1
|
Yılmaz H, Gultekin Subasi B. Distinctive Processing Effects on Recovered Protein Isolates from Laurel (Bay) and Olive Leaves: A Comparative Study. ACS OMEGA 2023; 8:36179-36187. [PMID: 37810710 PMCID: PMC10552139 DOI: 10.1021/acsomega.3c04482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/12/2023] [Indexed: 10/10/2023]
Abstract
Although there is a well-known awareness of the nutritional potential of plant proteins, their utilization within food formulations is currently limited due to insufficient investigation of the functional properties or processing conditions. In this study, the protein contents of the remaining pulps of laurel (bay) (LL) and olive leaves (OL) after alcoholic washing (representing phenolic compound extraction), heat treatment (representing the usage of the leaves for tea brewing or as cooking aid), and deoiling process (representing oil extraction) were investigated. Bicinchoninic acid assay (BCA) indicated that the best protein yield was achieved with a direct isolation process after hexane oil removal. Both LL and OL isolates contained around 80% protein, but high temperature and alcohol content broke down the protein structure as well as decreased the final protein content (∼40%). Alcohol treatment appears to remove protein-bound phenols and increase fluorescence intensity in OL protein isolates while potentially causing structural alterations in LL proteins. In addition to a dramatic decrease in fluorescence intensity, the absolute zeta potentials of protein extracts of boiling OL and LL increased by 53 and 24%, respectively. The increased zeta potentials along with the decreased fluorescence intensity indicate the changes in the protein conformation and enhanced hydrophilicity of the protein structure, which can influence the functional properties of proteins. Protein extracts of deoiled LL had the highest ΔH value (180 mJ/mg), which is higher than other laurel and all olive protein samples. Laurel protein isolates became more thermally stable after hexane treatment. Moreover, the protein extracts after hexane treatment showed better emulsion capacity from both laurel (71.57%) and olive (61.87%). Water-binding capacity and thermal stability of the protein extracts from deoiled samples were higher than those of the other pretreatments, but the boiled samples showed higher oil-binding capacity due to protein denaturation. These findings indicate the importance of processing conditions in modulating protein properties for various applications.
Collapse
Affiliation(s)
- Hilal Yılmaz
- Department
of Biotechnology, Faculty of Science, Bartın
University, 74100 Bartın, Türkiye
| | - Busra Gultekin Subasi
- Faculty
of Life Science, Division of Food and Nutrition Science, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| |
Collapse
|
2
|
Gajardo-Parra N, Meneses L, Duarte ARC, Paiva A, Held C. Assessing the Influence of Betaine-Based Natural Deep Eutectic Systems on Horseradish Peroxidase. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2022; 10:12873-12881. [PMID: 36573121 PMCID: PMC9783073 DOI: 10.1021/acssuschemeng.2c04045] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/26/2022] [Indexed: 06/02/2023]
Abstract
To validate the use of horseradish peroxidase (HRP) in natural deep eutectic systems (NADES), five different betaine-based NADES were characterized in terms of water content, water activity, density, and viscosity experimentally and by thermodynamic modeling. The results show that the NADES under study have a water activity of about 0.4 at 37 °C for water contents between 14 and 22 wt %. The densities of the studied NADES had values between 1.2 and 1.3 g.cm-3 at 20 °C. The density was modeled with a state-of-the-art equation of state; an excellent agreement with the experimental density data was achieved, allowing reasonable predictions for water activities. The system betaine:glycerol (1:2) was found to be the most viscous with a dynamic viscosity of ∼600 mPa.s at 40 °C, while all the other systems had viscosities <350 mPa.s at 40 °C. The impact of the NADES on the enzymatic activity, as well as on, conformational and thermal stability was assessed. The system betaine/sorbitol:water (1:1:3) showed the highest benefit for enzymatic activity, increasing it by two-folds. Moreover, upon NADES addition, thermal stability was increased followed by an increment in a-helix secondary structure content.
