1
|
Harris M, Ceulemans M, Verstraete C, Bloemen M, Manshian B, Soenen SJ, Himmelreich U, Verbiest T, De Borggraeve WM, Parac‐Vogt TN. Ultrasmall iron oxide nanoparticles functionalized with BODIPY derivatives as potential bimodal probes for MRI and optical imaging. NANO SELECT 2021. [DOI: 10.1002/nano.202000022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Michael Harris
- Department of Chemistry KU Leuven Celestijnenlaan 200F, Box 2404 Leuven 3001 Belgium
| | - Matthias Ceulemans
- Department of Chemistry KU Leuven Celestijnenlaan 200F, Box 2404 Leuven 3001 Belgium
| | - Charlotte Verstraete
- Department of Chemistry KU Leuven Celestijnenlaan 200D, Box 2425 Leuven 3001 Belgium
- Biomedical MRI KU Leuven O&N I Herestraat 49 ‐ box 505 Leuven 3000 Belgium
| | - Maarten Bloemen
- Department of Chemistry KU Leuven Celestijnenlaan 200D, Box 2425 Leuven 3001 Belgium
- Biomedical MRI KU Leuven O&N I Herestraat 49 ‐ box 505 Leuven 3000 Belgium
| | - Bella Manshian
- Biomedical MRI KU Leuven O&N I Herestraat 49 ‐ box 505 Leuven 3000 Belgium
| | - Stefaan J. Soenen
- Biomedical MRI KU Leuven O&N I Herestraat 49 ‐ box 505 Leuven 3000 Belgium
| | - Uwe Himmelreich
- Biomedical MRI KU Leuven O&N I Herestraat 49 ‐ box 505 Leuven 3000 Belgium
| | - Thierry Verbiest
- Department of Chemistry KU Leuven Celestijnenlaan 200D, Box 2425 Leuven 3001 Belgium
| | - Wim M. De Borggraeve
- Department of Chemistry KU Leuven Celestijnenlaan 200F, Box 2404 Leuven 3001 Belgium
| | - Tatjana N. Parac‐Vogt
- Department of Chemistry KU Leuven Celestijnenlaan 200F, Box 2404 Leuven 3001 Belgium
| |
Collapse
|
2
|
Easter QT, Blum SA. Organic and Organometallic Chemistry at the Single-Molecule, -Particle, and -Molecular-Catalyst-Turnover Level by Fluorescence Microscopy. Acc Chem Res 2019; 52:2244-2255. [PMID: 31310095 DOI: 10.1021/acs.accounts.9b00219] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Mechanistic studies have historically played a key role in the discovery and optimization of reactions in organic and organometallic chemistry. However, even apparently simple organic and organometallic transformations may have surprisingly complicated multistep mechanisms, increasing the difficulty of extracting this mechanistic information. The resulting reaction intermediates often constitute a small fraction of the total reaction mixture, for example, creating a long-term analytical challenge of detection. This challenge is particularly pronounced in cases where the positions of intermediates on the reaction energy surface mean that they do not "build up" to the quantities needed for observation by traditional ensemble analytical tools. Thus, their existence and single-step elementary reactivity cannot be studied directly. New approaches for obtaining this otherwise-missing mechanistic information are therefore needed. Single-turnover, single-molecule, single-particle, and other subensemble fluorescence microscopy techniques are ideally suited for this role because of their sensitivity and spatiotemporal resolution. Inspired by the robust development of single-molecule fluorescence microscopy tools for studying enzyme catalysis, our laboratory has developed analogous fluorescence microscopy techniques to overcome mechanistic challenges in synthetic chemistry, with sensitivity as high as the single-complex, single-turnover, and single-molecule level. These techniques free the experimenter from the previous restriction that intermediates must "build up" to quantities needed for detection by ensemble analytical tools and are suited to systems where synchronization through flash photolysis or stopped flow would be inconvenient or inaccessible. In this process, the techniques transform certain previously "unobservable" intermediates and their elementary single-step reactivities into "observable" ones through sensitive and selective spectral handles. Our program has focused on imaging reactions in small-molecule, organic, and polymer synthetic chemistry with an accent on the reactivity of molecular transition metal complexes and catalysts. Our laboratory initiated studies in this area in 2008 with the imaging of individual palladium complexes that were tagged with spectator fluorophores. To enable imaging, we started with fluorophore selection and development, overcame challenges with imaging in organic solvents, and developed strategies compatible with air-sensitive chemistry and concentrations of reagents generally used in small-molecule synthesis. These studies grew to include characterization of previously unknown organometallic intermediates in the synthesis of organozinc reagents and the direct study of their elementary-step reactivity. The ability to directly observe this behavior generated predictive power for selecting salts that accelerated organozinc reagent formation in synthesis, including salts that had not yet been reported synthetically. In 2017 we also developed the first single-turnover imaging of molecular (chemo)catalysts, which through the technique's spatiotemporal resolution revealed abruptly time-variable polymerization kinetics wherein molecular ruthenium ring-opening metathesis polymerization (ROMP) catalysts changed rates independently from other catalysts less than 1 μm away. Individual catalytic turnovers, each corresponding to one single-chain-elongation reaction arising from insertion of single ROMP or enyne monomers at individual Grubbs II molecular ruthenium catalysts, were spatiotemporally resolved as green flashes in growing polymers. In this Account, we discuss the development of this technique from idea to application, including challenges overcome and strategies created to image synthetic organic and organometallic molecular chemistry at the highest levels of detection sensitivity. We also describe challenges not yet solved and provide an outlook for this growing field at the intersection of microscopy and synthetic/molecular chemistry.
