1
|
Shoja SMR, Abdouss M, Saeedirad R. Synthesis, characterization, and application of N-CNT/1-(2-Hydroxyethyl)-3-methylimidazolium dicyanamide as a green nanocatalyst for the sulfur removal from light oils. Heliyon 2024; 10:e24073. [PMID: 38283243 PMCID: PMC10818197 DOI: 10.1016/j.heliyon.2024.e24073] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/15/2023] [Accepted: 01/03/2024] [Indexed: 01/30/2024] Open
Abstract
Adsorptive desulfurization of light fuels is sustainable due to its ambient operation and reusability of exhausted adsorbents. In this study, 1-(2-hydroxyethyl)-3-methylimidazolium dicyanamide [HEMIM][DCA] IL was synthesized and utilized to modify N-doped carbon nanotubes (CNTs) to produce N-CNT/[HEMIM][DCA] as a green hybrid adsorbent. The adsorbent was characterized using XRD, FE-SEM, FTIR, BET, and TGA. It was indicated that the N-CNT treatment with [HEMIM][DCA] IL resulted in decreased crystallinity with the cubic and rod-shaped morphology and harsh surfaces and curved edges. The absence of shifts or variations in FTIR peaks of starting materials and N-CNT/[HEMIM][DCA] suggested that neither component was affected by chemical interactions. The adsorption capacity of N-CNT and N-CNT/[HEMIM][DCA] was 54.3 mg/g and for 83.6 mg/g for 50 ppm BT, respectively. Saturated with BT, the adsorbent's performance was decreased at high BT concentrations. The adsorption isotherms provided an understanding of interactions of BT with sorbent surface which follows the Langmuir model for N-CNT/[HEMIM][DCA] and N-CNT. The kinetics of BT adsorption on N-CNT/[HEMIM][DCA] was fitted with second-order kinetic model with the decreased adsorption ratio over time due to pore saturation. 25 % reduction of the adsorption capacity was obtained after two recycling cycles of the adsorbent (62.5 mg/g). N-CNT/[HEMIM][DCA] showed good recyclability and potential as a promising BT adsorbent.
Collapse
Affiliation(s)
| | - Majid Abdouss
- Department of Chemistry, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran
| | - Raheleh Saeedirad
- Department of Chemistry, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran
| |
Collapse
|
2
|
Mulk WU, Ali SA, Shah SN, Shah MUH, Zhang QJ, Younas M, Fatehizadeh A, Sheikh M, Rezakazemi M. Breaking boundaries in CO2 capture: Ionic liquid-based membrane separation for post-combustion applications. J CO2 UTIL 2023; 75:102555. [DOI: 10.1016/j.jcou.2023.102555] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
|
3
|
Sahrash R, Siddiqa A, Razzaq H, Iqbal T, Qaisar S. PVDF based ionogels: applications towards electrochemical devices and membrane separation processes. Heliyon 2018; 4:e00847. [PMID: 30450432 PMCID: PMC6226564 DOI: 10.1016/j.heliyon.2018.e00847] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 09/10/2018] [Accepted: 10/04/2018] [Indexed: 11/28/2022] Open
Abstract
Ionogels have emerged as one of the most interesting and captivating form of composites which credits to the outstanding characteristics. One of the most important constituent of ionogels is ionic liquid, which show many attractive properties notably non-volatility, in-flammability, negligible vapor pressure, tunability, thermal stability and solvating ability. A large variety of matrix materials have been under consideration for ionogels, presently, polymer/ionic liquid based ionogels have attracted much attention. Numerous polymeric materials such as have been utilized for these polymer/ionic liquids based ionogels. Polyvinylidene fluoride (PVDF) has been on top of the line as a matrix material for polymer based ionogels owing to its stability, aging and chemical resistance and mechanical strength. This review is primarily concerned with the properties of polyvinylidene fluoride based ionogels with an emphasis on their applications in various domains electrochemical devices, gas separation and liquid/liquid separations.
