1
|
El Mohammad S, Proux O, Aguilar A, Hazemann JL, Legens C, Chizallet C, Larmier K. Elucidation of Metal-Sugar Complexes: When Tungstate Combines with d-Mannose. Inorg Chem 2023; 62:7545-7556. [PMID: 37130307 DOI: 10.1021/acs.inorgchem.3c00911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The control of metal-sugar complexes speciation in solution is crucial in an energy transition context. Herein, the formation of tungstate-mannose complexes is unraveled in aqueous solution using a multitechnique experimental and theoretical approach. 13C nuclear magnetic resonance (NMR), as well as 13C-1H and 1H-1H correlation spectra, analyzed in the light of coordination-induced shift method and conformation analysis, were employed to characterize the structure of the sugar involved in the complexes. X-ray absorption near edge structure spectroscopy was performed to provide relevant information about the metal electronic and coordination environment. The calculation of 13C NMR chemical shifts for a series of tungstate-mannose complexes using density functional theory (DFT) is a key to identify the appropriate structure among several candidates. Furthermore, a parametric study based on several relevant parameters, namely, pH and tungstate concentration, was carried out to look over the change of the nature and concentrations of the complexes. Two series of complexes were detected, in which the metallic core is either in a ditungstate or a monotungstate form. With respect to previous proposals, we identify two new species. Dinuclear complexes involve both α- and β-furanose forms chelating the metallic center in a tetradentate fashion. A hydrate form chelating a ditungstate core is also revealed. One monotungstate complex appears at high pH, in which a tetrahedral tungstate center is bound to α-mannofuranose through a monodentate site at the second deprotonated hydroxyl group. This unequalled level of knowledge opens the door to structure-reactivity relationships.
Collapse
Affiliation(s)
- Sabah El Mohammad
- IFP Energies nouvelles, Rond-Point de l'Echangeur de Solaize, Solaize 69360, France
| | - Olivier Proux
- OSUG, UAR 832 CNRS, Université Grenoble Alpes, Grenoble 38041, France
| | - Antonio Aguilar
- ICMG, UAR 2607 CNRS, Université Grenoble Alpes, Grenoble 38041, France
| | - Jean-Louis Hazemann
- Institut Néel, CNRS, Université Grenoble Alpes, 25 Avenue des Martyrs, Grenoble 38042, France
| | - Christèle Legens
- IFP Energies nouvelles, Rond-Point de l'Echangeur de Solaize, Solaize 69360, France
| | - Céline Chizallet
- IFP Energies nouvelles, Rond-Point de l'Echangeur de Solaize, Solaize 69360, France
| | - Kim Larmier
- IFP Energies nouvelles, Rond-Point de l'Echangeur de Solaize, Solaize 69360, France
| |
Collapse
|
2
|
Majumder A, Dutta N, Das A, Carrella L, Bera M. Exploring new water soluble bridged dicopper(II) assemblies: Synthesis, structure, spectroscopic characterization, properties, and their interactions with d-glucosamine. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115417] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
3
|
Yang Y, Qi H, Li H, Xu Z, Liu X, Yu S, Zhang ZC. Heterometallic Pd II–Cl–Cu I Catalyst for Efficient Hydrolysis of β-1,4-Glycosidic Bonds in 1-Butyl-3-methylimidazolium Chloride. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yiwen Yang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Haifeng Qi
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P.R. China
| | - Huixiang Li
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P.R. China
| | - Zhanwei Xu
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P.R. China
- Dalian Key Laboratory of Energy Biotechnology, Dalian 116023, P.R. China
| | - Xiumei Liu
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P.R. China
- Dalian Key Laboratory of Energy Biotechnology, Dalian 116023, P.R. China
| | - Shuyin Yu
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xian 710072, P.R. China
| | - Zongchao Conrad Zhang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P.R. China
- Dalian Key Laboratory of Energy Biotechnology, Dalian 116023, P.R. China
| |
Collapse
|
4
|
Abstract
Lignocellulosic biomass, a cheap and plentiful resource, could play a key role in the production of sustainable chemicals. The simple sugars contained in the renewable lignocellulosic biomass can be converted into commercially valuable products such as 5-hydroxymethyl furfural (HMF). A platform molecule, HMF can be transformed into numerous chemical products with potential applications in a wide variety of industries. Of the hexoses contained in the lignocellulosic biomass, the successful production of HMF from glucose has been a challenge. Various heterogeneous catalysts have been proposed over the last decade, ranging from zeolites to metal organic frameworks. The reaction conditions vary in the reports in the literature, which makes it difficult to compare catalysts reported in different studies. In addition, the slight variations in the synthesis of the same material in different laboratories may affect the activity results, because the selectivity towards desired products in this transformation strongly depends on the nature of the active sites. This poses another difficulty for the comparison of different reports. Furthermore, over the last decade the new catalytic systems proposed have increased profoundly. In this article, we summarize the heterogeneous catalysts: Metal Organic Frameworks (MOFs), zeolites and conventional supported catalysts, that have been reported in the recent literature and provide an overview of the observed catalytic activity, in order to provide a comparison.