Collapse
Affiliation(s)
- Quinn T. Easter
- Department of Chemistry, University of California, Irvine, California 92697−2025, United States
| | - Suzanne A. Blum
- Department of Chemistry, University of California, Irvine, California 92697−2025, United States
| |
Collapse
|
3
|
Easter QT, Blum SA. Kinetics of the Same Reaction Monitored over Nine Orders of Magnitude in Concentration: When Are Unique Subensemble and Single‐Turnover Reactivity Displayed? Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201807317] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Quinn T. Easter
- Department of Chemistry University of California, Irvine Irvine CA 92697 USA
| | - Suzanne A. Blum
- Department of Chemistry University of California, Irvine Irvine CA 92697 USA
| |
Collapse
|
4
|
Easter QT, Blum SA. Kinetics of the Same Reaction Monitored over Nine Orders of Magnitude in Concentration: When Are Unique Subensemble and Single‐Turnover Reactivity Displayed? Angew Chem Int Ed Engl 2018; 57:12027-12032. [DOI: 10.1002/anie.201807317] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Indexed: 11/07/2022]
Affiliation(s)
- Quinn T. Easter
- Department of Chemistry University of California, Irvine Irvine CA 92697 USA
| | - Suzanne A. Blum
- Department of Chemistry University of California, Irvine Irvine CA 92697 USA
| |
Collapse
|
5
|
Heng C, Zhou X, Zheng X, Liu M, Wen Y, Huang H, Fan D, Hui J, Zhang X, Wei Y. Surface grafting of rare-earth ions doped hydroxyapatite nanorods (HAp:Ln(Eu/Tb)) with hydrophilic copolymers based on ligand exchange reaction: Biological imaging and cancer treatment. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 91:556-563. [PMID: 30033287 DOI: 10.1016/j.msec.2018.05.079] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 09/09/2017] [Accepted: 05/29/2018] [Indexed: 12/12/2022]
Abstract
Rare-earth ions doped hydroxyapatite nanoparticles (HAp:Ln NPs) have demonstrated to be very promising candidates for biological imaging applications owing to their small size and chemical compositions similar to bone. However, these HAp:Ln NPs with controllable size and morphology should be prepared under hydrothermal treatment with hydrophobic molecules as the protective layers. The hydrophobic nature of these luminescent HAp:Ln NPs largely impeded their applications in biomedical fields. In this study, a novel and effective strategy has been developed for the surface modification of HAp:Ln nanorods through the combination of surface ligand exchange reaction and reversible-addition fragmentation chain transfer (RAFT) polymerization using 2-methacryloyloxyethyl phosphorylcholine (MPC) and itaconic acid (IA) as the monomers. Herein, a small molecule adenosine 5'-monophosphate disodium salt (AMP) that contains a phosphate group and two hydroxyl groups was used to displace the hydrophobic oleic acid on pristine HAp NPs through surface ligand exchange reaction owing to its stronger interaction with HAp NPs. On the other hand, the MPC and IA were introduced on HAp NPs through RAFT polymerization after the chain transfer agent was immobilized on the HAp NPs through the esterification reaction. The poly(IA-MPC) could not only endow the high water dispersibility but also be used for loading anticancer agent cisplatin (CDDP) through coordination interaction. To evaluate their potential biomedical applications, the cell uptake behavior, drug loading capacity and release behavior as well as cell viability of HAp:Ln-AMP-poly(IA-MPC) polymeric composites were examined. We demonstrated that the method developed in this work is very effective for introduction of functional polymers onto HAp:Ln nanorods. The HAp:Ln-AMP-poly(IA-MPC) composites are promising for cell imaging and controlled delivery of CDDP.
