1
|
Hoerres R, Kamboj R, Pryor N, Kelley SP, Hennkens HM. [ 186Re]Re- and [ 99mTc]Tc-Tricarbonyl Metal Complexes with 1,4,7-Triazacyclononane-Based Chelators Bearing Amide, Alcohol, or Ketone Pendent Groups. ACS OMEGA 2024; 9:39925-39935. [PMID: 39346849 PMCID: PMC11425660 DOI: 10.1021/acsomega.4c05699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/07/2024] [Accepted: 09/02/2024] [Indexed: 10/01/2024]
Abstract
1,4,7-Triazacyclononane (TACN)-based chelators, such as NOTA and NODAGA, have shown great promise as bifunctional chelators for [M(CO)3]+ cores (M = 99mTc and 186Re) in radiopharmaceutical development. Previous investigations of TACN-based chelators bearing pendent acid and ester arms demonstrated the important role the pendent arms have in successful coordination of the [M(CO)3]+ core with the TACN backbone nitrogens. In this work, we introduce three TACN-based bifunctional chelators bearing amide, alcohol, and ketone pendent arms and evaluate their (radio)labeling efficiency with the [M(CO)3]+ core as well as the in vitro stability and hydrophilicity of the resulting radiometal complexes. Following their synthesis and characterization, the amide (2) and alcohol (3) chelators were successfully labeled with the [M(CO)3]+ cores (M = natRe, 99mTc, and 186Re), while the ketone (4) was not successfully labeled. Radiometal complexes M-2 and M-3 demonstrated hydrophilic character in logD7.4 studies as well as excellent stability in phosphate-buffered saline (pH 7.4), l-histidine, l-cysteine, and rat serum at 37 °C through 24 h. While the hydrophilicity and stability of these radiocomplexes are attractive, future TACN chelator design modifications to increase radiolabeling yields under milder reaction conditions would improve their potential for use in development of [M(CO)3]+ radiopharmaceuticals.
Collapse
Affiliation(s)
- Rebecca Hoerres
- Department of Chemistry, University of Missouri, 601 South College Avenue, Columbia, Missouri 65211, United States
| | - Ritin Kamboj
- Department of Chemistry, University of Missouri, 601 South College Avenue, Columbia, Missouri 65211, United States
| | - Nora Pryor
- Department of Chemistry, University of Missouri, 601 South College Avenue, Columbia, Missouri 65211, United States
| | - Steven P Kelley
- Department of Chemistry, University of Missouri, 601 South College Avenue, Columbia, Missouri 65211, United States
| | - Heather M Hennkens
- Department of Chemistry, University of Missouri, 601 South College Avenue, Columbia, Missouri 65211, United States
- Research Reactor Center, University of Missouri, 1513 Research Park Drive, Columbia, Missouri 65211, United States
| |
Collapse
|
2
|
Hoerres R, Hennkens HM. 1,4,7-Triazacyclononane-Based Chelators for the Complexation of [ 186Re]Re- and [ 99mTc]Tc-Tricarbonyl Cores. Inorg Chem 2023; 62:20688-20698. [PMID: 37683190 PMCID: PMC10732151 DOI: 10.1021/acs.inorgchem.3c01934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Indexed: 09/10/2023]
Abstract
Metal complexes with the general formula [MI(CO)3(k3-L)]+, where M = Re, 186Re, or 99mTc and L = 1,4,7-triazacyclononane (TACN), NOTA, or NODAGA chelators, have previously been conjugated to peptide-based biological targeting vectors and investigated as potential theranostic radiopharmaceuticals. The promising results demonstrated by these bioconjugate complexes prompted our exploration of other TACN-based chelators for suitability for (radio)labeling with the [M(CO)3]+ core. In this work, we investigated the role of the TACN pendant arms in complexation of the [M(CO)3]+ core through (radio)labeling of TACN chelators bearing acid, ester, mixed acid-ester, or no pendant functional groups. The chelators were synthesized from TACN, characterized, and (radio)labeled with nonradioactive Re-, [186Re]Re-, and [99mTc]Tc-tricarbonyl cores. The nonfunctionalized (3), diacid (4), and monoacid monoester (7 and 8) chelators underwent direct labeling, while the diester (M-5 and M-6) complexes required indirect synthesis from M-4. All six chelators demonstrated stable radiometal coordination. The ester-bearing derivatives, which exhibited more lipophilic character than their acid-bearing counterparts, were prone to ester hydrolysis over time, making them less suitable for radiopharmaceutical development. These studies confirmed that the TACN pendant functional groups were key to efficient labeling with the [M(CO)3]+ core, with ionizable pendant arms favored over nonionizable pendant arms.