Collapse
Affiliation(s)
- Nicolás
F. Gajardo-Parra
- Laboratory
of Thermodynamics, Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Str. 70, 44227 Dortmund, Germany
| | - Liane Meneses
- LAQV-REQUIMTE,
Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2825-149 Caparica, Portugal
| | - Ana Rita C. Duarte
- LAQV-REQUIMTE,
Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2825-149 Caparica, Portugal
| | - Alexandre Paiva
- LAQV-REQUIMTE,
Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2825-149 Caparica, Portugal
| | - Christoph Held
- Laboratory
of Thermodynamics, Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Str. 70, 44227 Dortmund, Germany
| |
Collapse
|
3
|
Berner C, Menzen T, Winter G, Svilenov HL. Combining Unfolding Reversibility Studies and Molecular Dynamics Simulations to Select Aggregation-Resistant Antibodies. Mol Pharm 2021; 18:2242-2253. [PMID: 33928776 DOI: 10.1021/acs.molpharmaceut.1c00017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The efficient development of new therapeutic antibodies relies on developability assessment with biophysical and computational methods to find molecules with drug-like properties such as resistance to aggregation. Despite the many novel approaches to select well-behaved proteins, antibody aggregation during storage is still challenging to predict. For this reason, there is a high demand for methods that can identify aggregation-resistant antibodies. Here, we show that three straightforward techniques can select the aggregation-resistant antibodies from a dataset with 13 molecules. The ReFOLD assay provided information about the ability of the antibodies to refold to monomers after unfolding with chemical denaturants. Modulated scanning fluorimetry (MSF) yielded the temperatures that start causing irreversible unfolding of the proteins. Aggregation was the main reason for poor unfolding reversibility in both ReFOLD and MSF experiments. We therefore performed temperature ramps in molecular dynamics (MD) simulations to obtain partially unfolded antibody domains in silico and used CamSol to assess their aggregation potential. We compared the information from ReFOLD, MSF, and MD to size-exclusion chromatography (SEC) data that shows whether the antibodies aggregated during storage at 4, 25, and 40 °C. Contrary to the aggregation-prone molecules, the antibodies that were resistant to aggregation during storage at 40 °C shared three common features: (i) higher tendency to refold to monomers after unfolding with chemical denaturants, (ii) higher onset temperature of nonreversible unfolding, and (iii) unfolding of regions containing aggregation-prone sequences at higher temperatures in MD simulations.
Collapse
Affiliation(s)
- Carolin Berner
- Department of Pharmacy, Ludwig-Maximilians-Universität München, Butenandtstr. 5, 81377 Munich, Germany
| | - Tim Menzen
- Coriolis Pharma Research GmbH, Fraunhoferstr. 18 b, 82152 Martinsried, Germany
| | - Gerhard Winter
- Department of Pharmacy, Ludwig-Maximilians-Universität München, Butenandtstr. 5, 81377 Munich, Germany
| | - Hristo L Svilenov
- Department of Pharmacy, Ludwig-Maximilians-Universität München, Butenandtstr. 5, 81377 Munich, Germany
| |
Collapse
|
4
|
Maffucci I, Laage D, Sterpone F, Stirnemann G. Thermal Adaptation of Enzymes: Impacts of Conformational Shifts on Catalytic Activation Energy and Optimum Temperature. Chemistry 2020; 26:10045-10056. [DOI: 10.1002/chem.202001973] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/02/2020] [Indexed: 12/25/2022]
Affiliation(s)
- Irene Maffucci
- PASTEUR, Département de chimie École Normale Supérieure, PSL University Sorbonne Université, CNRS 24 rue Lhomond 75005 Paris France
- CNRS Laboratoire de Biochimie Théorique Institut de Biologie Physico-Chimique PSL University, Université de Paris 13 rue Pierre et Marie Curie 75005 Paris France
- Present address: Centre de recherche Royallieu Université de Technologie de Compiègne, UPJV CNRS, Enzyme and Cell Engineering CS 60319-60203 Compiègne Cedex France
| | - Damien Laage
- PASTEUR, Département de chimie École Normale Supérieure, PSL University Sorbonne Université, CNRS 24 rue Lhomond 75005 Paris France
| | - Fabio Sterpone
- CNRS Laboratoire de Biochimie Théorique Institut de Biologie Physico-Chimique PSL University, Université de Paris 13 rue Pierre et Marie Curie 75005 Paris France
| | - Guillaume Stirnemann
- CNRS Laboratoire de Biochimie Théorique Institut de Biologie Physico-Chimique PSL University, Université de Paris 13 rue Pierre et Marie Curie 75005 Paris France
| |
Collapse
|
5
|
Timr S, Madern D, Sterpone F. Protein thermal stability. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 170:239-272. [PMID: 32145947 DOI: 10.1016/bs.pmbts.2019.12.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Proteins, in general, fold to a well-organized three-dimensional structure in order to function. The stability of this functional shape can be perturbed by external environmental conditions, such as temperature. Understanding the molecular factors underlying the resistance of proteins to the thermal stress has important consequences. First of all, it can aid the design of thermostable enzymes able to perform efficient catalysis in the high-temperature regime. Second, it is an essential brick of knowledge required to decipher the evolutionary pathways of life adaptation on Earth. Thanks to the development of atomistic simulations and ad hoc enhanced sampling techniques, it is now possible to investigate this problem in silico, and therefore provide support to experiments. After having described the methodological aspects, the chapter proposes an extended discussion on two problems. First, we focus on thermophilic proteins, a perfect model to address the issue of thermal stability and molecular evolution. Second, we discuss the issue of how protein thermal stability is affected by crowded in vivo-like conditions.