Collapse
|
5
|
Rowe R, Lovelock KRJ, Hunt PA. Bi(III) halometallate ionic liquids: Interactions and speciation. J Chem Phys 2021; 155:014501. [PMID: 34241390 DOI: 10.1063/5.0052297] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Bismuth containing compounds are of particular interest for optical or photo-luminescent applications in sensing, bio-imaging, telecommunications, and opto-electronics and as components in non-toxic extremely dense liquids. Bismuth(III) halometallates form highly colored novel ionic liquid based solvents for which experimental characterization and fundamental understanding are limited. In this work, Bismuth(III) halometallates incorporating chloride, bromide, and iodide have been studied via density functional theory employing B3LYP-D3BJ/aug-cc-pVDZ. Lone anions, and anions in clusters with sufficient 1-ethyl-3-methyl-imidazolium [C2C1Im]+ counter-cations to balance the charge, have been investigated in the gas- phase, and with polarizable continuum solvation. Evaluation of speciation profiles indicates that dimeric or trimeric anions are prevalent. In contrast to analogous Al systems, anions of higher charge (-2, -3) are present. Speciation profiles are similar, but not identical with respect to the halide. The Bi based anions [BimXn]x- in the gas phase and generalized solvation environment produce multiple low energy conformers; moreover, key structural interaction patterns emerge from an analysis of ion-pair and neutral-cluster structures (BimXn)x-(C2C1Im)x + for x = 1, 2, and 3. Cation-anion interactions are weak; with Coulombic and dispersion forces predominating, anion-π structures are favored, while significant hydrogen bonding does not occur. Anion to cation charge transfer is minimal, but mutual polarization is significant, leading to local positive regions in the anion electrostatic potential surface. The key features of experimental x-ray photoelectron, UV-Vis spectra, and Raman spectra are reproduced, validating the computational results and facilitating rationalization of key features.
Collapse
Affiliation(s)
- Rebecca Rowe
- Department of Chemistry, Imperial College London, London, United Kingdom
| | | | - Patricia A Hunt
- Department of Chemistry, Imperial College London, London, United Kingdom
| |
Collapse
|
6
|
Istasse T, Richel A. Mechanistic aspects of saccharide dehydration to furan derivatives for reaction media design. RSC Adv 2020; 10:23720-23742. [PMID: 35517323 PMCID: PMC9055118 DOI: 10.1039/d0ra03892j] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/15/2020] [Indexed: 11/21/2022] Open
Abstract
The conversion of abundant hexoses (e.g. glucose, mannose and galactose) and pentoses (e.g. xylose and arabinose) to 5-hydroxymethylfurfural (5-HMF) and 2-furfural (2-F) is subject to intensive research in the hope of achieving competitive production of diverse materials from renewable resources. However, the abundance of literature on this topic as well as the limited number of studies systematically comparing numerous monosaccharides hinder progress tracking. Herein, we compare and rationalize reactivities of different ketoses and aldoses. Dehydration mechanisms of both monosaccharide types are reviewed regarding the existing experimental evidence. Ketose transformation to furan derivatives likely proceeds through cyclic intermediates and is hindered by side-reactions such as isomerization, retro-aldol reactions and polymerization. Different strategies can improve furan derivative synthesis from ketoses: limiting the presence of water, improving the dehydration rate, protecting 5-HMF and 2-F reactive moieties with derivatization or solvent interactions and extracting 5-HMF and 2-F from the reaction medium. In contrast to ketoses, aldose conversion to furan derivatives is not favored compared to polymerization reactions because it involves their isomerization or a ring contraction. Enhancing aldose isomerization is possible with metal catalysts (e.g. CrCl3) promoting a hydride shift mechanism or with boric/boronic acids promoting an enediol mechanism. This catalysis is however far more challenging than ketose dehydration because catalyst activity depends on numerous factors: Brønsted acidity of the medium, catalyst ligands, catalyst affinity for monosaccharides and their accessibility to several chemical species simultaneously. Those aspects are methodically addressed to support the design of new monosaccharide dehydration systems.