Collapse
Affiliation(s)
- Rebecca Hoerres
- Department
of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Heather M. Hennkens
- Department
of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
- Research
Reactor Center, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
3
|
Sidorenko GV, Miroslavov AE, Tyupina MY. Technetium(I) carbonyl complexes for nuclear medicine: Coordination-chemical aspect. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
4
|
Kankanamalage PH, Hoerres R, Ho KV, Anderson CJ, Gallazzi F, Hennkens HM. p-NCS-Bn-NODAGA as a bifunctional chelator for radiolabeling with the 186Re/99mTc-tricarbonyl core: Radiochemistry with model complexes and a GRPR-targeting peptide. Nucl Med Biol 2022; 108-109:1-9. [DOI: 10.1016/j.nucmedbio.2022.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/19/2022] [Accepted: 01/27/2022] [Indexed: 12/30/2022]
|
5
|
Li B, Hildebrandt S, Hagenbach A, Abram U. Tricarbonylrhenium(I) and ‐technetium(I) Complexes with Tris(1,2,3‐triazolyl)phosphine Oxides. Z Anorg Allg Chem 2021. [DOI: 10.1002/zaac.202100010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Bo Li
- Institute of Chemistry and Biochemistry Freie Universität Berlin Fabeckstr. 34/36 14195 Berlin Germany
| | - Sarah Hildebrandt
- Institute of Chemistry and Biochemistry Freie Universität Berlin Fabeckstr. 34/36 14195 Berlin Germany
| | - Adelheid Hagenbach
- Institute of Chemistry and Biochemistry Freie Universität Berlin Fabeckstr. 34/36 14195 Berlin Germany
| | - Ulrich Abram
- Institute of Chemistry and Biochemistry Freie Universität Berlin Fabeckstr. 34/36 14195 Berlin Germany
| |
Collapse
|
6
|
Shahzad K, Majid ASA, Khan M, Iqbal MA, Ali A. Recent advances in the synthesis of (99mTechnetium) based radio-pharmaceuticals. REV INORG CHEM 2021. [DOI: 10.1515/revic-2020-0021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Abstract
Technetium radionuclide (99mTc) has excellent extent of disintegration properties and occupies a special place in the field of nuclear medicinal chemistry and other health disciplines. Current review describes recent approaches of synthesis in detailed ways for radio-pharmaceuticals of technetium which have been developed to treat and diagnose the biotic disorders. These technetium labeled radio-pharmaceuticals have been established to apply in the field of diagnostic nuclear medicine especially for imaging of different body parts such as brain, heart, kidney, bones and so on, through single photon emission computed tomography (SPECT) that is thought to be difficult to image such organs by using common X-ray and MRI (Magnetic Resonance Imaging) techniques. This review highlights and accounts an inclusive study on the various synthetic routes of technetium labeled radio-pharmaceuticals using ligands with various donor atoms such as carbon, nitrogen, sulphur, phosphorus etc. These compounds can be utilized as next generation radio-pharmaceuticals.