Collapse
Affiliation(s)
- Stepan Timr
- CNRS, Université de Paris, UPR 9080, Laboratoire de Biochimie Théorique, Paris, France; Institut de Biologie Physico-Chimique-Fondation Edmond de Rothschild, PSL Research University, Paris, France
| | | | - Fabio Sterpone
- CNRS, Université de Paris, UPR 9080, Laboratoire de Biochimie Théorique, Paris, France; Institut de Biologie Physico-Chimique-Fondation Edmond de Rothschild, PSL Research University, Paris, France.
| |
Collapse
|
6
|
Bazargan G, Sohlberg K. Investigation of net unidirectional ring shuttling in a chemically fueled [2]catenane. J Mol Model 2018; 24:291. [PMID: 30242486 DOI: 10.1007/s00894-018-3830-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 09/12/2018] [Indexed: 11/25/2022]
Abstract
Switchable rotaxanes and catenanes are environmentally responsive mechanically interlocked molecular architectures (MIMAs). Because of their ability to exhibit reversible and controllable motion in response to environmental stimuli, switchable rotaxanes and catenanes show promise for the advancement of nanoscale devices. Herein we present a study of the first 'autonomous' catenane-based motor (Wilson et al. in Nature 534(7606):235-240, 2016) through a domestically developed simulation tool designed to capture the basic physics/chemistry of the ring shuttling process. The results of the simulation are consistent with the experimentally inferred unidirectional motion in the catenane motor. The factors that affect ring shuttling are explored, and the features of the system that could potentially be modified to influence the rate and directional preference of ring shuttling are reported.
Collapse
Affiliation(s)
- Gloria Bazargan
- Department of Chemistry, Drexel University, 3141 Chestnut Street, Philadelphia, PA, 19104, USA.
| | - Karl Sohlberg
- Department of Chemistry, Drexel University, 3141 Chestnut Street, Philadelphia, PA, 19104, USA
| |
Collapse
|
7
|
Wright TA, Stewart JM, Page RC, Konkolewicz D. Extraction of Thermodynamic Parameters of Protein Unfolding Using Parallelized Differential Scanning Fluorimetry. J Phys Chem Lett 2017; 8:553-558. [PMID: 28067526 DOI: 10.1021/acs.jpclett.6b02894] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Thermodynamic properties of protein unfolding have been extensively studied; however, the methods used have typically required significant preparation time and high protein concentrations. Here we present a facile, simple, and parallelized differential scanning fluorimetry (DSF) method that enables thermodynamic parameters of protein unfolding to be extracted. This method assumes a two-state, reversible protein unfolding mechanism and provides the capacity to quickly analyze the biophysical mechanisms of changes in protein stability and to more thoroughly characterize the effect of mutations, additives, inhibitors, or pH. We show the utility of the DSF method by analyzing the thermal denaturation of lysozyme, carbonic anhydrase, chymotrypsin, horseradish peroxidase, and cellulase enzymes. Compared with similar biophysical analyses by circular dichroism, DSF allows for determination of thermodynamic parameters of unfolding while providing greater than 24-fold reduction in experimental time. This study opens the door to rapid characterization of protein stability on low concentration protein samples.
