1
|
Katuri KP, Kamireddy S, Kavanagh P, Muhammad A, Conghaile PÓ, Kumar A, Saikaly PE, Leech D. Electroactive biofilms on surface functionalized anodes: The anode respiring behavior of a novel electroactive bacterium, Desulfuromonas acetexigens. WATER RESEARCH 2020; 185:116284. [PMID: 32818731 DOI: 10.1016/j.watres.2020.116284] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 08/04/2020] [Accepted: 08/07/2020] [Indexed: 06/11/2023]
Abstract
Surface chemistry is known to influence the formation, composition, and electroactivity of electron-conducting biofilms. However, understanding of the evolution of microbial composition during biofilm development and its impact on the electrochemical response is limited. Here we present voltammetric, microscopic and microbial community analysis of biofilms formed under fixed applied potential for modified graphite electrodes during early (90 h) and mature (340 h) growth phases. Electrodes modified to introduce hydrophilic groups (-NH2, -COOH and -OH) enhance early-stage biofilm formation compared to unmodified or electrodes modified with hydrophobic groups (-C2H5). In addition, early-stage films formed on hydrophilic electrodes are dominated by the gram-negative sulfur-reducing bacterium Desulfuromonas acetexigens while Geobacter sp. dominates on -C2H5 and unmodified electrodes. As biofilms mature, current generation becomes similar, and D. acetexigens dominates in all biofilms irrespective of surface chemistry. Electrochemistry of pure culture D. acetexigens biofilms reveal that this microbe is capable of forming electroactive biofilms producing considerable current density of > 9 A/m2 in a short period of potential-induced growth (~19 h following inoculation) using acetate as an electron donor. The inability of D. acetexigens biofilms to use H2 as a sole source electron donor for current generation shows promise for maximizing H2 recovery in single-chambered microbial electrolysis cell systems treating wastewaters.
Collapse
Affiliation(s)
- Krishna P Katuri
- School of Chemistry & Ryan Institute, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland; Biological and Environmental Sciences and Engineering Division, Water Desalination and Reuse Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Sirisha Kamireddy
- School of Chemistry & Ryan Institute, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland; Biological and Environmental Sciences and Engineering Division, Water Desalination and Reuse Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Paul Kavanagh
- School of Chemistry & Ryan Institute, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland
| | - Ali Muhammad
- Biological and Environmental Sciences and Engineering Division, Water Desalination and Reuse Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Peter Ó Conghaile
- School of Chemistry & Ryan Institute, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland
| | - Amit Kumar
- School of Chemistry & Ryan Institute, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland
| | - Pascal E Saikaly
- Biological and Environmental Sciences and Engineering Division, Water Desalination and Reuse Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia.
| | - Dónal Leech
- School of Chemistry & Ryan Institute, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland.
| |
Collapse
|
2
|
Brunner S, Klessing T, Dötsch A, Sturm-Richter K, Gescher J. Efficient Bioelectrochemical Conversion of Industrial Wastewater by Specific Strain Isolation and Community Adaptation. Front Bioeng Biotechnol 2019; 7:23. [PMID: 30838205 PMCID: PMC6389598 DOI: 10.3389/fbioe.2019.00023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 01/29/2019] [Indexed: 12/07/2022] Open
Abstract
The aim of this study was the development of a specifically adapted microbial community for the removal of organic carbon from an industrial wastewater using a bioelectrochemical system. In a first step, ferric iron reducing microorganisms were isolated from the examined industrial wastewater. In a second step, it was tested to what extent these isolates or a cocultivation of the isolates with the exoelectrogenic model organism Geobacter sulfurreducens (G. sulfurreducens) were able to eliminate organic carbon from the wastewater. To establish a stable biofilm on the anode and to analyze the performance of the system, the experiments were conducted first under batch-mode conditions for 21 days. Since the removal of organic carbon was relatively low in the batch system, a similar experiment was conducted under continuous-mode conditions for 65 days, including a slow transition from synthetic medium to industrial wastewater as carbon and electron source and variations in the flow rate of the medium. The overall performance of the system was strongly increased in the continuous- compared to the batch-mode reactor and the highest average current density (1,368 mA/m2) and Coulombic efficiency (54.9%) was measured in the continuous-mode reactor inoculated with the coculture consisting of the new isolates and G. sulfurreducens. The equivalently inoculated batch-mode system produced only 82-fold lower current densities, which were accompanied by 42-fold lower Coulombic efficiencies.