Collapse
Affiliation(s)
- Khurram Shahzad
- Department of Chemistry , University of Agriculture , Faisalabad , 38000 , Pakistan
| | | | - Mumtaz Khan
- Health Physics Division, Pakistan Institute of Nuclear Science and Technology , Islamabad , Pakistan
| | - Muhammad Adnan Iqbal
- Department of Chemistry , University of Agriculture , Faisalabad , 38000 , Pakistan
- Organometallic and Coordination Chemistry Laboratory, University of Agriculture , Faisalabad , 38000 , Pakistan
| | - Asjad Ali
- Department of Chemistry , University of Agriculture , Faisalabad , 38000 , Pakistan
| |
Collapse
|
7
|
Wei W, Jia G. Metal-Carbon Bonds of Heavier Group 7 and 8 Metals (Tc, Re, Ru, Os): Mononuclear Tc/Re/Ru/Os Complexes With Metal-Carbon Bonds. COMPREHENSIVE COORDINATION CHEMISTRY III 2021:123-439. [DOI: 10.1016/b978-0-08-102688-5.00049-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
8
|
Qiao Z, Xu J, Gonzalez R, Miao Y. Novel [ 99mTc]-Tricarbonyl-NOTA-Conjugated Lactam-Cyclized Alpha-MSH Peptide with Enhanced Melanoma Uptake and Reduced Renal Uptake. Mol Pharm 2020; 17:3581-3588. [PMID: 32663011 DOI: 10.1021/acs.molpharmaceut.0c00606] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The purpose of this study was to examine the melanoma targeting and imaging properties of 99mTc(CO)3-NOTA-GGNle-CycMSHhex {1,4,7-triazacyclononane-1,4,7-triyl-triacetic acid-GlyGlyNle-c[Asp-His-DPhe-Arg-Trp-Lys]-CONH2} and 99mTc(CO)3-NODAGA-GGNle-CycMSHhex {1,4,7-triazacyclononane,1-gluteric acid-4,7-acetic acid-GlyGlyNle-c[Asp-His-DPhe-Arg-Trp-Lys]-CONH2} on B16/F10 melanoma-bearing C57 mice to demonstrate the feasibility of NOTA/NODAGA as metal chelators for 99mTc(CO)3+ radiolabeling. NOTA/NODAGA-GGNle-CycMSHhex were synthesized using fluorenylmethoxycarbonyl (Fmoc) chemistry. The melanocortin-1 (MC1) receptor binding affinities of the peptides were determined on B16/F10 melanoma cells. The biodistribution of 99mTc(CO)3-NOTA-GGNle-CycMSHhex and 99mTc(CO)3-NODAGA-GGNle-CycMSHhex were determined on B16/F10 melanoma-bearing C57 mice at 2 h postinjection to select a lead peptide for further evaluation. The melanoma targeting and imaging properties of 99mTc(CO)3-NOTA-GGNle-CycMSHhex and 99mTc(CO)3-NODAGA-GGNle-CycMSHhex were determined on B16/F10 melanoma-bearing C57 mice. The IC50 values of NOTA/NODAGA-GGNle-CycMSHhex were 0.8 ± 0.1 and 0.9 ± 0.1 nM on B16/F10 cells. 99mTc(CO)3-NOTA-GGNle-CycMSHhex and 99mTc(CO)3-NODAGA-GGNle-CycMSHhex were readily prepared via the [99mTc(CO)3(OH2)3]+ intermediate and displayed MC1R-specific binding on B16/F10 cells. 99mTc(CO)3-NOTA-GGNle-CycMSHhex was further evaluated as a lead peptide because of its higher tumor uptake (19.76 ± 3.62% ID/g) and lower kidney uptake (1.59 ± 0.52% ID/g) at 2 h postinjection than 99mTc(CO)3-NODAGA-GGNle-CycMSHhex. The B16/F10 melanoma uptake of 99mTc(CO)3-NOTA-GGNle-CycMSHhex was 16.07 ± 4.47, 19.76 ± 3.62, 11.30 ± 2.81, and 3.16 ± 2.28% ID/g at 0.5, 2, 4, and 24 h postinjection, respectively. 99mTc(CO)3-NOTA-GGNle-CycMSHhex showed high tumor to normal organ uptake ratios after 2 h postinjection. The B16/F10 melanoma lesions were clearly visualized by SPECT/CT using 99mTc(CO)3-NOTA-GGNle-CycMSHhex as an imaging probe at 2 h postinjection. High tumor uptake, low kidney uptake, and fast urinary clearance of 99mTc(CO)3-NOTA-GGNle-CycMSHhex highlighted its potential for melanoma imaging and facilitated the evaluation of 188Re(CO)3-NOTA-GGNle-CycMSHhex for melanoma therapy.