Collapse
Affiliation(s)
- Thaiesha A Wright
- Department of Chemistry and Biochemistry, Miami University , Oxford, Ohio 45056, United States
| | - Jamie M Stewart
- Department of Chemistry and Biochemistry, Miami University , Oxford, Ohio 45056, United States
| | - Richard C Page
- Department of Chemistry and Biochemistry, Miami University , Oxford, Ohio 45056, United States
| | - Dominik Konkolewicz
- Department of Chemistry and Biochemistry, Miami University , Oxford, Ohio 45056, United States
| |
Collapse
|
8
|
Stirnemann G, Sterpone F. Recovering Protein Thermal Stability Using All-Atom Hamiltonian Replica-Exchange Simulations in Explicit Solvent. J Chem Theory Comput 2015; 11:5573-7. [DOI: 10.1021/acs.jctc.5b00954] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Guillaume Stirnemann
- CNRS Laboratoire de Biochimie
Théorique, Institut de Biologie Physico-Chimique, Univ. Paris
Denis Diderot, Sorbonne Paris Cité, PSL Research University, 13 rue Pierre et Marie Curie, 75005, Paris, France
| | - Fabio Sterpone
- CNRS Laboratoire de Biochimie
Théorique, Institut de Biologie Physico-Chimique, Univ. Paris
Denis Diderot, Sorbonne Paris Cité, PSL Research University, 13 rue Pierre et Marie Curie, 75005, Paris, France
| |
Collapse
|
9
|
A theoretical study of the unfolding pathway of reduced Human serum albumin. J Mol Model 2015; 21:106. [DOI: 10.1007/s00894-015-2659-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 03/16/2015] [Indexed: 12/12/2022]
|
10
|
Gorai B, Prabhavadhni A, Sivaraman T. Unfolding stabilities of two structurally similar proteins as probed by temperature-induced and force-induced molecular dynamics simulations. J Biomol Struct Dyn 2014; 33:2037-47. [DOI: 10.1080/07391102.2014.986668] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
11
|
Kalimeri M, Girard E, Madern D, Sterpone F. Interface matters: the stiffness route to stability of a thermophilic tetrameric malate dehydrogenase. PLoS One 2014; 9:e113895. [PMID: 25437494 PMCID: PMC4250060 DOI: 10.1371/journal.pone.0113895] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 11/01/2014] [Indexed: 11/19/2022] Open
Abstract
In this work we investigate by computational means the behavior of two orthologous bacterial proteins, a mesophilic and a thermophilic tetrameric malate dehydrogenase (MalDH), at different temperatures. Namely, we quantify how protein mechanical rigidity at different length- and time-scales correlates to protein thermophilicity as commonly believed. In particular by using a clustering analysis strategy to explore the conformational space of the folded proteins, we show that at ambient conditions and at the molecular length-scale the thermophilic variant is indeed more rigid that the mesophilic one. This rigidification is the result of more efficient inter-domain interactions, the strength of which is further quantified via ad hoc free energy calculations. When considered isolated, the thermophilic domain is indeed more flexible than the respective mesophilic one. Upon oligomerization, the induced stiffening of the thermophilic protein propagates from the interface to the active site where the loop, controlling the access to the catalytic pocket, anchors down via an extended network of ion-pairs. On the contrary in the mesophilic tetramer the loop is highly mobile. Simulations at high temperature, could not re-activate the mobility of the loop in the thermophile. This finding opens questions on the similarities of the binding processes for these two homologues at their optimal working temperature and suggests for the thermophilic variant a possible cooperative role of cofactor/substrate.
