1
|
Riepl D, Gamiz-Hernandez AP, Kovalova T, Król SM, Mader SL, Sjöstrand D, Högbom M, Brzezinski P, Kaila VRI. Long-range charge transfer mechanism of the III 2IV 2 mycobacterial supercomplex. Nat Commun 2024; 15:5276. [PMID: 38902248 PMCID: PMC11189923 DOI: 10.1038/s41467-024-49628-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 06/12/2024] [Indexed: 06/22/2024] Open
Abstract
Aerobic life is powered by membrane-bound redox enzymes that shuttle electrons to oxygen and transfer protons across a biological membrane. Structural studies suggest that these energy-transducing enzymes operate as higher-order supercomplexes, but their functional role remains poorly understood and highly debated. Here we resolve the functional dynamics of the 0.7 MDa III2IV2 obligate supercomplex from Mycobacterium smegmatis, a close relative of M. tuberculosis, the causative agent of tuberculosis. By combining computational, biochemical, and high-resolution (2.3 Å) cryo-electron microscopy experiments, we show how the mycobacterial supercomplex catalyses long-range charge transport from its menaquinol oxidation site to the binuclear active site for oxygen reduction. Our data reveal proton and electron pathways responsible for the charge transfer reactions, mechanistic principles of the quinone catalysis, and how unique molecular adaptations, water molecules, and lipid interactions enable the proton-coupled electron transfer (PCET) reactions. Our combined findings provide a mechanistic blueprint of mycobacterial supercomplexes and a basis for developing drugs against pathogenic bacteria.
Collapse
Affiliation(s)
- Daniel Riepl
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Ana P Gamiz-Hernandez
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Terezia Kovalova
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Sylwia M Król
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Sophie L Mader
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Dan Sjöstrand
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Martin Högbom
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Peter Brzezinski
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Ville R I Kaila
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91, Stockholm, Sweden.
| |
Collapse
|
2
|
Theoretical Study on Redox Potential Control of Iron-Sulfur Cluster by Hydrogen Bonds: A Possibility of Redox Potential Programming. Molecules 2021; 26:molecules26206129. [PMID: 34684710 PMCID: PMC8538827 DOI: 10.3390/molecules26206129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/02/2021] [Accepted: 10/08/2021] [Indexed: 11/17/2022] Open
Abstract
The effect of hydrogen bonds around the active site of Anabaena [2Fe-2S] ferredoxin (Fd) on a vertical ionization potential of the reduced state (IP(red)) is examined based on the density functional theory (DFT) calculations. The results indicate that a single hydrogen bond increases the relative stability of the reduced state, and shifts IP(red) to a reductive side by 0.31–0.33 eV, regardless of the attached sulfur atoms. In addition, the IP(red) value can be changed by the number of hydrogen bonds around the active site. The results also suggest that the redox potential of [2Fe-2S] Fd is controlled by the number of hydrogen bonds because IP(red) is considered to be a major factor in the redox potential. Furthermore, there is a possibility that the redox potentials of artificial iron-sulfur clusters can be finely controlled by the number of the hydrogen bonds attached to the sulfur atoms of the cluster.
Collapse
|
3
|
Maiti BK, Almeida RM, Moura I, Moura JJ. Rubredoxins derivatives: Simple sulphur-rich coordination metal sites and its relevance for biology and chemistry. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
4
|
Gamiz-Hernandez AP, Jussupow A, Johansson MP, Kaila VRI. Terminal Electron-Proton Transfer Dynamics in the Quinone Reduction of Respiratory Complex I. J Am Chem Soc 2017; 139:16282-16288. [PMID: 29017321 PMCID: PMC6300313 DOI: 10.1021/jacs.7b08486] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Complex I functions as a redox-driven proton pump in aerobic respiratory chains. By reducing quinone (Q), complex I employs the free energy released in the process to thermodynamically drive proton pumping across its membrane domain. The initial Q reduction step plays a central role in activating the proton pumping machinery. In order to probe the energetics, dynamics, and molecular mechanism for the proton-coupled electron transfer process linked to the Q reduction, we employ here multiscale quantum and classical molecular simulations. We identify that both ubiquinone (UQ) and menaquinone (MQ) can form stacking and hydrogen-bonded interactions with the conserved Q-binding-site residue His-38 and that conformational changes between these binding modes modulate the Q redox potentials and the rate of electron transfer (eT) from the terminal N2 iron-sulfur center. We further observe that, while the transient formation of semiquinone is not proton-coupled, the second eT process couples to a semiconcerted proton uptake from conserved tyrosine (Tyr-87) and histidine (His-38) residues within the active site. Our calculations indicate that both UQ and MQ have low redox potentials around -260 and -230 mV, respectively, in the Q-binding site, respectively, suggesting that release of the Q toward the membrane is coupled to an energy transduction step that could thermodynamically drive proton pumping in complex I.