Collapse
|
9
|
Grunwald AC, Scholtysik C, Hagenbach A, Abram U. One Ligand, One Metal, Seven Oxidation States: Stable Technetium Complexes with the “Kläui Ligand”. Inorg Chem 2020; 59:9396-9405. [DOI: 10.1021/acs.inorgchem.0c01264] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Anna C. Grunwald
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Fabeckstraße 34/36, D-14195 Berlin, Germany
| | - Clemens Scholtysik
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Fabeckstraße 34/36, D-14195 Berlin, Germany
| | - Adelheid Hagenbach
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Fabeckstraße 34/36, D-14195 Berlin, Germany
| | - Ulrich Abram
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Fabeckstraße 34/36, D-14195 Berlin, Germany
| |
Collapse
|
10
|
Makris G, Radford LL, Kuchuk M, Gallazzi F, Jurisson SS, Smith CJ, Hennkens HM. NOTA and NODAGA [ 99mTc]Tc- and [ 186Re]Re-Tricarbonyl Complexes: Radiochemistry and First Example of a [ 99mTc]Tc-NODAGA Somatostatin Receptor-Targeting Bioconjugate. Bioconjug Chem 2018; 29:4040-4049. [PMID: 30412382 DOI: 10.1021/acs.bioconjchem.8b00670] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
With the long-term goal of developing theranostic agents for applications in nuclear medicine, in this work we evaluated the well-known NOTA and NODAGA chelators as bifunctional chelators (BFCs) for the [99mTc/186Re]Tc/Re-tricarbonyl core. In particular, we report model complexes of the general formula fac-[M(L)(CO)3]+ (M = Re, 99mTc, 186Re) where L denotes NOTA-Pyr (1) or NODAGA-Pyr (2), which are derived from conjugation of NOTA/NODAGA with pyrrolidine (Pyr). Further, as proof-of-principle, we synthesized the peptide bioconjugate NODAGA-sst2-ANT (3) and explored its complexation with the fac-[Re(CO)3]+ and fac-[99mTc][Tc(CO)3]+ cores; sst2-ANT denotes the somatostatin receptor (SSTR) antagonist 4-NO2-Phe-c(DCys-Tyr-DTrp-Lys-Thr-Cys)-DTyr-NH2. Rhenium complexes Re-1 through Re-3 were synthesized and characterized spectroscopically, and receptor binding affinity was demonstrated for Re-3 in SSTR-expressing cells (AR42J, IC50 = 91 nM). Radiolabeled complexes [99mTc]Tc/[186Re]Re-1/2 and [99mTc]Tc-3 were prepared in high radiochemical yield (>90%, determined by radio-HPLC) by reacting [99mTc]/[186Re][Tc/Re(OH2)3(CO)3]+ with 1-3 and correlated well with the respective Re-1 through Re-3 standards in comparative HPLC studies. All radiotracers remained intact through 24 h (99mTc-labeled complexes) or 48 h (186Re-labeled complexes) against 1 mM l-histidine and 1 mM l-cysteine (pH 7.4, 37 °C). Similarly, rat serum stability studies displayed no decomposition and low nonspecific binding of 9-24% through 4 h. Biodistribution of [99mTc]Tc-3 in healthy CF-1 mice demonstrated a favorable pharmacokinetic profile. Rapid clearance was observed within 1 h post-injection, predominantly via the renal system (82% of the injected dose was excreted in urine by 1 h), with low kidney retention (% ID/g: 11 at 1 h, 5 at 4 h, and 1 at 24 h) and low nonspecific uptake in other organs/tissues. Our findings establish NOTA and NODAGA as outstanding BFCs for the fac-[M(CO)3]+ core in the design and development of organometallic radiopharmaceuticals. Future in vivo studies of [99mTc]Tc- and [186Re]Re-tricarbonyl complexes of NODAGA/NOTA-biomolecule conjugates will further probe the potential of these chelates for nuclear medicine applications in diagnostic imaging and targeted radiotherapy, respectively.