Collapse
Affiliation(s)
- Maria Kalimeri
- Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, Centre National de la Recherche Scientifique, UPR9080, Univ. Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Eric Girard
- Univ. Grenoble Alpes, Institut de Biologie Structurale, Grenoble, France
- Centre National de la Recherche Scientifique, Institut de Biologie Structurale, Grenoble, France
- Commissariat à l'Energie Atomique et aux énergies alternatives, Institut de Biologie Structurale, Grenoble, France
| | - Dominique Madern
- Univ. Grenoble Alpes, Institut de Biologie Structurale, Grenoble, France
- Centre National de la Recherche Scientifique, Institut de Biologie Structurale, Grenoble, France
- Commissariat à l'Energie Atomique et aux énergies alternatives, Institut de Biologie Structurale, Grenoble, France
- * E-mail: (FS); (DM)
| | - Fabio Sterpone
- Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, Centre National de la Recherche Scientifique, UPR9080, Univ. Paris Diderot, Sorbonne Paris Cité, Paris, France
- * E-mail: (FS); (DM)
| |
Collapse
|
12
|
Unfolding stabilities of two paralogous proteins from Naja naja naja (Indian cobra) as probed by molecular dynamics simulations. Toxicon 2013; 72:11-22. [DOI: 10.1016/j.toxicon.2013.05.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Revised: 05/20/2013] [Accepted: 05/30/2013] [Indexed: 11/21/2022]
|
13
|
Molecular dynamics simulation of temperature induced unfolding of animal prion protein. J Mol Model 2013; 19:4433-41. [DOI: 10.1007/s00894-013-1955-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Accepted: 07/22/2013] [Indexed: 01/22/2023]
|
14
|
Paris G, Kraszewski S, Ramseyer C, Enescu M. About the structural role of disulfide bridges in serum albumins: evidence from protein simulated unfolding. Biopolymers 2012; 97:889-98. [PMID: 22899364 DOI: 10.1002/bip.22096] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The role of the 17 disulfide (S-S) bridges in preserving the native conformation of human serum albumin (HSA) is investigated by performing classical molecular dynamics (MD) simulations on protein structures with intact and, respectively, reduced S-S bridges. The thermal unfolding simulations predict a clear destabilization of the protein secondary structure upon reduction of the S-S bridges as well as a significant distortion of the tertiary structure that is revealed by the changes in the protein native contacts fraction. The effect of the S-S bridges reduction on the protein compactness was tested by calculating Gibbs free energy profiles with respect to the protein gyration radius. The theoretical results obtained using the OPLS-AA and the AMBER ff03 force fields are in agreement with the available experimental data. Beyond the validation of the simulation method, the results here reported provide new insights into the mechanism of the protein reductive/oxidative unfolding/folding processes. It is predicted that in the native conformation of the protein, the thiol (-SH) groups belonging to the same reduced S-S bridge are located in potential wells that maintain them in contact. The -SH pairs can be dispatched by specific conformational transitions of the peptide chain located in the neighborhood of the cysteine residues.
Collapse
Affiliation(s)
- Guillaume Paris
- Faculté des Sciences et Techniques, La Bouloie, Université de Franche-Comté, Besançon cedex, France
| | | | | | | |
Collapse
|
15
|
Schulenburg C, Weininger U, Neumann P, Meiselbach H, Stubbs MT, Sticht H, Balbach J, Ulbrich-Hofmann R, Arnold U. Impact of the C-terminal Disulfide Bond on the Folding and Stability of Onconase. Chembiochem 2010; 11:978-86. [DOI: 10.1002/cbic.200900773] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
16
|
Liu C, Yang Z. Reversible folding/unfolding of small a-helix in explicit solvent investigated by ABEEMσπ/MM. ACTA ACUST UNITED AC 2009. [DOI: 10.1007/s11426-009-0257-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
17
|
Periole X, Allen LR, Tamiola K, Mark AE, Paci E. Probing the free energy landscape of the FBP28WW domain using multiple techniques. J Comput Chem 2009; 30:1059-68. [PMID: 18942730 DOI: 10.1002/jcc.21128] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The free-energy landscape of a small protein, the FBP 28 WW domain, has been explored using molecular dynamics (MD) simulations with alternative descriptions of the molecule. The molecular models used range from coarse-grained to all-atom with either an implicit or explicit treatment of the solvent. Sampling of conformation space was performed using both conventional and temperature-replica exchange MD simulations. Experimental chemical shifts and NOEs were used to validate the simulations, and experimental phi values both for validation and as restraints. This combination of different approaches has provided insight into the free energy landscape and barriers encountered by the protein during folding and enabled the characterization of native, denatured and transition states which are compatible with the available experimental data. All the molecular models used stabilize well defined native and denatured basins; however, the degree of agreement with the available experimental data varies. While the most detailed, explicit solvent model predicts the data reasonably accurately, it does not fold despite a simulation time 10 times that of the experimental folding time. The less detailed models performed poorly relative to the explicit solvent model: an implicit solvent model stabilizes a ground state which differs from the experimental native state, and a structure-based model underestimates the size of the barrier between the two states. The use of experimental phi values both as restraints, and to extract structures from unfolding simulations, result in conformations which, although not necessarily true transition states, appear to share the geometrical characteristics of transition state structures. In addition to characterizing the native, transition and denatured states of this particular system in this work, the advantages and limitations of using varying levels of representation are discussed.