Collapse
Affiliation(s)
- Stefanie Brunner
- Department of Applied Biology, Institute for Applied Biosciences, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Tina Klessing
- Department of Applied Biology, Institute for Applied Biosciences, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Andreas Dötsch
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Karlsruhe, Germany
| | - Katrin Sturm-Richter
- Department of Applied Biology, Institute for Applied Biosciences, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Johannes Gescher
- Department of Applied Biology, Institute for Applied Biosciences, Karlsruhe Institute of Technology, Karlsruhe, Germany
- Department of Biofilm Technologies, Institute for Biological Interfaces 1, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
3
|
Zhang X, Li X, Zhao X, Li Y. Factors affecting the efficiency of a bioelectrochemical system: a review. RSC Adv 2019; 9:19748-19761. [PMID: 35519388 PMCID: PMC9065546 DOI: 10.1039/c9ra03605a] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 06/11/2019] [Indexed: 11/21/2022] Open
Abstract
The great potential of bioelectrochemical systems (BESs) in pollution control combined with energy recovery has attracted increasing attention.
Collapse
Affiliation(s)
- Xiaolin Zhang
- Agro-Environmental Protection Institute
- Ministry of Agriculture and Rural Affairs/Key Laboratory of Original Agro-Environmental Pollution Prevention and Control
- MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety
- Tianjin 300191
- China
| | - Xiaojing Li
- Agro-Environmental Protection Institute
- Ministry of Agriculture and Rural Affairs/Key Laboratory of Original Agro-Environmental Pollution Prevention and Control
- MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety
- Tianjin 300191
- China
| | - Xiaodong Zhao
- Agro-Environmental Protection Institute
- Ministry of Agriculture and Rural Affairs/Key Laboratory of Original Agro-Environmental Pollution Prevention and Control
- MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety
- Tianjin 300191
- China
| | - Yongtao Li
- Agro-Environmental Protection Institute
- Ministry of Agriculture and Rural Affairs/Key Laboratory of Original Agro-Environmental Pollution Prevention and Control
- MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety
- Tianjin 300191
- China
| |
Collapse
|
4
|
Rimboud M, Barakat M, Bergel A, Erable B. Different methods used to form oxygen reducing biocathodes lead to different biomass quantities, bacterial communities, and electrochemical kinetics. Bioelectrochemistry 2017; 116:24-32. [DOI: 10.1016/j.bioelechem.2017.03.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/03/2017] [Accepted: 03/02/2017] [Indexed: 11/28/2022]
|
5
|
Optimization of Bioelectricity Generation in Constructed Wetland-Coupled Microbial Fuel Cell Systems. WATER 2017. [DOI: 10.3390/w9030185] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
6
|
Desmond-Le Quéméner E, Rimboud M, Bridier A, Madigou C, Erable B, Bergel A, Bouchez T. Biocathodes reducing oxygen at high potential select biofilms dominated by Ectothiorhodospiraceae populations harboring a specific association of genes. BIORESOURCE TECHNOLOGY 2016; 214:55-62. [PMID: 27126080 DOI: 10.1016/j.biortech.2016.04.087] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 04/15/2016] [Accepted: 04/16/2016] [Indexed: 06/05/2023]
Abstract
Biocathodes polarized at high potential are promising for enhancing Microbial Fuel Cell performances but the microbes and genes involved remain poorly documented. Here, two sets of five oxygen-reducing biocathodes were formed at two potentials (-0.4V and +0.1V vs. saturated calomel electrode) and analyzed combining electrochemical and metagenomic approaches. Slower start-up but higher current densities were observed at high potential and a distinctive peak increasing over time was recorded on cyclic voltamogramms, suggesting the growth of oxygen reducing microbes. 16S pyrotag sequencing showed the enrichment of two operational taxonomic units (OTUs) affiliated to Ectothiorodospiraceae on high potential electrodes with the best performances. Shotgun metagenome sequencing and a newly developed method for the identification of Taxon Specific Gene Annotations (TSGA) revealed Ectothiorhodospiraceae specific genes possibly involved in electron transfer and in autotrophic growth. These results give interesting insights into the genetic features underlying the selection of efficient oxygen reducing microbes on biocathodes.