Collapse
Affiliation(s)
| | | | | | | | | | - Charles J Smith
- Research Service , Harry S. Truman Memorial Veterans' Hospital , Columbia , Missouri 65201 , United States.,Department of Radiology , University of Missouri School of Medicine , Columbia , Missouri 65212 , United States
| | | |
Collapse
|
11
|
Abstract
Nuclear medicine is composed of two complementary areas, imaging and therapy. Positron emission tomography (PET) and single-photon imaging, including single-photon emission computed tomography (SPECT), comprise the imaging component of nuclear medicine. These areas are distinct in that they exploit different nuclear decay processes and also different imaging technologies. In PET, images are created from the 511 keV photons produced when the positron emitted by a radionuclide encounters an electron and is annihilated. In contrast, in single-photon imaging, images are created from the γ rays (and occasionally X-rays) directly emitted by the nucleus. Therapeutic nuclear medicine uses particulate radiation such as Auger or conversion electrons or β- or α particles. All three of these technologies are linked by the requirement that the radionuclide must be attached to a suitable vector that can deliver it to its target. It is imperative that the radionuclide remain attached to the vector before it is delivered to its target as well as after it reaches its target or else the resulting image (or therapeutic outcome) will not reflect the biological process of interest. Radiochemistry is at the core of this process, and radiometals offer radiopharmaceutical chemists a tremendous range of options with which to accomplish these goals. They also offer a wide range of options in terms of radionuclide half-lives and emission properties, providing the ability to carefully match the decay properties with the desired outcome. This Review provides an overview of some of the ways this can be accomplished as well as several historical examples of some of the limitations of earlier metalloradiopharmaceuticals and the ways that new technologies, primarily related to radionuclide production, have provided solutions to these problems.
Collapse
Affiliation(s)
- Eszter Boros
- Department of Chemistry , Stony Brook University , Stony Brook , New York 11794 , United States
| | - Alan B Packard
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology , Boston Children's Hospital , Boston , Massachusetts 02115 , United States.,Harvard Medical School , Boston , Massachusetts 02115 , United States
| |
Collapse
|
12
|
Papagiannopoulou D. Technetium-99m radiochemistry for pharmaceutical applications. J Labelled Comp Radiopharm 2017; 60:502-520. [PMID: 28618064 DOI: 10.1002/jlcr.3531] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 06/08/2017] [Accepted: 06/08/2017] [Indexed: 12/14/2022]
Abstract
Technetium-99m (99m Tc) is a widely used radionuclide, and the development of 99m Tc imaging agents continues to be in demand. This overview discusses basic principles of 99m Tc radiopharmaceutical preparation and design and focuses on the 99m Tc radiochemistry relevant to its pharmaceutical applications. The 99m Tc complexes are described based on the most typical examples in each category, keeping up with the state-of-the-art in the field. In addition, the main current strategies to develop targeted 99m Tc radiopharmaceuticals are summarized.
Collapse
Affiliation(s)
- Dionysia Papagiannopoulou
- Department of Pharmaceutical Chemistry, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
13
|
Brink A, Helliwell JR. New leads for fragment-based design of rhenium/technetium radiopharmaceutical agents. IUCRJ 2017; 4:283-290. [PMID: 28512575 PMCID: PMC5414402 DOI: 10.1107/s2052252517003475] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 03/03/2017] [Indexed: 05/22/2023]
Abstract
Multiple possibilities for the coordination of fac-[Re(CO)3(H2O)3]+ to a protein have been determined and include binding to Asp, Glu, Arg and His amino-acid residues as well as to the C-terminal carboxylate in the vicinity of Leu and Pro. The large number of rhenium metal complex binding sites that have been identified on specific residues thereby allow increased target identification for the design of future radiopharmaceuticals. The core experimental concept involved the use of state-of-art tuneable synchrotron radiation at the Diamond Light Source to optimize the rhenium anomalous dispersion signal to a large value (f'' of 12.1 electrons) at its LI absorption edge with a selected X-ray wavelength of 0.9763 Å. At the Cu Kα X-ray wavelength (1.5418 Å) the f'' for rhenium is 5.9 electrons. The expected peak-height increase owing to the optimization of the Re f'' was therefore 2.1. This X-ray wavelength tuning methodology thereby showed the lower occupancy rhenium binding sites as well as the occupancies of the higher occupancy rhenium binding sites.