Collapse
Affiliation(s)
- Thibaut Istasse
- Laboratory of Biomass and Green Technologies, University of Liege - Gembloux Agro-Bio Tech Passage des Déportés 2, B-5030 Gembloux Belgium
| | - Aurore Richel
- Laboratory of Biomass and Green Technologies, University of Liege - Gembloux Agro-Bio Tech Passage des Déportés 2, B-5030 Gembloux Belgium
| |
Collapse
|
7
|
He Y, Saang’onyo D, Ladipo F, Knutson BL, Rankin SE. In Situ Fourier Transform Infrared Study of the Effects of Silica Mesopore Confinement on Hydration of Ionic Liquid 1-Butyl-3-methylimidazolium Chloride. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b03314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
ZIF-8 Metal Organic Framework for the Conversion of Glucose to Fructose and 5-Hydroxymethyl Furfural. Catalysts 2019. [DOI: 10.3390/catal9100812] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Herein, Zeolitic imidazolate framework-8 (ZIF-8) is considered as an easy and cheap to prepare alternative catalyst for the isomerization of glucose and production of 5-hydroxymethyl furfural (HMF). For the synthesis of the ZIF-8 catalysts two preparation methods were evaluated, being room temperature and hydrothermal synthesis at 140 °C. Of these, the hydrothermal synthesis method yields a material with exceptionally high surface area (1967 m2·g−1). As a catalyst, the ZIF-8 materials generated excellent fructose yields. Specifically, ZIF-8 prepared by hydrothermal synthesis yielded a fructose selectivity of 65% with a glucose conversion of 24% at 100 °C in aqueous reaction medium. However, this selectivity dropped dramatically when the reactions were repeated at higher temperatures (~140 °C). Interestingly, greater quantities of mannose were produced at higher temperatures too. The lack of strong Brønsted acidity in both ZIF-8 materials resulted in poor HMF yields. In order to improve HMF yields, reactions were performed at a lower pH of 1.0. At 140 °C the lower pH was found to drive the reaction towards HMF and double its yield. Despite the excellent performance of ZIF-8 catalysts in batch reactions, their activity did not translate well to the flow reactor over a continuous run of 8 h, which was operating with a residence time of 6 min. The activity of ZIF-8 halved in the flow reactor at 100 °C in ~3 h, which implies that the catalyst’s stability was not maintained in the long run.
Collapse
|
9
|
Burnett DL, Oozeerally R, Pertiwi R, Chamberlain TW, Cherkasov N, Clarkson GJ, Krisnandi YK, Degirmenci V, Walton RI. A hydrothermally stable ytterbium metal-organic framework as a bifunctional solid-acid catalyst for glucose conversion. Chem Commun (Camb) 2019; 55:11446-11449. [PMID: 31486470 DOI: 10.1039/c9cc05364f] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Yb6(BDC)7(OH)4(H2O)4 contains both bridging hydroxyls and metal-coordinated waters, possessing Brønsted and Lewis acid sites. The material crystallises from water at 200 °C. Using the solid as a heterogenous catalyst, glucose is converted into 5-hydroxymethylfurfural, via fructose, with a total selectivity of ∼70% after 24 hours at 140 °C in water alone: the material is recyclable with no loss of crystallinity.
Collapse
Affiliation(s)
- David L Burnett
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Mensah JB, Delidovich I, Hausoul PJC, Weisgerber L, Schrader W, Palkovits R. Mechanistic Studies of the Cu(OH) + -Catalyzed Isomerization of Glucose into Fructose in Water. CHEMSUSCHEM 2018; 11:2579-2586. [PMID: 29885272 DOI: 10.1002/cssc.201800483] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 06/06/2018] [Indexed: 06/08/2023]
Abstract
The isomerization of glucose to fructose is a crucial interim step in the processing of biomass to renewable fuels and chemicals. This study investigates the copper-catalyzed glucose-fructose isomerization in water, focusing on insights into the roles of the dissolved copper species. Depending on the pH, the thermodynamic equilibrium shifted towards one or a few copper species, namely Cu2+ , Cu(OH)+ , and Cu(OH)2 . According to thermodynamics, the highest concentration of Cu(OH)+ is at pH 5.3, at which the highest fructose yield of 16 % is achieved. The obtained fructose yields strongly correlate with the concentration of Cu(OH)+ . A pH decrease of 2-3 units was observed during the reaction, resulting in the deactivation of the catalyst through hydrolysis in acidic media. Based on the results of the catalytic experiments, as well as spectroscopic and spectrometric studies, we propose Cu(OH)+ as an active Lewis-acidic species following an intramolecular 1,2-hydride shift.