Collapse
Affiliation(s)
- Ana P Gamiz-Hernandez
- Department Chemie, Technische Universität München (TUM) , Lichtenbergstraße 4, Garching D-85747, Germany
| | - Alexander Jussupow
- Department Chemie, Technische Universität München (TUM) , Lichtenbergstraße 4, Garching D-85747, Germany
| | - Mikael P Johansson
- Department Chemie, Technische Universität München (TUM) , Lichtenbergstraße 4, Garching D-85747, Germany.,Department of Chemistry, University of Helsinki , P.O. Box 55, Helsinki FI-00014, Finland
| | - Ville R I Kaila
- Department Chemie, Technische Universität München (TUM) , Lichtenbergstraße 4, Garching D-85747, Germany
| |
Collapse
|
5
|
Fowler NJ, Blanford CF, Warwicker J, de Visser SP. Prediction of Reduction Potentials of Copper Proteins with Continuum Electrostatics and Density Functional Theory. Chemistry 2017; 23:15436-15445. [PMID: 28815759 PMCID: PMC5698706 DOI: 10.1002/chem.201702901] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Indexed: 12/20/2022]
Abstract
Blue copper proteins, such as azurin, show dramatic changes in Cu2+/Cu+ reduction potential upon mutation over the full physiological range. Hence, they have important functions in electron transfer and oxidation chemistry and have applications in industrial biotechnology. The details of what determines these reduction potential changes upon mutation are still unclear. Moreover, it has been difficult to model and predict the reduction potential of azurin mutants and currently no unique procedure or workflow pattern exists. Furthermore, high‐level computational methods can be accurate but are too time consuming for practical use. In this work, a novel approach for calculating reduction potentials of azurin mutants is shown, based on a combination of continuum electrostatics, density functional theory and empirical hydrophobicity factors. Our method accurately reproduces experimental reduction potential changes of 30 mutants with respect to wildtype within experimental error and highlights the factors contributing to the reduction potential change. Finally, reduction potentials are predicted for a series of 124 new mutants that have not yet been investigated experimentally. Several mutants are identified that are located well over 10 Å from the copper center that change the reduction potential by more than 85 mV. The work shows that secondary coordination sphere mutations mostly lead to long‐range electrostatic changes and hence can be modeled accurately with continuum electrostatics.
Collapse
Affiliation(s)
- Nicholas J Fowler
- Manchester Institute of Biotechnology and School of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
| | - Christopher F Blanford
- Manchester Institute of Biotechnology and School of Materials, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
| | - Jim Warwicker
- Manchester Institute of Biotechnology and School of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
| | - Sam P de Visser
- Manchester Institute of Biotechnology, and School of Chemical Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
| |
Collapse
|
6
|
Wittwer M, Luo Q, Kaila VRI, Dames SA. Oxidative Unfolding of the Rubredoxin Domain and the Natively Disordered N-terminal Region Regulate the Catalytic Activity of Mycobacterium tuberculosis Protein Kinase G. J Biol Chem 2016; 291:27062-27072. [PMID: 27810897 DOI: 10.1074/jbc.m116.747089] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 10/19/2016] [Indexed: 11/06/2022] Open
Abstract
Mycobacterium tuberculosis escapes killing in human macrophages by secreting protein kinase G (PknG). PknG intercepts host signaling to prevent fusion of the phagosome engulfing the mycobacteria with the lysosome and, thus, their degradation. The N-terminal NORS (no regulatory secondary structure) region of PknG (approximately residues 1-75) has been shown to play a role in PknG regulation by (auto)phosphorylation, whereas the following rubredoxin-like metal-binding motif (RD, residues ∼74-147) has been shown to interact tightly with the subsequent catalytic domain (approximately residues 148-420) to mediate its redox regulation. Deletions or mutations in NORS or the redox-sensitive RD significantly decrease PknG survival function. Based on combined NMR spectroscopy, in vitro kinase assay, and molecular dynamics simulation data, we provide novel insights into the regulatory roles of the N-terminal regions. The NORS region is indeed natively disordered and rather dynamic. Consistent with most earlier data, autophosphorylation occurs in our assays only when the NORS region is present and, thus, in the NORS region. Phosphorylation of it results only in local conformational changes and does not induce interactions with the subsequent RD. Although the reduced, metal-bound RD makes tight interactions with the following catalytic domain in the published crystal structures, it can also fold in its absence. Our data further suggest that oxidation-induced unfolding of the RD regulates substrate access to the catalytic domain and, thereby, PknG function under different redox conditions, e.g. when exposed to increased levels of reactive oxidative species in host macrophages.