Collapse
Affiliation(s)
| | - Mickaël Rimboud
- Laboratoire de Génie Chimique (LGC), CNRS, Université de Toulouse (INPT), 4 allée Emile Monso, BP 84234, 31432 Toulouse, France
| | - Arnaud Bridier
- Irstea, UR HBAN, 1 rue Pierre-Gilles de Gennes, 92761 Antony cedex, France
| | - Céline Madigou
- Irstea, UR HBAN, 1 rue Pierre-Gilles de Gennes, 92761 Antony cedex, France
| | - Benjamin Erable
- Laboratoire de Génie Chimique (LGC), CNRS, Université de Toulouse (INPT), 4 allée Emile Monso, BP 84234, 31432 Toulouse, France
| | - Alain Bergel
- Laboratoire de Génie Chimique (LGC), CNRS, Université de Toulouse (INPT), 4 allée Emile Monso, BP 84234, 31432 Toulouse, France
| | - Théodore Bouchez
- Irstea, UR HBAN, 1 rue Pierre-Gilles de Gennes, 92761 Antony cedex, France.
| |
Collapse
|
7
|
Hentati D, Chebbi A, Loukil S, Kchaou S, Godon JJ, Sayadi S, Chamkha M. Biodegradation of fluoranthene by a newly isolated strain of Bacillus stratosphericus from Mediterranean seawater of the Sfax fishing harbour, Tunisia. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:15088-15100. [PMID: 27083911 DOI: 10.1007/s11356-016-6648-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 04/05/2016] [Indexed: 06/05/2023]
Abstract
A physico-chemical characterization of seawater taken from the fishing harbour of Sfax, Tunisia, revealed a contamination by organic and inorganic micropollutants. An aerobic marine halotolerant Bacillus stratosphericus strain FLU5 was isolated after enrichment on fluoranthene, a persistent and toxic polycyclic aromatic hydrocarbon (PAH). GC-MS analyses showed that strain FLU5 was capable of degrading almost 45 % of fluoranthene (100 mg l(-1)), without yeast extract added, after 30 days of incubation at 30 g l(-1) NaCl and 37 °C. In addition, the isolate FLU5 showed a remarkable capacity to grow on a wide range of aliphatic, aromatic and complex hydrocarbons. This strain could also synthesize a biosurfactant which was capable of reducing the surface tension of the cell-free medium, during the growth on fluoranthene. The biodegradative abilities of PAHs are promising and can be used to perform the bioremediation strategies of seawaters and marine sediments contaminated by hydrocarbons.
Collapse
Affiliation(s)
- Dorra Hentati
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, LMI COSYS-Med, University of Sfax, PO Box 1177, 3018, Sfax, Tunisia
| | - Alif Chebbi
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, LMI COSYS-Med, University of Sfax, PO Box 1177, 3018, Sfax, Tunisia
| | - Slim Loukil
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, LMI COSYS-Med, University of Sfax, PO Box 1177, 3018, Sfax, Tunisia
| | - Sonia Kchaou
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, LMI COSYS-Med, University of Sfax, PO Box 1177, 3018, Sfax, Tunisia
| | - Jean-Jacques Godon
- Laboratory INRA of Environmental Biotechnology, Avenue des Etangs, F-11100, Narbonne, France
| | - Sami Sayadi
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, LMI COSYS-Med, University of Sfax, PO Box 1177, 3018, Sfax, Tunisia
| | - Mohamed Chamkha
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, LMI COSYS-Med, University of Sfax, PO Box 1177, 3018, Sfax, Tunisia.