Collapse
Affiliation(s)
- Joel B Mensah
- Institut für Technische und Makromolekulare Chemie (ITMC), RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Irina Delidovich
- Institut für Technische und Makromolekulare Chemie (ITMC), RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Peter J C Hausoul
- Institut für Technische und Makromolekulare Chemie (ITMC), RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Laurent Weisgerber
- Institut für Technische und Makromolekulare Chemie (ITMC), RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Wolfgang Schrader
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Regina Palkovits
- Institut für Technische und Makromolekulare Chemie (ITMC), RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| |
Collapse
|
11
|
Mika LT, Cséfalvay E, Németh Á. Catalytic Conversion of Carbohydrates to Initial Platform Chemicals: Chemistry and Sustainability. Chem Rev 2017; 118:505-613. [DOI: 10.1021/acs.chemrev.7b00395] [Citation(s) in RCA: 662] [Impact Index Per Article: 82.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- László T. Mika
- Department
of Chemical and Environmental Process Engineering, Budapest University of Technology and Economics, Műegyetem rkp. 3., Budapest 1111, Hungary
| | - Edit Cséfalvay
- Department
of Energy Engineering, Budapest University of Technology and Economics, Budapest 1111, Hungary
| | - Áron Németh
- Department
of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, Budapest 1111, Hungary
| |
Collapse
|
12
|
Fallahi M, Ahmadi E, Ramazani A, Mohamadnia Z. Trimerization of ethylene catalyzed by Cr-based catalyst immobilized on the supported ionic liquid phase. J Organomet Chem 2017. [DOI: 10.1016/j.jorganchem.2017.07.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
13
|
Yu IKM, Tsang DCW. Conversion of biomass to hydroxymethylfurfural: A review of catalytic systems and underlying mechanisms. BIORESOURCE TECHNOLOGY 2017; 238:716-732. [PMID: 28434789 DOI: 10.1016/j.biortech.2017.04.026] [Citation(s) in RCA: 176] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/03/2017] [Accepted: 04/06/2017] [Indexed: 06/07/2023]
Abstract
Conversion of biomass waste to hydroxymethylfurfural (HMF), a value-added platform chemical, has captured great research interests driven by the economic and environmental incentives. This review evaluates the recent development of biomass conversion systems for high HMF yield and selectivity, with a focus on the performance of emerging catalysts and solvents from a mechanistic view. We highlight that the ratio and strength of Brønsted and Lewis acid in bifunctional catalyst are critical for maximizing HMF production by selective improvement in the kinetics of desirable reactions (hydrolysis, isomerization, and dehydration) over undesirable reactions (rehydration, polymerization). The characteristics of solvent mixture such as functional groups and speciation govern the reactivity of substrate towards desirable reactions and stability of HMF and intermediates against side reactions. Research efforts to unravel the interactions among co-catalysts/co-solvents and between catalysts and solvents are encouraged, thereby engineering a synergistic conversion system for biomass valorization.
