponer
- Institute of Biophysics,
Academy of Sciences of the Czech Republic, Královopolská 135, 612
65 Brno, Czech Republic
- CEITEC
− Central European Institute of Technology, Masaryk University, Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
23
|
Sadr-Arani L, Mignon P, Chermette H, Abdoul-Carime H, Farizon B, Farizon M. Fragmentation mechanisms of cytosine, adenine and guanine ionized bases. Phys Chem Chem Phys 2016; 17:11813-26. [PMID: 25869111 DOI: 10.1039/c5cp00104h] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The different fragmentation channels of cytosine, adenine and guanine have been studied through DFT calculations. The electronic structure of bases, their cations, and the fragments obtained by breaking bonds provides a good understanding of the fragmentation process that can complete the experimental approach. The calculations allow assigning various fragments to the given peaks. The comparison between the energy required for the formation of fragments and the peak intensity in the mass spectrum is used. For cytosine and guanine the elimination of the HNCO molecule is a major route of dissociation, while for adenine multiple loss of HCN or HNC can be followed up to small fragments. For cytosine, this corresponds to the initial bond cleavage of N3-C4/N1-C2, which represents the main dissociation route. For guanine the release of HNCO is obtained through the N1-C2/C5-C6 bond cleavage (reverse order also possible) leading to the largest peak of the spectrum. The corresponding energies of 3.5 and 3.9 eV are typically in the range available in the experiments. The loss of NH3 or HCN is also possible but requires more energy. For adenine, fragmentation consists of multiple loss of the HCN molecule and the main route corresponding to HC8N9 loss is followed by the release of HC2N1.
Collapse
Affiliation(s)
- Leila Sadr-Arani
- Université de Lyon, Université Claude Bernard Lyon1, Institut des Sciences Analytiques, CNRS UMR 5280, 5 Rue de la Doua, 69100 Villeurbanne, France.
| | | | | | | | | | | |
Collapse
|
24
|
Schrodt MV, Andrews CT, Elcock AH. Large-Scale Analysis of 48 DNA and 48 RNA Tetranucleotides Studied by 1 μs Explicit-Solvent Molecular Dynamics Simulations. J Chem Theory Comput 2015; 11:5906-17. [PMID: 26580891 PMCID: PMC4806854 DOI: 10.1021/acs.jctc.5b00899] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An understanding of how the conformational behavior of single-stranded DNAs and RNAs depend on sequence is likely to be important for attempts to rationalize the thermodynamics of nucleic acid folding. In an attempt to further our understanding of such sequence dependences, we report here the results of 192 (1 μs) explicit-solvent molecular dynamics (MD) simulations of 48 DNA and 48 RNA tetranucleotide sequences performed using recently reported modifications to the AMBER force field. Each tetranucleotide was simulated starting from two different conformations, a fully natively stacked and a completely unstacked conformation, and populations of the various possible base stacking arrangements were analyzed. The simulations indicate that, for both DNA and RNA, the populations of fully natively stacked conformations increase linearly with increasing numbers of purines in the sequence, while the conformational entropies, computed by two complementary methods, decrease. Despite the comparatively short simulation times, the computed free energies of stacking of the 16 possible combinations of bases in the middle of the sequences are found to be in good correspondence with values reported recently from simulations of dinucleoside monophosphates using the same force field. Finally, consistent with recent reports from other groups, non-native stacking interactions, i.e., between bases that are not adjacent in sequence, are shown to be a recurring feature of the simulations; in particular, stacking interactions of bases in a i:i+2 relationship are shown to occur significantly more frequently when the intervening base is a pyrimidine. Given that the high prevalence of non-native stacking interactions is thought to be unrealistic, it appears that further parametrization work will be required before accurate conformational descriptions of single-stranded nucleic acids can be obtained with current force fields.
Collapse
Affiliation(s)
| | - Casey T. Andrews
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242
| | - Adrian H. Elcock
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242
| |
Collapse
|
25
|
Havrila M, Zgarbová M, Jurečka P, Banáš P, Krepl M, Otyepka M, Šponer J. Microsecond-Scale MD Simulations of HIV-1 DIS Kissing-Loop Complexes Predict Bulged-In Conformation of the Bulged Bases and Reveal Interesting Differences between Available Variants of the AMBER RNA Force Fields. J Phys Chem B 2015; 119:15176-90. [DOI: 10.1021/acs.jpcb.5b08876] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Marek Havrila
- Institute
of Biophysics, Academy of Sciences of the Czech Republic, Královopolská
135, 612 65 Brno, Czech Republic
| | - Marie Zgarbová
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacký University, tř.
