1
|
You YA, Park S, Kwon E, Kim YA, Hur YM, Lee GI, Kim SM, Song JM, Kim MS, Kim YJ, Kim YH, Na SH, Park MH, Bae JG, Cho GJ, Lee SJ. Maternal PM2.5 exposure is associated with preterm birth and gestational diabetes mellitus, and mitochondrial OXPHOS dysfunction in cord blood. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:10565-10578. [PMID: 38200189 PMCID: PMC10850187 DOI: 10.1007/s11356-023-31774-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024]
Abstract
Maternal exposure to fine particulate matter (PM2.5) is associated with adverse pregnancy and neonatal health outcomes. To explore the mechanism, we performed mRNA sequencing of neonatal cord blood. From an ongoing prospective cohort, Air Pollution on Pregnancy Outcome (APPO) study, 454 pregnant women from six centers between January 2021 and June 2022 were recruited. Individual PM2.5 exposure was calculated using a time-weighted average model. In the APPO study, age-matched cord blood samples from the High PM2.5 (˃15 ug/m3; n = 10) and Low PM2.5 (≤ 15 ug/m3; n = 30) groups were randomly selected for mRNA sequencing. After selecting genes with differential expression in the two groups (p-value < 0.05 and log2 fold change > 1.5), pathway enrichment analysis was performed, and the mitochondrial pathway was analyzed using MitoCarta3.0. The risk of preterm birth (PTB) increased with every 5 µg/m3 increase of PM2.5 in the second trimester (odds ratio 1.391, p = 0.019) after adjusting for confounding variables. The risk of gestational diabetes mellitus (GDM) increased in the second (odds ratio 1.238, p = 0.041) and third trimester (odds ratio 1.290, p = 0.029), and entire pregnancy (odds ratio 1.295, p = 0.029). The mRNA-sequencing of cord blood showed that genes related to mitochondrial activity (FAM210B, KRT1, FOXO4, TRIM58, and FBXO7) and PTB-related genes (ADIPOR1, YBX1, OPTN, NFkB1, HBG2) were upregulated in the High PM2.5 group. In addition, exposure to high PM2.5 affected mitochondrial oxidative phosphorylation (OXPHOS) and proteins in the electron transport chain, a subunit of OXPHOS. These results suggest that exposure to high PM2.5 during pregnancy may increase the risk of PTB and GDM, and dysregulate PTB-related genes. Alterations in mitochondrial OXPHOS by high PM2.5 exposure may occur not only in preterm infants but also in normal newborns. Further studies with larger sample sizes are required.
Collapse
Affiliation(s)
- Young-Ah You
- Department of Obstetrics and Gynecology and Ewha Medical Institute, College of Medicine, Ewha Womans University, 1071, Anyangcheon-Ro, Yangcheon-Gu, Seoul, 07985, Republic of Korea
| | - Sunwha Park
- Department of Obstetrics and Gynecology and Ewha Medical Institute, College of Medicine, Ewha Womans University, 1071, Anyangcheon-Ro, Yangcheon-Gu, Seoul, 07985, Republic of Korea
| | - Eunjin Kwon
- Division of Allergy and Respiratory Disease Research, Department of Chronic Disease Convergence, National Institute of Health, Cheongju, 28159, Republic of Korea
| | - Ye-Ah Kim
- Translational-Transdisciplinary Research Center, Clinical Research Institute, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Young Min Hur
- Department of Obstetrics and Gynecology and Ewha Medical Institute, College of Medicine, Ewha Womans University, 1071, Anyangcheon-Ro, Yangcheon-Gu, Seoul, 07985, Republic of Korea
| | - Ga In Lee
- Department of Obstetrics and Gynecology and Ewha Medical Institute, College of Medicine, Ewha Womans University, 1071, Anyangcheon-Ro, Yangcheon-Gu, Seoul, 07985, Republic of Korea
| | - Soo Min Kim
- Department of Obstetrics and Gynecology and Ewha Medical Institute, College of Medicine, Ewha Womans University, 1071, Anyangcheon-Ro, Yangcheon-Gu, Seoul, 07985, Republic of Korea
| | - Jeong Min Song
- Translational-Transdisciplinary Research Center, Clinical Research Institute, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
- Department of Obstetrics and Gynecology, Kyung Hee University Hospital at Gangdong, Kyung Hee University, Seoul, Republic of Korea
| | - Man S Kim
- Translational-Transdisciplinary Research Center, Clinical Research Institute, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Young Ju Kim
- Department of Obstetrics and Gynecology and Ewha Medical Institute, College of Medicine, Ewha Womans University, 1071, Anyangcheon-Ro, Yangcheon-Gu, Seoul, 07985, Republic of Korea.