Collapse
Affiliation(s)
- Iris K M Yu
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| |
Collapse
|
14
|
Wang J, Xi J, Xia Q, Liu X, Wang Y. Recent advances in heterogeneous catalytic conversion of glucose to 5-hydroxymethylfurfural via green routes. Sci China Chem 2017. [DOI: 10.1007/s11426-016-9035-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
15
|
Li H, Yang S, Saravanamurugan S, Riisager A. Glucose Isomerization by Enzymes and Chemo-catalysts: Status and Current Advances. ACS Catal 2017. [DOI: 10.1021/acscatal.6b03625] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Hu Li
- State-Local Joint Engineering Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, PR China
| | - Song Yang
- State-Local Joint Engineering Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, PR China
| | | | - Anders Riisager
- Centre
for Catalysis and Sustainable Chemistry, Department of Chemistry, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| |
Collapse
|
16
|
Giri GC, Haldar S, Vijaykumar G, Bera M. Investigating the Coordination/Binding Events of Biologically Relevant Monosaccharides with New Mononuclear Iron(III) and Zinc(II) Complexes in Aqueous Solution. ChemistrySelect 2017. [DOI: 10.1002/slct.201700004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Gopal C. Giri
- Department of Chemistry; University of Kalyani; Kalyani, Nadia, West Bengal- 741235 INDIA
| | - Shobhraj Haldar
- Department of Chemistry; University of Kalyani; Kalyani, Nadia, West Bengal- 741235 INDIA
| | - Gonela Vijaykumar
- Department of Chemical Sciences; Indian Institute of Science Education & Research-Kolkata; Mohanpur, West Bengal- 741246 INDIA
| | - Manindranath Bera
- Department of Chemistry; University of Kalyani; Kalyani, Nadia, West Bengal- 741235 INDIA
| |
Collapse
|
17
|
Yu IKM, Tsang DCW, Yip ACK, Chen SS, Ok YS, Poon CS. Valorization of food waste into hydroxymethylfurfural: Dual role of metal ions in successive conversion steps. BIORESOURCE TECHNOLOGY 2016; 219:338-347. [PMID: 27498014 DOI: 10.1016/j.biortech.2016.08.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 07/31/2016] [Accepted: 08/01/2016] [Indexed: 06/06/2023]
Abstract
This study aimed to transform food waste into a value-added chemical, hydroxymethylfurfural (HMF), and unravel the tangled effects induced by the metal catalysts on each single step of the successive conversion pathway. The results showed that using cooked rice and bread crust as surrogates of starch-rich food waste, yields of 8.1-9.5% HMF and 44.2-64.8% glucose were achieved over SnCl4 catalyst. Protons released from metal hydrolysis and acidic by-products rendered Brønsted acidity to catalyze fructose dehydration and hydrolysis of glycosidic bond. Lewis acid site of metals could facilitate both fructose dehydration and glucose isomerization via promoting the rate-limiting internal hydride shift, with the catalytic activity determined by its electronegativity, electron configuration, and charge density. Lewis acid site of a higher valence also enhanced hydrolysis of polysaccharide. However, the metals also catalyzed undesirable polymerization possibly by polarizing the carbonyl groups of sugars and derivatives, which should be minimized by process optimization.
Collapse
Affiliation(s)
- Iris K M Yu
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Alex C K Yip
- Energy and Environmental Catalysis Group, Department of Chemical and Process Engineering, University of Canterbury, Christchurch, New Zealand
| | - Season S Chen
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Yong Sik Ok
- School of Natural Resources and Environmental Science & Korea Biochar Research Center, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Chi Sun Poon
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| |
Collapse
|
18
|
Far reaching potentials of far infrared spectroscopy in catalysis research. CHINESE JOURNAL OF CATALYSIS 2016. [DOI: 10.1016/s1872-2067(15)61087-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
Stewart CD, Pedraza M, Arman H, Fan HJ, Schilling EL, Szpoganicz B, Musie GT. Synthesis, crystal structure and investigation of mononuclear copper(II) and zinc(II) complexes of a new carboxylate rich tripodal ligand and their interaction with carbohydrates in alkaline aqueous solution. J Inorg Biochem 2015; 149:25-38. [PMID: 25969174 PMCID: PMC4834926 DOI: 10.1016/j.jinorgbio.2015.04.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 04/17/2015] [Accepted: 04/19/2015] [Indexed: 11/29/2022]
Abstract
A new carboxylate rich asymmetric tripodal ligand, N-[2-carboxybenzomethyl]-N-[carboxymethyl]-β-alanine (H3camb), and its di-copper(II), (NH4)2[1]2, and di-zinc(II), ((CH3)4N)2[2]2, complexes have been synthesized as carbohydrate binding models in aqueous solutions. The ligand and complexes have been fully characterized using several techniques, including single crystal X-ray diffraction. The interactions of (NH4)2[1]2 and ((CH3)4N)2[2]2 with D-glucose, D-mannose, D-xylose and xylitol in aqueous alkaline media were investigated using UV-Vis and (13)C-NMR spectroscopic techniques, respectively. The molar conductance, NMR and ESI-MS studies indicate that the complexes dissociate in solution to produce the respective complex anions, 1(-) and 2(-). Complexes 1(-) and 2(-) showed chelating ability towards the naturally abundant and biologically relevant sugars, D-glucose, D-mannose, D-xylose, and xylitol. The complex ions bind to one molar equivalent of the sugars, even in the presence of stoichiometric excess of the substrates, in solution. Experimentally obtained spectroscopic data and computational results suggest that the substrates bind to the metal center in a bidentate fashion. Apparent binding constant values, pK(app), between the complexes and the substrates were determined and a specific mode of substrate binding is proposed. The pK(app) and relativistic density functional theory (DFT) calculated Gibbs free energy values indicate that D-mannose displayed the strongest interaction with the complexes. Syntheses, characterizations, detailed substrate binding studies using spectroscopic techniques, single crystal X-ray diffraction and geometry optimizations of the complex-substrates with DFT calculations are also reported.