17 listopadu 12, 771 46 Olomouc, Czech Republic
| | - Petr Jurečka
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacký University, tř.
17 listopadu 12, 771 46 Olomouc, Czech Republic
| | - Pavel Banáš
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacký University, tř.
17 listopadu 12, 771 46 Olomouc, Czech Republic
| | - Miroslav Krepl
- Institute
of Biophysics, Academy of Sciences of the Czech Republic, Královopolská
135, 612 65 Brno, Czech Republic
| | - Michal Otyepka
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacký University, tř.
17 listopadu 12, 771 46 Olomouc, Czech Republic
| | - Jiří Šponer
- Institute
of Biophysics, Academy of Sciences of the Czech Republic, Královopolská
135, 612 65 Brno, Czech Republic
- CEITEC
- Central European Institute of Technology, Masaryk University, Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
26
|
Zgarbová M, Šponer J, Otyepka M, Cheatham TE, Galindo-Murillo R, Jurečka P. Refinement of the Sugar-Phosphate Backbone Torsion Beta for AMBER Force Fields Improves the Description of Z- and B-DNA. J Chem Theory Comput 2015; 11:5723-36. [PMID: 26588601 DOI: 10.1021/acs.jctc.5b00716] [Citation(s) in RCA: 370] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Z-DNA duplexes are a particularly complicated test case for current force fields. We performed a set of explicit solvent molecular dynamics (MD) simulations with various AMBER force field parametrizations including our recent refinements of the ε/ζ and glycosidic torsions. None of these force fields described the ZI/ZII and other backbone substates correctly, and all of them underpredicted the population of the important ZI substate. We show that this underprediction can be attributed to an inaccurate potential for the sugar-phosphate backbone torsion angle β. We suggest a refinement of this potential, β(OL1), which was derived using our recently introduced methodology that includes conformation-dependent solvation effects. The new potential significantly increases the stability of the dominant ZI backbone substate and improves the overall description of the Z-DNA backbone. It also has a positive (albeit small) impact on another important DNA form, the antiparallel guanine quadruplex (G-DNA), and improves the description of the canonical B-DNA backbone by increasing the population of BII backbone substates, providing a better agreement with experiment. We recommend using β(OL1) in combination with our previously introduced corrections, εζ(OL1) and χ(OL4), (the combination being named OL15) as a possible alternative to the current β torsion potential for more accurate modeling of nucleic acids.
Collapse
Affiliation(s)
- Marie Zgarbová
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University , 17. listopadu 12, 77146 Olomouc, Czech Republic
| | - Jiří Šponer
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University , 17. listopadu 12, 77146 Olomouc, Czech Republic.,Institute of Biophysics, Academy of Sciences of the Czech Republic , Královopolská 135, 612 65 Brno, Czech Republic
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University , 17. listopadu 12, 77146 Olomouc, Czech Republic
| | - Thomas E Cheatham
- Department of Medicinal Chemistry, University of Utah , 30 South 2000 East, Skaggs 105, Salt Lake City, Utah 84112, United States
| | - Rodrigo Galindo-Murillo
- Department of Medicinal Chemistry, University of Utah , 30 South 2000 East, Skaggs 105, Salt Lake City, Utah 84112, United States
| | - Petr Jurečka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University , 17. listopadu 12, 77146 Olomouc, Czech Republic
| |
Collapse
|
27
|
Yoshida T, Hayashi T, Mashima A, Chuman H. A simple and efficient dispersion correction to the Hartree-Fock theory (2): Incorporation of a geometrical correction for the basis set superposition error. Bioorg Med Chem Lett 2015; 25:4179-84. [PMID: 26292629 DOI: 10.1016/j.bmcl.2015.08.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 07/29/2015] [Accepted: 08/04/2015] [Indexed: 02/02/2023]
Abstract
One of the most challenging problems in computer-aided drug discovery is the accurate prediction of the binding energy between a ligand and a protein. For accurate estimation of net binding energy ΔEbind in the framework of the Hartree-Fock (HF) theory, it is necessary to estimate two additional energy terms; the dispersion interaction energy (Edisp) and the basis set superposition error (BSSE). We previously reported a simple and efficient dispersion correction, Edisp, to the Hartree-Fock theory (HF-Dtq). In the present study, an approximation procedure for estimating BSSE proposed by Kruse and Grimme, a geometrical counterpoise correction (gCP), was incorporated into HF-Dtq (HF-Dtq-gCP). The relative weights of the Edisp (Dtq) and BSSE (gCP) terms were determined to reproduce ΔEbind calculated with CCSD(T)/CBS or /aug-cc-pVTZ (HF-Dtq-gCP (scaled)). The performance of HF-Dtq-gCP (scaled) was compared with that of B3LYP-D3(BJ)-bCP (dispersion corrected B3LYP with the Boys and Bernadi counterpoise correction (bCP)), by taking ΔEbind (CCSD(T)-bCP) of small non-covalent complexes as 'a golden standard'. As a critical test, HF-Dtq-gCP (scaled)/6-31G(d) and B3LYP-D3(BJ)-bCP/6-31G(d) were applied to the complex model for HIV-1 protease and its potent inhibitor, KNI-10033. The present results demonstrate that HF-Dtq-gCP (scaled) is a useful and powerful remedy for accurately and promptly predicting ΔEbind between a ligand and a protein, albeit it is a simple correction procedure.