Collapse
Affiliation(s)
| | - Qi Luo
- Computational Biocatalysis, Department of Chemistry, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany.,the Soft Matter Research Center and Department of Chemistry, Zhejiang University, Hangzhou 310027, China, and
| | - Ville R I Kaila
- Computational Biocatalysis, Department of Chemistry, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
| | - Sonja A Dames
- From the Biomolecular NMR Spectroscopy and .,the Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| |
Collapse
|
7
|
Nechay MR, Valdez CE, Alexandrova AN. Computational Treatment of Metalloproteins. J Phys Chem B 2015; 119:5945-56. [DOI: 10.1021/acs.jpcb.5b00028] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Michael R. Nechay
- Department
of Chemistry and Biochemistry and ‡California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Crystal E. Valdez
- Department
of Chemistry and Biochemistry and ‡California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Anastassia N. Alexandrova
- Department
of Chemistry and Biochemistry and ‡California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
8
|
Valdez CE, Smith QA, Nechay MR, Alexandrova AN. Mysteries of metals in metalloenzymes. Acc Chem Res 2014; 47:3110-7. [PMID: 25207938 DOI: 10.1021/ar500227u] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Natural metalloenzymes are often the most proficient catalysts in terms of their activity, selectivity, and ability to operate at mild conditions. However, metalloenzymes are occasionally surprising in their selection of catalytic metals, and in their responses to metal substitution. Indeed, from the isolated standpoint of producing the best catalyst, a chemist designing from first-principles would likely choose a different metal. For example, some enzymes employ a redox active metal where a simple Lewis acid is needed. Such are several hydrolases. In other cases, substitution of a non-native metal leads to radical improvements in reactivity. For example, histone deacetylase 8 naturally operates with Zn(2+) in the active site but becomes much more active with Fe(2+). For β-lactamases, the replacement of the native Zn(2+) with Ni(2+) was suggested to lead to higher activity as predicted computationally. There are also intriguing cases, such as Fe(2+)- and Mn(2+)-dependent ribonucleotide reductases and W(4+)- and Mo(4+)-dependent DMSO reductases, where organisms manage to circumvent the scarcity of one metal (e.g., Fe(2+)) by creating protein structures that utilize another metal (e.g., Mn(2+)) for the catalysis of the same reaction. Naturally, even though both metal forms are active, one of the metals is preferred in every-day life, and the other metal variant remains dormant until an emergency strikes in the cell. These examples lead to certain questions. When are catalytic metals selected purely for electronic or structural reasons, implying that enzymatic catalysis is optimized to its maximum? When are metal selections a manifestation of competing evolutionary pressures, where choices are dictated not just by catalytic efficiency but also by other factors in the cell? In other words, how can enzymes be improved as catalysts merely through the use of common biological building blocks available to cells? Addressing these questions is highly relevant to the enzyme design community, where the goal is to prepare maximally efficient quasi-natural enzymes for the catalysis of reactions that interest humankind. Due to competing evolutionary pressures, many natural enzymes may not have evolved to be ideal catalysts and can be improved for the isolated purpose of catalysis in vitro when the competing factors are removed. The goal of this Account is not to cover all the possible stories but rather to highlight how variable enzymatic catalysis can be. We want to bring up possible factors affecting the evolution of enzyme structure, and the large- and intermediate-scale structural and electronic effects that metals can induce in the protein, and most importantly, the opportunities for optimization of these enzymes for catalysis in vitro.