Collapse
Affiliation(s)
- Christopher D Stewart
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, TX 78249, United States
| | - Mayra Pedraza
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, TX 78249, United States
| | - Hadi Arman
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, TX 78249, United States
| | - Hua-Jun Fan
- Department of Chemistry, Prairie View A&M University, Prairie View, TX 77446, United States
| | - Eduardo Luiz Schilling
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Bruno Szpoganicz
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Ghezai T Musie
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, TX 78249, United States.
| |
Collapse
|
20
|
Imidazolium-based ionic liquid derivative/CuII complexes as efficient catalysts of the lucigenin chemiluminescence system and its application to H2O2 and glucose detection. Anal Bioanal Chem 2015; 407:6127-36. [DOI: 10.1007/s00216-015-8795-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Revised: 05/08/2015] [Accepted: 05/19/2015] [Indexed: 01/19/2023]
|
21
|
Yang Y, Liu W, Wang N, Wang H, Li W, Song Z. Effect of Different Ionic Liquids on 5-Hydroxymethylfurfural Preparation from Glucose in DMA over AlCl3: Experimental and Theoretical Study. CHINESE J CHEM 2015. [DOI: 10.1002/cjoc.201500030] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
22
|
Yang Y, Liu W, Wang N, Wang H, Song Z, Li W. Effect of organic solvent and Brønsted acid on 5-hydroxymethylfurfural preparation from glucose over CrCl3. RSC Adv 2015. [DOI: 10.1039/c5ra02057c] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
An investigation of the effect of solvent and Brønsted acid on the mechanism of 5-hydroxymethylfurfural preparation from glucose over CrCl3by experimental and computational study.
Collapse
Affiliation(s)
- Yan Yang
- The Key Laboratory of Food Colloids and Biotechnology
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
| | - Wentao Liu
- The Key Laboratory of Food Colloids and Biotechnology
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
| | - Ningning Wang
- The Key Laboratory of Food Colloids and Biotechnology
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
| | - Haijun Wang
- The Key Laboratory of Food Colloids and Biotechnology
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
| | - Zhanxin Song
- The Key Laboratory of Food Colloids and Biotechnology
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
| | - Wei Li
- The Key Laboratory of Food Colloids and Biotechnology
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
| |
Collapse
|
23
|
Yadav KK, Ahmad S, Chauhan SM. Elucidating the role of cobalt phthalocyanine in the dehydration of carbohydrates in ionic liquids. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.molcata.2014.07.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
24
|
Stewart CD, Arman H, Bawazir H, Musie GT. Synthesis, Characterization, and Spectroscopic Investigation of New Iron(III) and Copper(II) Complexes of a Carboxylate Rich Ligand and Their Interaction with Carbohydrates in Aqueous Solution. Inorg Chem 2014; 53:10974-88. [DOI: 10.1021/ic501351a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Christopher D. Stewart
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Hadi Arman
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Huda Bawazir
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Ghezai T. Musie
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| |
Collapse
|
25
|
Loerbroks C, van Rijn J, Ruby MP, Tong Q, Schüth F, Thiel W. Reactivity of Metal Catalysts in Glucose-Fructose Conversion. Chemistry 2014; 20:12298-309. [DOI: 10.1002/chem.201402437] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Indexed: 11/06/2022]
|
26
|
Vyas S, Dreyer C, Slingsby J, Bicknase D, Porter JM, Maupin CM. Electronic Structure and Spectroscopic Analysis of 1-Ethyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide Ion Pair. J Phys Chem A 2014; 118:6873-82. [DOI: 10.1021/jp5035689] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Shubham Vyas
- Chemical and Biological Engineering Department, ‡Chemistry and Geochemistry Department, and §Mechanical Engineering
Department, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Christopher Dreyer