Collapse
Affiliation(s)
- Tatsusada Yoshida
- Institute of Biomedical Sciences, Tokushima University, Graduate School, 1-78 Shomachi, Tokushima 770-8505, Japan
| | - Takahisa Hayashi
- Institute of Biomedical Sciences, Tokushima University, Graduate School, 1-78 Shomachi, Tokushima 770-8505, Japan
| | - Akira Mashima
- Institute of Biomedical Sciences, Tokushima University, Graduate School, 1-78 Shomachi, Tokushima 770-8505, Japan
| | - Hiroshi Chuman
- Institute of Biomedical Sciences, Tokushima University, Graduate School, 1-78 Shomachi, Tokushima 770-8505, Japan.
| |
Collapse
|
28
|
Kruse H, Mladek A, Gkionis K, Hansen A, Grimme S, Sponer J. Quantum chemical benchmark study on 46 RNA backbone families using a dinucleotide unit. J Chem Theory Comput 2015; 11:4972-91. [PMID: 26574283 DOI: 10.1021/acs.jctc.5b00515] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
We have created a benchmark set of quantum chemical structure-energy data denoted as UpU46, which consists of 46 uracil dinucleotides (UpU), representing all known 46 RNA backbone conformational families. Penalty-function-based restrained optimizations with COSMO TPSS-D3/def2-TZVP ensure a balance between keeping the target conformation and geometry relaxation. The backbone geometries are close to the clustering-means of their respective RNA bioinformatics family classification. High-level wave function methods (DLPNO-CCSD(T) as reference) and a wide-range of dispersion-corrected or inclusive DFT methods (DFT-D3, VV10, LC-BOP-LRD, M06-2X, M11, and more) are used to evaluate the conformational energies. The results are compared to the Amber RNA bsc0χOL3 force field. Most dispersion-corrected DFT methods surpass the Amber force field significantly in accuracy and yield mean absolute deviations (MADs) for relative conformational energies of ∼0.4-0.6 kcal/mol. Double-hybrid density functionals represent the most accurate class of density functionals. Low-cost quantum chemical methods such as PM6-D3H+, HF-3c, DFTB3-D3, as well as small basis set calculations corrected for basis set superposition errors (BSSEs) by the gCP procedure are also tested. Unfortunately, the presently available low-cost methods are struggling to describe the UpU conformational energies with satisfactory accuracy. The UpU46 benchmark is an ideal test for benchmarking and development of fast methods to describe nucleic acids, including force fields.
Collapse
Affiliation(s)
- Holger Kruse
- Institute of Biophysics, Academy of Sciences of the Czech Republic , Královopolská 135, 612 65 Brno, Czech Republic.,CEITEC-Central European Institute of Technology, Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic
| | - Arnost Mladek
- Institute of Biophysics, Academy of Sciences of the Czech Republic , Královopolská 135, 612 65 Brno, Czech Republic
| | - Konstantinos Gkionis
- Institute of Biophysics, Academy of Sciences of the Czech Republic , Královopolská 135, 612 65 Brno, Czech Republic.,CEITEC-Central European Institute of Technology, Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic
| | - Andreas Hansen
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie der Universität Bonn , Beringstr. 4, D-53115 Bonn, Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie der Universität Bonn , Beringstr. 4, D-53115 Bonn, Germany
| | - Jiri Sponer
- Institute of Biophysics, Academy of Sciences of the Czech Republic , Královopolská 135, 612 65 Brno, Czech Republic.,CEITEC-Central European Institute of Technology, Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
29
|
Yilmazer ND, Korth M. Enhanced semiempirical QM methods for biomolecular interactions. Comput Struct Biotechnol J 2015; 13:169-75. [PMID: 25848495 PMCID: PMC4372622 DOI: 10.1016/j.csbj.2015.02.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 02/17/2015] [Accepted: 02/19/2015] [Indexed: 12/21/2022] Open
Abstract
Recent successes and failures of the application of 'enhanced' semiempirical QM (SQM) methods are reviewed in the light of the benefits and backdraws of adding dispersion (D) and hydrogen-bond (H) correction terms. We find that the accuracy of SQM-DH methods for non-covalent interactions is very often reported to be comparable to dispersion-corrected density functional theory (DFT-D), while computation times are about three orders of magnitude lower. SQM-DH methods thus open up a possibility to simulate realistically large model systems for problems both in life and materials science with comparably high accuracy.