Collapse
Affiliation(s)
- Xavier Periole
- Department of Biophysical Chemistry, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
| | | | | | | | | |
Collapse
|
18
|
Hu X, Lu Q, Kaplan DL, Cebe P. Microphase Separation Controlled β-Sheet Crystallization Kinetics in Fibrous Proteins. Macromolecules 2009. [DOI: 10.1021/ma802481p] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiao Hu
- Department of Physics and Astronomy, Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155
| | - Qiang Lu
- Department of Physics and Astronomy, Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155
| | - David L. Kaplan
- Department of Physics and Astronomy, Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155
| | - Peggy Cebe
- Department of Physics and Astronomy, Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155
| |
Collapse
|
19
|
Narzi D, Daidone I, Amadei A, Di Nola A. Protein Folding Pathways Revealed by Essential Dynamics Sampling. J Chem Theory Comput 2008; 4:1940-8. [DOI: 10.1021/ct800157v] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Daniele Narzi
- Department of Chemistry, University of Rome ‘La Sapienza’, P.le Aldo Moro 5, 00185 Rome, Italy, and Dipartimento di Scienze e Tecnologie Chimiche, University of Rome ‘Tor Vergata’, via della Ricerca Scientifica 1, I-00133 Rome, Italy
| | - Isabella Daidone
- Department of Chemistry, University of Rome ‘La Sapienza’, P.le Aldo Moro 5, 00185 Rome, Italy, and Dipartimento di Scienze e Tecnologie Chimiche, University of Rome ‘Tor Vergata’, via della Ricerca Scientifica 1, I-00133 Rome, Italy
| | - Andrea Amadei
- Department of Chemistry, University of Rome ‘La Sapienza’, P.le Aldo Moro 5, 00185 Rome, Italy, and Dipartimento di Scienze e Tecnologie Chimiche, University of Rome ‘Tor Vergata’, via della Ricerca Scientifica 1, I-00133 Rome, Italy
| | - Alfredo Di Nola
- Department of Chemistry, University of Rome ‘La Sapienza’, P.le Aldo Moro 5, 00185 Rome, Italy, and Dipartimento di Scienze e Tecnologie Chimiche, University of Rome ‘Tor Vergata’, via della Ricerca Scientifica 1, I-00133 Rome, Italy
| |
Collapse
|
20
|
Urea and guanidinium chloride denature protein L in different ways in molecular dynamics simulations. Biophys J 2008; 94:4654-61. [PMID: 18339753 DOI: 10.1529/biophysj.107.125799] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In performing protein-denaturation experiments, it is common to employ different kinds of denaturants interchangeably. We make use of molecular dynamics simulations of Protein L in water, in urea, and in guanidinium chloride (GdmCl) to ascertain if there are any structural differences in the associated unfolding processes. The simulation of proteins in solutions of GdmCl is complicated by the large number of charges involved, making it difficult to set up a realistic force field. Furthermore, at high concentrations of this denaturant, the motion of the solvent slows considerably. The simulations show that the unfolding mechanism depends on the denaturing agent: in urea the beta-sheet is destabilized first, whereas in GdmCl, it is the alpha-helix. Moreover, whereas urea interacts with the protein accumulating in the first solvation shell, GdmCl displays a longer-range electrostatic effect that does not perturb the structure of the solvent close to the protein.
Collapse
|