| | | | | | | | | | | | | |
Collapse
|
2
|
Current State of Indoor Air Phytoremediation Using Potted Plants and Green Walls. ATMOSPHERE 2021. [DOI: 10.3390/atmos12040473] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Urban civilization has a high impact on the environment and human health. The pollution level of indoor air can be 2–5 times higher than the outdoor air pollution, and sometimes it reaches up to 100 times or more in natural/mechanical ventilated buildings. Even though people spend about 90% of their time indoors, the importance of indoor air quality is less noticed. Indoor air pollution can be treated with techniques such as chemical purification, ventilation, isolation, and removing pollutions by plants (phytoremediation). Among these techniques, phytoremediation is not given proper attention and, therefore, is the focus of our review paper. Phytoremediation is an affordable and more environmentally friendly means to purify polluted indoor air. Furthermore, studies show that indoor plants can be used to regulate building temperature, decrease noise levels, and alleviate social stress. Sources of indoor air pollutants and their impact on human health are briefly discussed in this paper. The available literature on phytoremediation, including experimental works for removing volatile organic compound (VOC) and particulate matter from the indoor air and associated challenges and opportunities, are reviewed. Phytoremediation of indoor air depends on the physical properties of plants such as interfacial areas, the moisture content, and the type (hydrophobicity) as well as pollutant characteristics such as the size of particulate matter (PM). A comprehensive summary of plant species that can remove pollutants such as VOCs and PM is provided. Sources of indoor air pollutants, as well as their impact on human health, are described. Phytoremediation and its mechanism of cleaning indoor air are discussed. The potential role of green walls and potted-plants for improving indoor air quality is examined. A list of plant species suitable for indoor air phytoremediation is proposed. This review will help in making informed decisions about integrating plants into the interior building design.
Collapse
|
3
|
Salthammer T, Uhde E, Schripp T, Schieweck A, Morawska L, Mazaheri M, Clifford S, He C, Buonanno G, Querol X, Viana M, Kumar P. Children's well-being at schools: Impact of climatic conditions and air pollution. ENVIRONMENT INTERNATIONAL 2016; 94:196-210. [PMID: 27258661 DOI: 10.1016/j.envint.2016.05.009] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 05/08/2016] [Accepted: 05/08/2016] [Indexed: 05/06/2023]
Abstract
Human civilization is currently facing two particular challenges: population growth with a strong trend towards urbanization and climate change. The latter is now no longer seriously questioned. The primary concern is to limit anthropogenic climate change and to adapt our societies to its effects. Schools are a key part of the structure of our societies. If future generations are to take control of the manifold global problems, we have to offer our children the best possible infrastructure for their education: not only in terms of the didactic concepts, but also with regard to the climatic conditions in the school environment. Between the ages of 6 and 19, children spend up to 8h a day in classrooms. The conditions are, however, often inacceptable and regardless of the geographic situation, all the current studies report similar problems: classrooms being too small for the high number of school children, poor ventilation concepts, considerable outdoor air pollution and strong sources of indoor air pollution. There have been discussions about a beneficial and healthy air quality in classrooms for many years now and in recent years extensive studies have been carried out worldwide. The problems have been clearly outlined on a scientific level and there are prudent and feasible concepts to improve the situation. The growing number of publications also highlights the importance of this subject. High carbon dioxide concentrations in classrooms, which indicate poor ventilation conditions, and the increasing particle matter in urban outdoor air have, in particular, been identified as primary causes of poor indoor air quality in schools. Despite this, the conditions in most schools continue to be in need of improvement. There are many reasons for this. In some cases, the local administrative bodies do not have the budgets required to address such concerns, in other cases regulations and laws stand in contradiction to the demands for better indoor air quality, and sometimes the problems are simply ignored. This review summarizes the current results and knowledge gained from the scientific literature on air quality in classrooms. Possible scenarios for the future are discussed and guideline values proposed which can serve to help authorities, government organizations and commissions improve the situation on a global level.