Collapse
Affiliation(s)
- Alice Brink
- Department of Chemistry, University of the Free State, Nelson Mandela Drive, Bloemfontein, Free State 9301, South Africa
| | - John R. Helliwell
- School of Chemistry, University of Manchester, Brunswick Street, Manchester M13 9PL, England
| |
Collapse
|
14
|
Elahi SM, Rajasekharan MV. Alkali Ion - Ce 3+- DipicH 2System : Coordination Networks and Water Clusters. ChemistrySelect 2016. [DOI: 10.1002/slct.201601351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Syed M. Elahi
- School of Chemistry; University of Hyderabad; Hyderabad 500 046 India
| | | |
Collapse
|
15
|
|
16
|
Mion G, Gianferrara T, Bergamo A, Gasser G, Pierroz V, Rubbiani R, Vilar R, Leczkowska A, Alessio E. Phototoxic Activity and DNA Interactions of Water-Soluble Porphyrins and Their Rhenium(I) Conjugates. ChemMedChem 2015; 10:1901-14. [PMID: 26332425 DOI: 10.1002/cmdc.201500288] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 08/13/2015] [Indexed: 12/12/2022]
Abstract
In the search for alternative photosensitizers for use in photodynamic therapy (PDT), herein we describe two new water-soluble porphyrins, a neutral fourfold-symmetric compound and a +3-charged tris-methylpyridinium derivative, in which either four or one [1,4,7]-triazacyclononane (TACN) units are connected to the porphyrin macrocycle through a hydrophilic linker; we also report their corresponding tetracationic Re(I) conjugates. The in vitro (photo)toxic effects of the compounds toward the human cell lines HeLa (cervical cancer), H460M2 (non-small-cell lung carcinoma), and HBL-100 (non-tumorigenic epithelial cells) are reported. Three of the compounds are not cytotoxic in the dark up to 100 μm, and the fourfold-symmetric couple revealed very good phototoxic indexes (PIs). The intracellular localization of all derivatives was studied in HeLa cells by confocal fluorescence microscopy. Although low nuclear localization was observed for some of them, it still prompted us to investigate their capacity to bind both quadruplex and duplex DNA; we observed significant selectivity in the tris-methylpyridinium derivatives for G-quadruplex interactions.
Collapse
Affiliation(s)
- Giuliana Mion
- Department of Chemical & Pharmaceutical Sciences, Università degli Studi di Trieste, P.le Europa 1, 34127, Trieste, Italy
| | - Teresa Gianferrara
- Department of Chemical & Pharmaceutical Sciences, Università degli Studi di Trieste, P.le Europa 1, 34127, Trieste, Italy.
| | - Alberta Bergamo
- Callerio Foundation Onlus, Via A. Fleming 22-31, 34127, Trieste, Italy
| | - Gilles Gasser
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| | - Vanessa Pierroz
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Riccardo Rubbiani
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Ramon Vilar
- Department of Chemistry, Imperial College London, London, SW7 2AZ, UK.
| | - Anna Leczkowska
- Department of Chemistry, Imperial College London, London, SW7 2AZ, UK
| | - Enzo Alessio
- Department of Chemical & Pharmaceutical Sciences, Università degli Studi di Trieste, P.le Europa 1, 34127, Trieste, Italy
| |
Collapse
|
17
|
Hahn EM, Casini A, Kühn FE. Re(VII) and Tc(VII) trioxo complexes stabilized by tridentate ligands and their potential use as radiopharmaceuticals. Coord Chem Rev 2014. [DOI: 10.1016/j.ccr.2014.05.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
18
|
Wuillemin MA, Stuber WT, Fox T, Reber MJ, Brühwiler D, Alberto R, Braband H. A novel99mTc labelling strategy for the development of silica based particles for medical applications. Dalton Trans 2014; 43:4260-3. [DOI: 10.1039/c3dt53019a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
19
|
Braband H. High-valent technetium chemistry-new opportunities for radiopharmaceutical developments. J Labelled Comp Radiopharm 2013; 57:270-4. [PMID: 24347394 DOI: 10.1002/jlcr.3148] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 10/29/2013] [Indexed: 11/10/2022]
Affiliation(s)
- Henrik Braband
- Institute of Inorganic Chemistry; University of Zurich; Winterthurerstr. 190 8057 Zurich Switzerland
| |
Collapse
|
20
|
John B, Colin D. H. Catalysis or Convenience? Perborate in Context. ADVANCES IN INORGANIC CHEMISTRY 2013. [DOI: 10.1016/b978-0-12-404582-8.00006-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
21
|
|