Collapse
Affiliation(s)
- Crystal E. Valdez
- Department
of Chemistry and Biochemistry, and ‡California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Quentin A. Smith
- Department
of Chemistry and Biochemistry, and ‡California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Michael R. Nechay
- Department
of Chemistry and Biochemistry, and ‡California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Anastassia N. Alexandrova
- Department
of Chemistry and Biochemistry, and ‡California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
9
|
Marenich AV, Ho J, Coote ML, Cramer CJ, Truhlar DG. Computational electrochemistry: prediction of liquid-phase reduction potentials. Phys Chem Chem Phys 2014; 16:15068-106. [PMID: 24958074 DOI: 10.1039/c4cp01572j] [Citation(s) in RCA: 336] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This article reviews recent developments and applications in the area of computational electrochemistry. Our focus is on predicting the reduction potentials of electron transfer and other electrochemical reactions and half-reactions in both aqueous and nonaqueous solutions. Topics covered include various computational protocols that combine quantum mechanical electronic structure methods (such as density functional theory) with implicit-solvent models, explicit-solvent protocols that employ Monte Carlo or molecular dynamics simulations (for example, Car-Parrinello molecular dynamics using the grand canonical ensemble formalism), and the Marcus theory of electronic charge transfer. We also review computational approaches based on empirical relationships between molecular and electronic structure and electron transfer reactivity. The scope of the implicit-solvent protocols is emphasized, and the present status of the theory and future directions are outlined.
Collapse
Affiliation(s)
- Aleksandr V Marenich
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, 207 Pleasant Street S.E., Minneapolis, MN 55455-0431, USA.
| | | | | | | | | |
Collapse
|
10
|
Zheng P, Chou CC, Guo Y, Wang Y, Li H. Single Molecule Force Spectroscopy Reveals the Molecular Mechanical Anisotropy of the FeS4 Metal Center in Rubredoxin. J Am Chem Soc 2013; 135:17783-92. [DOI: 10.1021/ja406695g] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Peng Zheng
- Department
of Chemistry, University of British Columbia Vancouver, British Columbia V6T 1Z1, Canada
| | - Chih-Chung Chou
- Department
of Chemistry, University of British Columbia Vancouver, British Columbia V6T 1Z1, Canada
| | - Ying Guo
- Department
of Chemistry, University of British Columbia Vancouver, British Columbia V6T 1Z1, Canada
| | - Yanyan Wang
- Department
of Chemistry, University of British Columbia Vancouver, British Columbia V6T 1Z1, Canada
- State
Key Laboratory of Precision Measurements Technology and Instruments,
School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin, 30072 P. R. China
| | - Hongbin Li
- Department
of Chemistry, University of British Columbia Vancouver, British Columbia V6T 1Z1, Canada
- State
Key Laboratory of Precision Measurements Technology and Instruments,
School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin, 30072 P. R. China
| |
Collapse
|
11
|
Sen D, Chatterjee TK. Pharmacophore modeling and 3D quantitative structure-activity relationship analysis of febrifugine analogues as potent antimalarial agent. J Adv Pharm Technol Res 2013; 4:50-60. [PMID: 23662282 PMCID: PMC3645363 DOI: 10.4103/2231-4040.107501] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Febrifugine and its derivatives are effective against Plasmodium falciparum. Using PHASE algorithm, a five-point pharmacophore model with two hydrogen bond acceptor (A), one positively ionizable (P) and two aromatic rings (R), was developed to derive a predictive ligand-based statistically significant 3D-quantitative structure-activity relationship (QSAR) model (r2 = 0.972, SD = 0.3, F = 173.4, Q2 = 0.712, RMSE = 0.3, Person-R = 0.94, and r2pred = 0.8) to explicate the structural attributes crucial for antimalarial activity. The developed pharmacophore model and 3D QSAR model can be a substantial tool for virtual screening and related antimalarial drug discovery research.
Collapse
Affiliation(s)
- Debanjan Sen
- Bengal Institute of Pharmaceutical Sciences, Kalyani, Nadia, W.B., India
| | | |
Collapse
|
12
|
Carvalho ATP, Teixeira AFS, Ramos MJ. Parameters for molecular dynamics simulations of iron-sulfur proteins. J Comput Chem 2013; 34:1540-8. [PMID: 23609049 DOI: 10.1002/jcc.23287] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 03/01/2013] [Accepted: 03/05/2013] [Indexed: 11/06/2022]
Abstract
Iron-sulfur proteins involved in electron transfer reactions have finely tuned redox potentials, which allow them to be highly efficient and specific. Factors such as metal center solvent exposure, interaction with charged residues, or hydrogen bonds between the ligand residues and amide backbone groups have all been pointed out to cause such specific redox potentials. Here, we derived parameters compatible with the AMBER force field for the metal centers of iron-sulfur proteins and applied them in the molecular dynamics simulations of three iron-sulfur proteins. We used density-functional theory (DFT) calculations and Seminario's method for the parameterization. Parameter validation was obtained by matching structures and normal frequencies at the quantum mechanics and molecular mechanics levels of theory. Having guaranteed a correct representation of the protein coordination spheres, the amide H-bonds and the water exposure to the ligands were analyzed. Our results for the pattern of interactions with the metal centers are consistent to those obtained by nuclear magnetic resonance spectroscopy (NMR) experiments and DFT calculations, allowing the application of molecular dynamics to the study of those proteins.