Collapse
Affiliation(s)
- Tunga Salthammer
- Fraunhofer WKI, Department of Material Analysis and Indoor Chemistry, Braunschweig, Germany; International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, Australia.
| | - Erik Uhde
- Fraunhofer WKI, Department of Material Analysis and Indoor Chemistry, Braunschweig, Germany
| | - Tobias Schripp
- Fraunhofer WKI, Department of Material Analysis and Indoor Chemistry, Braunschweig, Germany
| | - Alexandra Schieweck
- Fraunhofer WKI, Department of Material Analysis and Indoor Chemistry, Braunschweig, Germany
| | - Lidia Morawska
- International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, Australia; Institute for Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Mandana Mazaheri
- International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, Australia; Institute for Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Sam Clifford
- International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, Australia; Institute for Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia; School of Mathematical Sciences, Queensland University of Technology, Brisbane, Australia
| | - Congrong He
- International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, Australia; Institute for Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Giorgio Buonanno
- International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, Australia; Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Italy
| | - Xavier Querol
- Spanish Council for Scientific Research, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Spain
| | - Mar Viana
- Spanish Council for Scientific Research, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Spain
| | - Prashant Kumar
- Department of Civil and Environmental Engineering, Faculty of Engineering & Physical Sciences (FEPS), University of Surrey, Guildford, GU2 7XH Surrey, UK; Environmental Flow (EnFlo) Research Centre, FEPS, University of Surrey, Guildford, GU2 7XH Surrey, UK
| |
Collapse
|
4
|
Kumar P, Skouloudis AN, Bell M, Viana M, Carotta MC, Biskos G, Morawska L. Real-time sensors for indoor air monitoring and challenges ahead in deploying them to urban buildings. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 560-561:150-159. [PMID: 27101450 DOI: 10.1016/j.scitotenv.2016.04.032] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 03/25/2016] [Accepted: 04/06/2016] [Indexed: 06/05/2023]
Abstract
Household air pollution is ranked the 9(th) largest Global Burden of Disease risk (Forouzanfar et al., The Lancet 2015). People, particularly urban dwellers, typically spend over 90% of their daily time indoors, where levels of air pollution often surpass those of outdoor environments. Indoor air quality (IAQ) standards and approaches for assessment and control of indoor air require measurements of pollutant concentrations and thermal comfort using conventional instruments. However, the outcomes of such measurements are usually averages over long integrated time periods, which become available after the exposure has already occurred. Moreover, conventional monitoring is generally incapable of addressing temporal and spatial heterogeneity of indoor air pollution, or providing information on peak exposures that occur when specific indoor sources are in operation. This article provides a review of new air pollution sensing methods to determine IAQ and discusses how real-time sensing could bring a paradigm shift in controlling the concentration of key air pollutants in billions of urban houses worldwide. We also show that besides the opportunities, challenges still remain in terms of maturing technologies, or data mining and their interpretation. Moreover, we discuss further research and essential development needed to close gaps between what is available today and needed tomorrow. In particular, we demonstrate that awareness of IAQ risks and availability of appropriate regulation are lagging behind the technologies.
Collapse
Affiliation(s)
- Prashant Kumar
- Department of Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences (FEPS), University of Surrey, Guildford GU2 7XH, Surrey, United Kingdom; Environmental Flow Research Centre, FEPS, University of Surrey, Guildford GU2 7XH, Surrey, United Kingdom.
| | - Andreas N Skouloudis
- Joint Research Centre, European Commission, Institute for Environment and Sustainability TP263, via E Fermi 2749, Ispra, VA I-20127, Italy
| | - Margaret Bell
- Transport Operations Research Group, School of Civil Engineering and Geosciences, Newcastle University, Claremont Road, Newcastle upon Tyne, NE17RU, United Kingdom
| | - Mar Viana
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Jordi Girona 18, 08034 Barcelona, Spain
| | - M Cristina Carotta
- IMAMOTER - C.N.R. Sensors and Nanomaterials Laboratory, via Canal Bianco 28, 44124 Ferrara, Italy
| | - George Biskos
- Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft 2628 CN, The Netherlands; Energy Environment and Water Research Center, The Cyprus Institute, Nicosia 2121, Cyprus
| | - Lidia Morawska
- International Laboratory for Air Quality and Health, Queensland University of Technology, 2 George Street, Brisbane, Qld 4001, Australia
| |
Collapse
|