- Chemical and Biological Engineering Department, ‡Chemistry and Geochemistry Department, and §Mechanical Engineering
Department, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Jason Slingsby
- Chemical and Biological Engineering Department, ‡Chemistry and Geochemistry Department, and §Mechanical Engineering
Department, Colorado School of Mines, Golden, Colorado 80401, United States
| | - David Bicknase
- Chemical and Biological Engineering Department, ‡Chemistry and Geochemistry Department, and §Mechanical Engineering
Department, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Jason M. Porter
- Chemical and Biological Engineering Department, ‡Chemistry and Geochemistry Department, and §Mechanical Engineering
Department, Colorado School of Mines, Golden, Colorado 80401, United States
| | - C. Mark Maupin
- Chemical and Biological Engineering Department, ‡Chemistry and Geochemistry Department, and §Mechanical Engineering
Department, Colorado School of Mines, Golden, Colorado 80401, United States
| |
Collapse
|
27
|
Matera-Witkiewicz A, Kapczyńska K, Stefanowicz P. The interactions of glycated decapeptide, the Amadori product, with copper(II) ions – A possible effect on the oxidative stress induced aggregation? Inorganica Chim Acta 2014. [DOI: 10.1016/j.ica.2013.12.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
Janesko BG. Acid-catalyzed hydrolysis of lignin β-O-4 linkages in ionic liquid solvents: a computational mechanistic study. Phys Chem Chem Phys 2014; 16:5423-33. [DOI: 10.1039/c3cp53836b] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
29
|
Estager J, Holbrey JD, Swadźba-Kwaśny M. Halometallate ionic liquids – revisited. Chem Soc Rev 2014; 43:847-86. [DOI: 10.1039/c3cs60310e] [Citation(s) in RCA: 212] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
30
|
Yang G, Pidko EA, Hensen EJM. The mechanism of glucose isomerization to fructose over Sn-BEA zeolite: a periodic density functional theory study. CHEMSUSCHEM 2013; 6:1688-1696. [PMID: 23943294 DOI: 10.1002/cssc.201300342] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 06/26/2013] [Indexed: 06/02/2023]
Abstract
The isomerization of glucose to fructose in the presence of Sn-containing zeolite BEA (beta polymorph A) was studied by periodic DFT calculations. Focus was placed on the nature of the active site and the reaction mechanism. The reactivities of the perfect lattice Sn(IV) site and the hydroxylated SnOH species are predicted to be similar. The isomerization activity of the latter can be enhanced by creating an extended silanol nest in its vicinity. Besides the increased Lewis acidity and coordination flexibility of the Sn center, the enhanced reactivity in this case is ascribed to the reaction environment that promotes activation of the confined sugar intermediates through hydrogen bonding. The resulting multidentate activation of the substrate favors the rate-determining hydrogen-shift reaction. These findings suggest the important role of defect lattice sites in Sn-BEA for catalytic glucose isomerization.
Collapse
Affiliation(s)
- Gang Yang
- Laboratory of Inorganic Materials Chemistry, Schuit Institute of Catalysis, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (The Netherlands)
| | | | | |
Collapse
|
31
|
Deshmukh KM, Madyal RS, Qureshi ZS, Gaikar V.G, Bhanage BM. Experimental and Theoretical Investigations of Consequence of Ionic Liquid Anion on Copper(I) Catalyzed Reaction of Aryl Iodide and Thiols. Ind Eng Chem Res 2013. [DOI: 10.1021/ie3035338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Krishna M. Deshmukh
- Department of Chemistry, Institute of Chemical Technology, N.
M. Parekh Marg, Matunga, Mumbai-400 019, India
| | - Rupa S. Madyal
- Department of Chemical
Engineering, Institute of Chemical Technology, N. M. Parekh Marg, Matunga, Mumbai-400 019, India
| | - Ziyauddin S. Qureshi
- Department of Chemistry, Institute of Chemical Technology, N.
M. Parekh Marg, Matunga, Mumbai-400 019, India
| | - Vilas .G Gaikar
- Department of Chemical
Engineering, Institute of Chemical Technology, N. M. Parekh Marg, Matunga, Mumbai-400 019, India
| | - Bhalchandra M. Bhanage
- Department of Chemistry, Institute of Chemical Technology, N.