Collapse
Affiliation(s)
- Rafida Sahrash
- NanoScience and Technology Department, National Centre for Physics, Islamabad, Pakistan.,Department of Physics, University of Gujrat, Gujrat, Pakistan
| | - Asima Siddiqa
- NanoScience and Technology Department, National Centre for Physics, Islamabad, Pakistan
| | - Humaira Razzaq
- NanoScience and Technology Department, National Centre for Physics, Islamabad, Pakistan
| | - Tahir Iqbal
- NanoScience and Technology Department, National Centre for Physics, Islamabad, Pakistan.,Department of Physics, University of Gujrat, Gujrat, Pakistan
| | - Sara Qaisar
- NanoScience and Technology Department, National Centre for Physics, Islamabad, Pakistan
| |
Collapse
|
4
|
Abejón R, Pérez-Acebo H, Garea A. A Bibliometric Analysis of Research on Supported Ionic Liquid Membranes during the 1995-2015 Period: Study of the Main Applications and Trending Topics. MEMBRANES 2017; 7:membranes7040063. [PMID: 29112172 PMCID: PMC5746822 DOI: 10.3390/membranes7040063] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/13/2017] [Accepted: 11/01/2017] [Indexed: 01/06/2023]
Abstract
A bibliometric analysis based on Scopus database was performed to identify the global research trends related to Supported Ionic Liquid Membranes (SILMs) during the time period from 1995 to 2015. This work tries to improve the understanding of the most relevant research topics and applications. The results from the analysis reveal that only after 2005 the research efforts focused on SILMs became significant, since the references found before that year are scarce. The most important research works on the four main application groups for SILMs defined in this work (carbon dioxide separation, other gas phase separations, pervaporation and liquid phase separations) were summarized in this paper. Carbon dioxide separation appeared as the application that has received by far the most attention according to the research trends during the analysed period. Comments about other significant applications that are gaining attention, such as the employment of SILMs in analytical tasks or their consideration for the production of fuel cells, have been included.
Collapse
Affiliation(s)
- Ricardo Abejón
- Chemical and Biomolecular Engineering Department, University of Cantabria, Avda. Los Castros s/n, 39005 Santander, Spain.
| | - Heriberto Pérez-Acebo
- Mechanical Engineering Department, University of the Basque Country UPV/EHU, P° Rafael Moreno "Pitxitxi" 2, 48013 Bilbao, Spain.
| | - Aurora Garea
- Chemical and Biomolecular Engineering Department, University of Cantabria, Avda. Los Castros s/n, 39005 Santander, Spain.
| |
Collapse
|
5
|
Mahdavian L. DFT Study to Reduce TCDD by B12N12 Nano-Cage: A Comparison of Calculating Spectroscopic Properties with NMR and NBO. Polycycl Aromat Compd 2016. [DOI: 10.1080/10406638.2016.1238399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Affiliation(s)
- Leila Mahdavian
- Department of Chemistry, Doroud Branch, Islamic Azad University, Doroud, Iran
| |
Collapse
|
6
|
Amde M, Liu JF, Pang L. Environmental Application, Fate, Effects, and Concerns of Ionic Liquids: A Review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:12611-27. [PMID: 26445034 DOI: 10.1021/acs.est.5b03123] [Citation(s) in RCA: 251] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Ionic liquids (ILs) comprise mostly of organic salts with negligible vapor pressure and low flammability that are proposed as replacements for volatile solvents. ILs have been promoted as "green" solvents and widely investigated for their various applications. Although the utility of these chemicals is unquestionable, their toxic effects have attracted great attention. In order to manage their potential hazards and design environmentally benign ILs, understanding their environmental behavior, fate and effects is important. In this review, environmentally relevant issues of ILs, including their environmental application, environmental behavior and toxicity are addressed. In addition, also presented are the influence of ILs on the environmental fate and toxicity of other coexisting contaminants, important routes for designing nontoxic ILs and the techniques that might be adopted for the removal of ILs.