Collapse
Affiliation(s)
- Chunning Heng
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, PR China; Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical and Engineering, Northwest University, Xi'an 710069, PR China
| | - Xin Zhou
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, PR China
| | - Xiaoyan Zheng
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical and Engineering, Northwest University, Xi'an 710069, PR China
| | - Meiying Liu
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, PR China
| | - Yuanqing Wen
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, PR China
| | - Hongye Huang
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, PR China
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical and Engineering, Northwest University, Xi'an 710069, PR China
| | - Junfeng Hui
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical and Engineering, Northwest University, Xi'an 710069, PR China.
| | - Xiaoyong Zhang
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, PR China.
| | - Yen Wei
- Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing 100084, PR China..
| |
Collapse
|
6
|
Easter QT, Blum SA. Single Turnover at Molecular Polymerization Catalysts Reveals Spatiotemporally Resolved Reactions. Angew Chem Int Ed Engl 2017; 56:13772-13775. [DOI: 10.1002/anie.201708284] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Indexed: 11/11/2022]
Affiliation(s)
| | - Suzanne A. Blum
- Department of Chemistry; University of California, Irvine; Irvine CA 92617 USA
| |
Collapse
|
7
|
Easter QT, Blum SA. Single Turnover at Molecular Polymerization Catalysts Reveals Spatiotemporally Resolved Reactions. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201708284] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | - Suzanne A. Blum
- Department of Chemistry University of California, Irvine Irvine CA 92617 USA
| |
Collapse
|
8
|
Feng C, Easter QT, Blum SA. Structure–Reactivity Studies, Characterization, and Transformation of Intermediates by Lithium Chloride in the Direct Insertion of Alkyl and Aryl Iodides to Metallic Zinc Powder. Organometallics 2017. [DOI: 10.1021/acs.organomet.6b00910] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Chao Feng
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Quinn T. Easter
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Suzanne A. Blum
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| |
Collapse
|
9
|
Ng JD, Upadhyay SP, Marquard AN, Lupo KM, Hinton DA, Padilla NA, Bates DM, Goldsmith RH. Single-Molecule Investigation of Initiation Dynamics of an Organometallic Catalyst. J Am Chem Soc 2016; 138:3876-83. [PMID: 26944030 DOI: 10.1021/jacs.6b00357] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The action of molecular catalysts comprises multiple microscopic kinetic steps whose nature is of central importance in determining catalyst activity and selectivity. Single-molecule microscopy enables the direct examination of these steps, including elucidation of molecule-to-molecule variability. Such molecular diversity is particularly important for the behavior of molecular catalysts supported at surfaces. We present the first combined investigation of the initiation dynamics of an operational palladium cross-coupling catalyst at the bulk and single-molecule levels, including under turnover conditions. Base-initiated kinetics reveal highly heterogeneous behavior indicative of diverse catalyst population. Unexpectedly, this distribution becomes more heterogeneous at increasing base concentration. We model this behavior with a two-step saturation mechanism and identify specific microscopic steps where chemical variability must exist in order to yield observed behavior. Critically, we reveal how structural diversity at a surface translates into heterogeneity in catalyst behavior, while demonstrating how single-molecule experiments can contribute to understanding of molecular catalysts.