| |
Collapse
|
8
|
Feng C, Liu Y, Li Q, Che Y, Li N, Wang X. Quaternary Ammonium Compound in Anolyte without Functionalization Accelerates the Startup of Bioelectrochemical Systems using Real Wastewater. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2015.12.069] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Successive bioanode regenerations to maintain efficient current production from biowaste. Bioelectrochemistry 2015; 106:133-40. [DOI: 10.1016/j.bioelechem.2015.05.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 04/17/2015] [Accepted: 05/06/2015] [Indexed: 01/05/2023]
|
10
|
Lu L, Xing D, Ren ZJ. Microbial community structure accompanied with electricity production in a constructed wetland plant microbial fuel cell. BIORESOURCE TECHNOLOGY 2015; 195:115-121. [PMID: 26066972 DOI: 10.1016/j.biortech.2015.05.098] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 05/29/2015] [Accepted: 05/30/2015] [Indexed: 06/04/2023]
Abstract
This study reveals the complex structure of bacterial and archaeal communities associated with a Canna indica plant microbial fuel cell (PMFC) and its electricity production. The PMFC produced a maximum current of 105 mA/m(2) by utilizing rhizodeposits as the sole electron donor without any external nutrient or buffer supplements, which demonstrates the feasibility of PMFCs in practical oligotrophic conditions with low solution conductivity. The microbial diversity was significantly higher in the PMFC than non-plant controls or sediment-only controls, and pyrosequencing and clone library reveal that rhizodeposits conversion to current were carried out by syntrophic interactions between fermentative bacteria (e.g., Anaerolineaceae) and electrochemically active bacteria (e.g., Geobacter). Denitrifying bacteria and acetotrophic methanogens play a minor role in organics degradation, but abundant hydrogenotrophic methanogens and thermophilic archaea are likely main electron donor competitors.
Collapse
Affiliation(s)
- Lu Lu
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Defeng Xing
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Zhiyong Jason Ren
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, CO 80309, USA.
| |
Collapse
|
11
|
Gonzalez E, Brereton NJB, Marleau J, Guidi Nissim W, Labrecque M, Pitre FE, Joly S. Meta-transcriptomics indicates biotic cross-tolerance in willow trees cultivated on petroleum hydrocarbon contaminated soil. BMC PLANT BIOLOGY 2015; 15:246. [PMID: 26459343 PMCID: PMC4603587 DOI: 10.1186/s12870-015-0636-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 09/30/2015] [Indexed: 05/09/2023]
Abstract
BACKGROUND High concentrations of petroleum hydrocarbon (PHC) pollution can be hazardous to human health and leave soils incapable of supporting agricultural crops. A cheap solution, which can help restore biodiversity and bring land back to productivity, is cultivation of high biomass yielding willow trees. However, the genetic mechanisms which allow these fast-growing trees to tolerate PHCs are as yet unclear. METHODS Salix purpurea 'Fish Creek' trees were pot-grown in soil from a former petroleum refinery, either lacking or enriched with C10-C50 PHCs. De novo assembled transcriptomes were compared between tree organs and impartially annotated without a priori constraint to any organism. RESULTS Over 45% of differentially expressed genes originated from foreign organisms, the majority from the two-spotted spidermite, Tetranychus urticae. Over 99% of T. urticae transcripts were differentially expressed with greater abundance in non-contaminated trees. Plant transcripts involved in the polypropanoid pathway, including phenylalanine ammonia-lyase (PAL), had greater expression in contaminated trees whereas most resistance genes showed higher expression in non-contaminated trees. CONCLUSIONS The impartial approach to annotation of the de novo transcriptomes, allowing for the possibility for multiple species identification, was essential for interpretation of the crop's response treatment. The meta-transcriptomic pattern of expression suggests a cross-tolerance mechanism whereby abiotic stress resistance systems provide improved biotic resistance. These findings highlight a valuable but complex biotic and abiotic stress response to real-world, multidimensional contamination which could, in part, help explain why crops such as willow can produce uniquely high biomass yields on challenging marginal land.
Collapse
Affiliation(s)
- Emmanuel Gonzalez
- Institut de recherche en biologie végétale, University of Montreal, 4101 Sherbrooke E, Montreal, QC, H1X 2B2, Canada.
| | - Nicholas J B Brereton
- Institut de recherche en biologie végétale, University of Montreal, 4101 Sherbrooke E, Montreal, QC, H1X 2B2, Canada.
| | - Julie Marleau
- Institut de recherche en biologie végétale, University of Montreal, 4101 Sherbrooke E, Montreal, QC, H1X 2B2, Canada.
| | | | - Michel Labrecque
- Institut de recherche en biologie végétale, University of Montreal, 4101 Sherbrooke E, Montreal, QC, H1X 2B2, Canada.