Collapse
Affiliation(s)
- Alexandra T P Carvalho
- Institut de Química Computacional and Departament de Química, Universitat de Girona, Girona 17071, Spain.
| | | | | |
Collapse
|
13
|
Sparta M, Shirvanyants D, Ding F, Dokholyan NV, Alexandrova AN. Hybrid dynamics simulation engine for metalloproteins. Biophys J 2013; 103:767-76. [PMID: 22947938 DOI: 10.1016/j.bpj.2012.06.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 06/08/2012] [Accepted: 06/18/2012] [Indexed: 11/15/2022] Open
Abstract
Quality computational description of metalloproteins is a great challenge due to the vast span of time- and lengthscales characteristic of their existence. We present an efficient new method that allows for robust characterization of metalloproteins. It combines quantum mechanical (QM) description of the metal-containing active site, and extensive dynamics of the protein captured by discrete molecular dynamics (DMD) (QM/DMD). DMD samples the entire protein, including the backbone, and most of the active site, except for the immediate coordination region of the metal. QM operates on the part of the protein of electronic and chemical significance, which may include tens to hundreds of atoms. The breathing quantum-classical boundary provides a continuous mutual feedback between the two machineries. We test QM/DMD using the Fe-containing electron transporter protein, rubredoxin, and its three mutants as a model. QM/DMD can provide a reliable balanced description of metalloproteins' structure, dynamics, and electronic structure in a reasonable amount of time. As an illustration of QM/DMD capabilities, we then predict the structure of the Ca(2+) form of the enzyme catechol O-methyl transferase, which, unlike the native Mg(2+) form, is catalytically inactive. The Mg(2+) site is ochtahedral, but the Ca(2+) is 7-coordinate and features the misalignment of the reacting parts of the system. The change is facilitated by the backbone adjustment. QM/DMD is ideal and fast for providing this level of structural insight.
Collapse
Affiliation(s)
- Manuel Sparta
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA
| | | | | | | | | |
Collapse
|
14
|
Zheng P, Takayama SIJ, Mauk AG, Li H. Hydrogen Bond Strength Modulates the Mechanical Strength of Ferric-Thiolate Bonds in Rubredoxin. J Am Chem Soc 2012; 134:4124-31. [DOI: 10.1021/ja2078812] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Peng Zheng
- Department of Chemistry, University of British Columbia, Vancouver,
BC V6T 1Z1 Canada
| | - Shin-ichi J. Takayama
- Department of Biochemistry
and Molecular Biology and the Center for Blood Research, University of British Columbia, Vancouver,
BC V6T 1Z3 Canada
| | - A. Grant Mauk
- Department of Biochemistry
and Molecular Biology and the Center for Blood Research, University of British Columbia, Vancouver,
BC V6T 1Z3 Canada
| | - Hongbin Li
- Department of Chemistry, University of British Columbia, Vancouver,
BC V6T 1Z1 Canada
| |
Collapse
|
15
|
Gamiz-Hernandez AP, Kieseritzky G, Ishikita H, Knapp EW. Rubredoxin Function: Redox Behavior from Electrostatics. J Chem Theory Comput 2011; 7:742-52. [DOI: 10.1021/ct100476h] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ana Patricia Gamiz-Hernandez
- Institute of Chemistry and Biochemistry, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Fabeckstrasse 36a, D-14195, Berlin, Germany
| | - Gernot Kieseritzky
- Institute of Chemistry and Biochemistry, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Fabeckstrasse 36a, D-14195, Berlin, Germany
| | - Hiroshi Ishikita
- Career-Path Promotion Unit for Young Life Scientists, Kyoto University, 202 Building E, Graduate School of Medicine, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - E. W. Knapp
- Institute of Chemistry and Biochemistry, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Fabeckstrasse 36a, D-14195, Berlin, Germany
| |
Collapse
|