Collapse
Affiliation(s)
| | - Martin Korth
- Institute of Theoretical Chemistry, Ulm University, D-89069 Ulm, Germany
| |
Collapse
|
30
|
Kruse H, Šponer J. Towards biochemically relevant QM computations on nucleic acids: controlled electronic structure geometry optimization of nucleic acid structural motifs using penalty restraint functions. Phys Chem Chem Phys 2014; 17:1399-410. [PMID: 25427983 DOI: 10.1039/c4cp04680c] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Recent developments in dispersion-corrected density functional theory methods allow for the first time the description of large fragments of nucleic acids (hundreds of atoms) with an accuracy clearly surpassing the accuracy of common biomolecular force fields. Such calculations can significantly improve the description of the potential energy surface of nucleic acid molecules, which may be useful for studies of molecular interactions and conformational preferences of nucleic acids, as well as verification and parameterization of other methods. The first of such studies, however, demonstrated that successful applications of accurate QM calculations to larger nucleic acid building blocks are hampered by difficulties in obtaining geometries that are biochemically relevant and are not biased by non-native structural features. We present an approach that can greatly facilitate large-scale QM studies on nucleic acids, namely electronic structure geometry optimization of nucleic acid fragments utilizing a penalty function to restrain key internal coordinates with a specific focus on the torsional backbone angles. This work explores the viability of these restraint optimizations for DFT-D3, PM6-D3H and HF-3c optimizations on a set of examples (a UpA dinucleotide, a DNA G-quadruplex and a B-DNA fragment). Evaluation of different penalty function strengths reveals only a minor system-dependency and reasonable restraint values range from 0.01 to 0.05 Eh rad(-2) for the backbone torsions. Restraints are crucial to perform the QM calculations on biochemically relevant conformations in implicit solvation and gas phase geometry optimizations. The reasons for using restrained instead of constrained or unconstrained optimizations are explained and an open-source external optimizer is provided.
Collapse
Affiliation(s)
- Holger Kruse
- CEITEC - Central European Institute of Technology, Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic.
| | | |
Collapse
|
31
|
Šponer J, Banáš P, Jurečka P, Zgarbová M, Kührová P, Havrila M, Krepl M, Stadlbauer P, Otyepka M. Molecular Dynamics Simulations of Nucleic Acids. From Tetranucleotides to the Ribosome. J Phys Chem Lett 2014; 5:1771-82. [PMID: 26270382 DOI: 10.1021/jz500557y] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
We present a brief overview of explicit solvent molecular dynamics (MD) simulations of nucleic acids. We explain physical chemistry limitations of the simulations, namely, the molecular mechanics (MM) force field (FF) approximation and limited time scale. Further, we discuss relations and differences between simulations and experiments, compare standard and enhanced sampling simulations, discuss the role of starting structures, comment on different versions of nucleic acid FFs, and relate MM computations with contemporary quantum chemistry. Despite its limitations, we show that MD is a powerful technique for studying the structural dynamics of nucleic acids with a fast growing potential that substantially complements experimental results and aids their interpretation.
Collapse
Affiliation(s)
- Jiří Šponer
- †Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic
- ‡CEITEC - Central European Institute of Technology, Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic
| | - Pavel Banáš
- §Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University, tř. 17 listopadu 12, 771 46 Olomouc, Czech Republic
| | - Petr Jurečka
- §Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University, tř. 17 listopadu 12, 771 46 Olomouc, Czech Republic
| | - Marie Zgarbová
- §Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University, tř. 17 listopadu 12, 771 46 Olomouc, Czech Republic
| | - Petra Kührová
- §Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University, tř. 17 listopadu 12, 771 46 Olomouc, Czech Republic
| | - Marek Havrila
- †Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic
- ‡CEITEC - Central European Institute of Technology, Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic
| | - Miroslav Krepl
- †Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic
| | - Petr Stadlbauer
- †Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic
| | - Michal Otyepka
- §Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University, tř. 17 listopadu 12, 771 46 Olomouc, Czech Republic
| |
Collapse
|