- Montreal Botanical Gardens, 4101 Sherbrooke E, Montreal, QC, H1X 2B2, Canada.
| | - Frederic E Pitre
- Institut de recherche en biologie végétale, University of Montreal, 4101 Sherbrooke E, Montreal, QC, H1X 2B2, Canada.
- Montreal Botanical Gardens, 4101 Sherbrooke E, Montreal, QC, H1X 2B2, Canada.
| | - Simon Joly
- Institut de recherche en biologie végétale, University of Montreal, 4101 Sherbrooke E, Montreal, QC, H1X 2B2, Canada.
- Montreal Botanical Gardens, 4101 Sherbrooke E, Montreal, QC, H1X 2B2, Canada.
| |
Collapse
|
12
|
Zhang J, Burgess JG. Shewanella electrodiphila sp. nov., a psychrotolerant bacterium isolated from Mid-Atlantic Ridge deep-sea sediments. Int J Syst Evol Microbiol 2015; 65:2882-2889. [PMID: 25999594 DOI: 10.1099/ijs.0.000345] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Strains MAR441(T) and MAR445 were isolated from Mid-Atlantic Ridge sediments from a depth of 2734 m, and were found to belong to the genus Shewanella. The strains were rod-shaped, pigmented, non-motile and capable of anaerobic growth either by fermentation of carbohydrates or by anaerobic respiration. The strains utilized a variety of electron acceptors, including nitrate and ferric compounds, and could utilize peptone when grown anaerobically in a two-chambered microbial fuel cell, which used carbon cloth electrodes and delivered a stable power output of ,150-200 mW m(-2). The major fatty acids were typical of the genus Shewanella, with major components C13 : 0, iso-C13 : 0, iso-C15 : 0, C16 : 0, C16 : 1ω7c, C18 : 1ω7c and C20 : 5ω3 fatty acids. The DNA G+C content of strains MAR441(T) and MAR445 was 42.4 mol%. 16S rRNA gene sequence analysis indicated that strains MAR441(T) and MAR445 were most closely related to Shewanella olleyana (sequence similarities 97.9% to the type strain). DNA-DNA hybridization demonstrated only 15.6-37.2% relatedness between strain MAR441(T) and the type strains of related species of the genus Shewanella. Phenotypic characteristics confirmed that these isolates constituted a novel species of the genus Shewanella, for which the name Shewanella electrodiphila sp. nov. is proposed; the type strain is MAR441(T) (5ATCC BAA-2408(T) = DSM 24955(T)).
Collapse
Affiliation(s)
- Jinwei Zhang
- School of Marine Science and Technology, Newcastle University, Newcastle upon Tyne NE30 4PZ, UK
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - J Grant Burgess
- School of Marine Science and Technology, Newcastle University, Newcastle upon Tyne NE30 4PZ, UK
| |
Collapse
|
13
|
Huang J, Zhu N, Cao Y, Peng Y, Wu P, Dong W. Exoelectrogenic bacterium phylogenetically related to Citrobacter freundii, isolated from anodic biofilm of a microbial fuel cell. Appl Biochem Biotechnol 2014; 175:1879-91. [PMID: 25427595 DOI: 10.1007/s12010-014-1418-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 11/17/2014] [Indexed: 10/24/2022]
Abstract
An electrogenic bacterium, named Citrobacter freundii Z7, was isolated from the anodic biofilm of microbial fuel cell (MFC) inoculated with aerobic sewage sludge. Cyclic voltammetry (CV) analysis exhibited that the strain Z7 had relatively high electrochemical activity. When the strain Z7 was inoculated into MFC, the maximum power density can reach 204.5 mW/m(2) using citrate as electron donor. Series of substrates including glucose, glycerol, lactose, sucrose, and rhammose could be utilized to generate power. CV tests and the addition of anode solution as well as AQDS experiments indicated that the strain Z7 might transfer electrons indirectly via secreted mediators.