Collapse
Affiliation(s)
- Meseret Amde
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , P.O. Box 2871, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences , Beijing 100049, China
| | - Jing-Fu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , P.O. Box 2871, Beijing 100085, China
- Institute of Environment and Health, Jianghan University , Hubei Province, Wuhan 430056, China
| | - Long Pang
- Department of Material and Chemical Engineering, Zhengzhou University of Light Industry , No. 166, Science Avenue, Zhengzhou 450001, China
| |
Collapse
|
7
|
Restolho J, Barroso M, Dias M, Afonso CAM, Saramago B. Capture of Opiates by Ionic Liquids. J SOLUTION CHEM 2014. [DOI: 10.1007/s10953-014-0272-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Belova VV, Zakhodyaeva YA. Analysis of the efficiency of liquid membranes in extraction processes. RUSS J INORG CHEM+ 2014. [DOI: 10.1134/s003602361407002x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Pena-Pereira F, Namieśnik J. Ionic liquids and deep eutectic mixtures: sustainable solvents for extraction processes. CHEMSUSCHEM 2014; 7:1784-1800. [PMID: 24811900 DOI: 10.1002/cssc.201301192] [Citation(s) in RCA: 218] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 02/26/2014] [Indexed: 06/03/2023]
Abstract
In recent years, ionic liquids and deep eutectic mixtures have demonstrated great potential in extraction processes relevant to several scientific and technological activities. This review focuses on the applicability of these sustainable solvents in a variety of extraction techniques, including but not limited to liquid- and solid-phase (micro) extraction, microwave-assisted extraction, ultrasound-assisted extraction and pressurized liquid extraction. Selected applications of ionic liquids and deep eutectic mixtures on analytical method development, removal of environmental pollutants, selective isolation, and recovery of target compounds, purification of fuels, and azeotrope breaking are described and discussed.
Collapse
Affiliation(s)
- Francisco Pena-Pereira
- Department of Analytical Chemistry, Chemical Faculty, Gdańsk University of Technology (GUT) ul. G. Naturowicza 11/12, 80-233 Gdańsk (Poland); Department of Analytical and Food Chemistry, Faculty of Chemistry, University of Vigo, Campus As Lagoas-Marcosende s/n, 36310 Vigo (Spain).
| | | |
Collapse
|
10
|
Pan W, Qi Y, Wang R, Han Z, Zhang D, Zhan J. Adsorption of TCDD with 1-butyl-3-methylimidazolium dicyanamide ionic liquid: a combined molecular dynamics simulation and quantum chemistry study. CHEMOSPHERE 2013; 91:157-164. [PMID: 23336926 DOI: 10.1016/j.chemosphere.2012.12.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 11/26/2012] [Accepted: 12/15/2012] [Indexed: 06/01/2023]
Abstract
The effective abatement of flue gas emissions, especially polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs), is one of the challenging issues in the field of environmental science currently. Imidazolium-based dicyanamide ionic liquids (ILs) were proposed to have potential in controlling the emissions of PCDD/Fs. However, the relevant mechanism at the molecular level still remains unclear. To address this subject, we here present a combined molecular dynamics (MD) simulation and quantum chemical (QM) study on the adsorption of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), the most toxic congener among PCDD/F family, by 1-butyl-3-methylimidazolium dicyanamide IL, a representative imidazolium dicyanoamide ILs, which were demonstrated to possess high capture capability for PCDD/Fs. The MD simulation results show that TCDD molecules can be effectively adsorbed on the IL surface to form a dense layer, but cannot enter the interior of the IL. The results of QM calculations show that the adsorption of TCDDs on the IL surface occurs via intra-molecular hydrogen bond interactions. The calculated interaction energy of the anion with TCDD molecule is two times more than that of the cation, implying that the IL anion dominates the interaction with TCDD molecules, while the cation plays a secondary role. Based on the calculated results, we propose that imidazolium dicyanamide IL films/membranes may be better materials than the corresponding bulk for capturing TCDD. The present theoretical results may be helpful to designing the functional ILs which effectively capture and concentrate PCDD/F compounds.
Collapse
Affiliation(s)
- Wenxiao Pan
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China
| | | | | | | | | | | |
Collapse
|
11
|
Pabby AK, Sastre AM. State-of-the-art review on hollow fibre contactor technology and membrane-based extraction processes. J Memb Sci 2013. [DOI: 10.1016/j.memsci.2012.11.060] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
12
|
Li H, Bhadury PS, Song B, Yang S. Immobilized functional ionic liquids: efficient, green, and reusable catalysts. RSC Adv 2012. [DOI: 10.1039/c2ra21310a] [Citation(s) in RCA: 175] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|