Collapse
Affiliation(s)
- James D Ng
- Department of Chemistry, The University of Wisconsin-Madison , 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Sunil P Upadhyay
- Department of Chemistry, The University of Wisconsin-Madison , 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Angela N Marquard
- Department of Chemistry, The University of Wisconsin-Madison , 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Katherine M Lupo
- Department of Chemistry, The University of Wisconsin-Madison , 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Daniel A Hinton
- Department of Chemistry, The University of Wisconsin-Madison , 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Nicolas A Padilla
- Department of Chemistry, The University of Wisconsin-Madison , 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Desiree M Bates
- Department of Chemistry, The University of Wisconsin-Madison , 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Randall H Goldsmith
- Department of Chemistry, The University of Wisconsin-Madison , 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
10
|
Easter QT, Trauschke V, Blum SA. Catalyst Inefficiencies: Supported Ring-Opening Metathesis Polymerization Catalyst Yields Its Ensemble Rate from a Small Number of Molecular Active Sites. ACS Catal 2015. [DOI: 10.1021/acscatal.5b00046] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Quinn T. Easter
- Department
of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United States
| | - Vanessa Trauschke
- Department
of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United States
| | - Suzanne A. Blum
- Department
of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United States
| |
Collapse
|
11
|
Hensle EM, Esfandiari NM, Lim SG, Blum SA. BODIPY Fluorophore Toolkit for Probing Chemical Reactivity and for Tagging Reactive Functional Groups. European J Org Chem 2014. [DOI: 10.1002/ejoc.201400052] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
12
|
Blum SA. Location change method for imaging chemical reactivity and catalysis with single-molecule and -particle fluorescence microscopy. Phys Chem Chem Phys 2014; 16:16333-9. [DOI: 10.1039/c4cp00353e] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Opportunities and challenges in single-molecule and single-particle fluorescence microscopy for mechanistic studies of chemical reactions. Nat Chem 2014; 5:993-9. [PMID: 24256861 DOI: 10.1038/nchem.1800] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 10/08/2013] [Indexed: 12/19/2022]
Abstract
In recent years, single-molecule and single-particle fluorescence microscopy has emerged as a tool to investigate chemical systems. After an initial lag of over a decade with respect to biophysical studies, this powerful imaging technique is now revealing mechanisms of 'classical' organic reactions, spatial distribution of chemical reactivity on surfaces and the phase of active catalysts. The recent advance into commercial imaging systems obviates the need for home-built laser systems and thus opens this technique to traditionally trained synthetic chemists. We discuss the requisite photophysical and chemical properties of fluorescent reporters and highlight the main challenges in applying single-molecule techniques to chemical questions. The goal of this Perspective is to provide a snapshot of an emerging multidisciplinary field and to encourage broader use of this young experimental approach that aids the observation of chemical reactions as depicted in many textbooks: molecule by molecule.
Collapse
|
14
|
Rybina A, Thaler B, Krämer R, Herten DP. Monitoring hydroquinone–quinone redox cycling by single molecule fluorescence spectroscopy. Phys Chem Chem Phys 2014; 16:19550-5. [DOI: 10.1039/c4cp02640c] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Current research in the field of single-molecule chemistry is increasingly focused on the development of reliable experimental approaches for investigating chemical processes on a molecular level using single-molecule fluorescence spectroscopy (SMFS).
Collapse
Affiliation(s)
- A. Rybina
- Universität Heidelberg
- Cellnetworks Cluster & Physikalisch-Chemisches Institut
- 69120 Heidelberg, Germany
| | - B. Thaler
- Universität Heidelberg
- Anorganisch-Chemisches Institut
- 69120 Heidelberg, Germany
| | - R. Krämer
- Universität Heidelberg
- Anorganisch-Chemisches Institut
- 69120 Heidelberg, Germany
| | - D.-P. Herten
- Universität Heidelberg
- Cellnetworks Cluster & Physikalisch-Chemisches Institut
- 69120 Heidelberg, Germany
| |
Collapse
|
15
|
Janssen KPF, De Cremer G, Neely RK, Kubarev AV, Van Loon J, Martens JA, De Vos DE, Roeffaers MBJ, Hofkens J. Single molecule methods for the study of catalysis: from enzymes to heterogeneous catalysts. Chem Soc Rev 2014; 43:990-1006. [DOI: 10.1039/c3cs60245a] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
16
|
Lifschitz AM, Shade CM, Spokoyny AM, Mendez-Arroyo J, Stern CL, Sarjeant AA, Mirkin CA. Boron-Dipyrromethene-Functionalized Hemilabile Ligands as “Turn-On” Fluorescent Probes for Coordination Changes in Weak-Link Approach Complexes. Inorg Chem 2013; 52:5484-92. [DOI: 10.1021/ic400383t] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Alejo M. Lifschitz
- Department of Chemistry and International
Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Chad M. Shade
- Department of Chemistry and International
Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Alexander M. Spokoyny
- Department of Chemistry and International
Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Jose Mendez-Arroyo
- Department of Chemistry and International
Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Charlotte L. Stern
- Department of Chemistry and International
Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Amy A. Sarjeant
- Department of Chemistry and International
Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Chad A. Mirkin
- Department of Chemistry and International
Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|