Collapse
Affiliation(s)
- Jianjian Huang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, People's Republic of China
| | | | | | | | | | | |
Collapse
|
14
|
Zhang E, Cai Y, Luo Y, Piao Z. Riboflavin-shuttled extracellular electron transfer from Enterococcus faecalis to electrodes in microbial fuel cells. Can J Microbiol 2014; 60:753-9. [PMID: 25345758 DOI: 10.1139/cjm-2014-0389] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Great attention has been focused on Gram-negative bacteria in the application of microbial fuel cells. In this study, the Gram-positive bacterium Enterococcus faecalis was employed in microbial fuel cells. Bacterial biofilms formed by E. faecalis ZER6 were investigated with respect to electricity production through the riboflavin-shuttled extracellular electron transfer. Trace riboflavin was shown to be essential for transferring electrons derived from the oxidation of glucose outside the peptidoglycan layer in the cell wall of E. faecalis biofilms formed on the surface of electrodes, in the absence of other potential electron mediators (e.g., yeast extract).
Collapse
Affiliation(s)
- Enren Zhang
- a Department of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou City 225002, People's Republic of China
| | | | | | | |
Collapse
|
15
|
Hosseini-Abari A, Emtiazi G, Lee SH, Kim BG, Kim JH. Biosynthesis of Silver Nanoparticles by Bacillus stratosphericus Spores and the Role of Dipicolinic Acid in This Process. Appl Biochem Biotechnol 2014; 174:270-82. [DOI: 10.1007/s12010-014-1055-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 07/07/2014] [Indexed: 10/25/2022]
|
16
|
Lu L, Huggins T, Jin S, Zuo Y, Ren ZJ. Microbial metabolism and community structure in response to bioelectrochemically enhanced remediation of petroleum hydrocarbon-contaminated soil. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:4021-9. [PMID: 24628095 DOI: 10.1021/es4057906] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
This study demonstrates that electrodes in a bioelectrochemical system (BES) can potentially serve as a nonexhaustible electron acceptor for in situ bioremediation of hydrocarbon contaminated soil. The deployment of BES not only eliminates aeration or supplement of electron acceptors as in contemporary bioremediation but also significantly shortens the remediation period and produces sustainable electricity. More interestingly, the study reveals that microbial metabolism and community structure distinctively respond to the bioelectrochemically enhanced remediation. Tubular BESs with carbon cloth anode (CCA) or biochar anode (BCA) were inserted into raw water saturated soils containing petroleum hydrocarbons for enhancing in situ remediation. Results show that total petroleum hydrocarbon (TPH) removal rate almost doubled in soils close to the anode (63.5-78.7%) than that in the open circuit positive controls (37.6-43.4%) during a period of 64 days. The maximum current density from the BESs ranged from 73 to 86 mA/m(2). Comprehensive microbial and chemical characterizations and statistical analyses show that the residual TPH has a strongly positive correlation with hydrocarbon-degrading microorganisms (HDM) numbers, dehydrogenase activity, and lipase activity and a negative correlation with soil pH, conductivity, and catalase activity. Distinctive microbial communities were identified at the anode, in soil with electrodes, and soil without electrodes. Uncommon electrochemically active bacteria capable of hydrocarbon degradation such as Comamonas testosteroni, Pseudomonas putida, and Ochrobactrum anthropi were selectively enriched on the anode, while hydrocarbon oxidizing bacteria were dominant in soil samples. Results from genus or phylum level characterizations well agree with the data from cluster analysis. Data from this study suggests that a unique constitution of microbial communities may play a key role in BES enhancement of petroleum hydrocarbons biodegradation in soils.
Collapse
Affiliation(s)
- Lu Lu
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder , Boulder, Colorado 80309, United States
| | | | | | | | | |
Collapse
|
17
|
Draft Genome Sequence of Bacillus stratosphericus LAMA 585, Isolated from the Atlantic Deep Sea. GENOME ANNOUNCEMENTS 2013; 1:1/3/e00204-13. [PMID: 23640380 PMCID: PMC3642287 DOI: 10.1128/genomea.00204-13] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Bacillus stratosphericus LAMA 585 was isolated from the Mid-Atlantic-Ridge seafloor (5,500-m depth). This bacterium presents the capacity for cellulase, xylanase, and lipase production when growing aerobically in marine-broth media. Genes involved in the tolerance of oligotrophic and extreme conditions and prospection of biotechnological products were annotated in the draft genome (3.7 Mb).
Collapse
|