M. Parekh Marg, Matunga, Mumbai-400 019, India
| |
Collapse
|
32
|
MA J, YU W, WANG M, JIA X, LU F, XU J. Advances in selective catalytic transformation of ployols to value-added chemicals. CHINESE JOURNAL OF CATALYSIS 2013. [DOI: 10.1016/s1872-2067(11)60501-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
33
|
van Putten RJ, van der Waal JC, de Jong E, Rasrendra CB, Heeres HJ, de Vries JG. Hydroxymethylfurfural, A Versatile Platform Chemical Made from Renewable Resources. Chem Rev 2013; 113:1499-597. [DOI: 10.1021/cr300182k] [Citation(s) in RCA: 2009] [Impact Index Per Article: 167.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Robert-Jan van Putten
- Avantium Chemicals, Zekeringstraat 29, 1014 BV Amsterdam, the Netherlands
- Department of Chemical Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| | | | - Ed de Jong
- Avantium Chemicals, Zekeringstraat 29, 1014 BV Amsterdam, the Netherlands
| | - Carolus B. Rasrendra
- Department of Chemical Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
- Department of Chemical Engineering, Institut Teknologi Bandung, Ganesha 10, Bandung 40132, Indonesia
| | - Hero J. Heeres
- Department of Chemical Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| | - Johannes G. de Vries
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
- DSM Innovative Synthesis BV, P.O. Box 18, 6160 MD Geleen, the Netherlands
| |
Collapse
|
34
|
Chiappe C, Pomelli CS. Computational studies on organic reactivity in ionic liquids. Phys Chem Chem Phys 2013; 15:412-23. [DOI: 10.1039/c2cp43074f] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
35
|
|
36
|
Bera M, Curtiss ABS, Musie GT, Powell DR. New Dinuclear Cobalt(II) and Zinc(II) Complexes of a Carboxylate-Rich Dinucleating Ligand: Synthesis, Structure, Spectroscopic Characterization, and Their Interactions with Sugars. Inorg Chem 2012; 51:12093-101. [DOI: 10.1021/ic3004432] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Manindranath Bera
- Department of Chemistry, University of Kalyani, Kalyani, West Bengal 741235,
India
| | - Ashley B. S. Curtiss
- Department of Chemistry, The University of Texas at San Antonio, San Antonio,
Texas 78249, United States
| | - Ghezai T. Musie
- Department of Chemistry, The University of Texas at San Antonio, San Antonio,
Texas 78249, United States
| | - Douglas R. Powell
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United
States
| |
Collapse
|
37
|
Pidko EA, Degirmenci V, Hensen EJM. On the Mechanism of Lewis Acid Catalyzed Glucose Transformations in Ionic Liquids. ChemCatChem 2012. [DOI: 10.1002/cctc.201200111] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
38
|
Bera M, Patra A. New dinuclear copper(II) and zinc(II) complexes for the investigation of sugar–metal ion interactions. Carbohydr Res 2011; 346:2075-83. [DOI: 10.1016/j.carres.2011.06.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 06/06/2011] [Accepted: 06/21/2011] [Indexed: 10/18/2022]
|
39
|
Zhang Y, Pidko EA, Hensen EJM. Molecular Aspects of Glucose Dehydration by Chromium Chlorides in Ionic Liquids. Chemistry 2011; 17:5281-8. [DOI: 10.1002/chem.201003645] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Indexed: 11/06/2022]
Affiliation(s)
- Yanmei Zhang
- Inorganic Materials Chemistry, Schuit Institute of Catalysis, Eindhoven University of Technology, P.O. Box 513, NL‐5600 MB, Eindhoven (The Netherlands), Fax: (+31) 40‐245‐5054
| | - Evgeny A. Pidko
- Inorganic Materials Chemistry, Schuit Institute of Catalysis, Eindhoven University of Technology, P.O. Box 513, NL‐5600 MB, Eindhoven (The Netherlands), Fax: (+31) 40‐245‐5054
| | - Emiel J. M. Hensen
- Inorganic Materials Chemistry, Schuit Institute of Catalysis, Eindhoven University of Technology, P.O. Box 513, NL‐5600 MB, Eindhoven (The Netherlands), Fax: (+31) 40‐245‐5054
| |
Collapse
|