1
|
Spielvogel KD, Campbell EJ, Chowdhury SR, Benner F, Demir S, Hatzis GP, Petras HR, Sembukuttiarachchige D, Shepherd JJ, Thomas CM, Vlaisavljevich B, Daly SR. Modulation of Fe-Fe distance and spin in diiron complexes using tetradentate ligands with different flanking donors. Chem Commun (Camb) 2024; 60:8399-8402. [PMID: 39028006 DOI: 10.1039/d4cc02522a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Here we report the synthesis and characterization of diiron complexes containing triaryl N4 and N2S2 ligands derived from o-phenylenediamine. The complexes display significant differences in Fe-Fe distances and magnetic properties that depend on the identity of the flanking NMe2 and SMe donor groups.
Collapse
Affiliation(s)
- Kyle D Spielvogel
- The University of Iowa, Department of Chemistry, E331 Chemistry Building, Iowa City, IA 52242, USA.
| | - Emily J Campbell
- The University of Iowa, Department of Chemistry, E331 Chemistry Building, Iowa City, IA 52242, USA.
| | - Sabyasachi Roy Chowdhury
- The University of South Dakota, Department of Chemistry, 414 E Clark St., Vermillion SD, 57069, USA
| | - Florian Benner
- Michigan State University, Department of Chemistry, 578 South Shaw Lane, East Lansing, Michigan 48824, USA
| | - Selvan Demir
- Michigan State University, Department of Chemistry, 578 South Shaw Lane, East Lansing, Michigan 48824, USA
| | - Gillian P Hatzis
- The Ohio State University, Department of Chemistry and Biochemistry, 100 West 18th Ave, Columbus, OH 43210, USA
| | - Hayley R Petras
- The University of Iowa, Department of Chemistry, E331 Chemistry Building, Iowa City, IA 52242, USA.
| | | | - James J Shepherd
- The University of Iowa, Department of Chemistry, E331 Chemistry Building, Iowa City, IA 52242, USA.
| | - Christine M Thomas
- The Ohio State University, Department of Chemistry and Biochemistry, 100 West 18th Ave, Columbus, OH 43210, USA
| | - Bess Vlaisavljevich
- The University of Iowa, Department of Chemistry, E331 Chemistry Building, Iowa City, IA 52242, USA.
- The University of South Dakota, Department of Chemistry, 414 E Clark St., Vermillion SD, 57069, USA
| | - Scott R Daly
- The University of Iowa, Department of Chemistry, E331 Chemistry Building, Iowa City, IA 52242, USA.
| |
Collapse
|
2
|
Soussi K, Jeanneau E, Maldivi P, Clémancey M, Latour JM, Khrouz L, Lorentz C, Daniele S, Mishra S. N-Alkyl substituted triazenide-bridged homoleptic iron(II) dimers with an exceptionally short Fe-Fe bond. Dalton Trans 2024; 53:1439-1444. [PMID: 38193200 DOI: 10.1039/d3dt03132b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Dinuclear transition metal complexes with direct metal-metal interactions have the potential to generate unique reactivities and properties. Using asymmetric triazine ligands HN3tBuR (R = Et, iPr, nBu) featuring different alkyl substituents at 1,3-N centers, we report here the first rational synthesis of 'tetragonal lantern' type Fe(II) triazenides [Fe2(N3tBuR)4] [R = Et (1), iPr (2), nBu (3)] having an exceptionally short Fe-Fe distance (2.167-2.174 Å). Unlike the previously reported lantern structures with related amidinate or guanidinate ligands, highly air-sensitive 1-3 show a lower spin ground state, as indicated by Mössbauer, 1H NMR and DFT studies.
Collapse
Affiliation(s)
- Khaled Soussi
- Université Claude Bernard Lyon 1, CNRS, UMR 5256, Institut de Recherches sur la Catalyse et l'Environnement de Lyon (IRCELYON), 2 avenue Albert Einstein, 69626 Villeurbanne, France.
| | - Erwann Jeanneau
- Université Claude Bernard Lyon 1, Centre de Diffractométrie Henri Longchambon, 5 rue de La Doua, 69100 Villeurbanne, France
| | - Pascale Maldivi
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, DIESE, SyMMES, F-38000 Grenoble, France
| | - Martin Clémancey
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, DIESE, LCBM, pmb, F-38000 Grenoble, France
| | - Jean-Marc Latour
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, DIESE, LCBM, pmb, F-38000 Grenoble, France
| | - Lhoussain Khrouz
- Université de Lyon, ENS de Lyon, CNRS, Université Lyon 1, Laboratoire de Chimie, F69342, Lyon, France
| | - Chantal Lorentz
- Université Claude Bernard Lyon 1, CNRS, UMR 5256, Institut de Recherches sur la Catalyse et l'Environnement de Lyon (IRCELYON), 2 avenue Albert Einstein, 69626 Villeurbanne, France.
| | - Stéphane Daniele
- Université Claude Bernard Lyon 1, CNRS-UMR 5218, CP2M-ESCPE Lyon, 43 Bd du 11 Nov. 1978, 69616, Villeurbanne, France.
| | - Shashank Mishra
- Université Claude Bernard Lyon 1, CNRS, UMR 5256, Institut de Recherches sur la Catalyse et l'Environnement de Lyon (IRCELYON), 2 avenue Albert Einstein, 69626 Villeurbanne, France.
| |
Collapse
|
3
|
Spentzos AZ, May SR, Confer AM, Gau MR, Carroll PJ, Goldberg DP, Tomson NC. Investigating Metal-Metal Bond Polarization in a Heteroleptic Tris-Ylide Diiron System. Inorg Chem 2023; 62:11487-11499. [PMID: 37428000 PMCID: PMC11071007 DOI: 10.1021/acs.inorgchem.3c01068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
This article describes the synthesis, characterization, and S-atom transfer reactivity of a series of C3v-symmetric diiron complexes. The iron centers in each complex are coordinated in distinct ligand environments, with one (FeN) bound in a pseudo-trigonal bipyramidal geometry by three phosphinimine nitrogens in the equatorial plane, a tertiary amine, and the second metal center (FeC). FeC is coordinated, in turn, by FeN, three ylidic carbons in a trigonal plane, and, in certain cases, by an axial oxygen donor. The three alkyl donors at FeC form through the reduction of the appended N═PMe3 arms of the monometallic parent complex. The complexes were studied crystallographically, spectroscopically (NMR, UV-vis, and Mössbauer), and computationally (DFT, CASSCF) and found to be high-spin throughout, with short Fe-Fe distances that belie weak orbital overlap between the two metals. Further, the redox nature of this series allowed for the determination that oxidation is localized to the FeC. S-atom transfer chemistry resulted in the formal insertion of a S atom into the Fe-Fe bond of the reduced diiron complex to form a mixture of Fe4S and Fe4S2 products.
Collapse
Affiliation(s)
- Ariana Z. Spentzos
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University
of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104,
USA
| | - Sam R. May
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University
of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104,
USA
| | - Alex M. Confer
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University
of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104,
USA
| | - Michael R. Gau
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University
of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104,
USA
| | - Patrick J. Carroll
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University
of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104,
USA
| | | | - Neil C. Tomson
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University
of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104,
USA
| |
Collapse
|
4
|
Korona K, Terlecki M, Justyniak I, Magott M, Żukrowski J, Kornowicz A, Pinkowicz D, Kubas A, Lewiński J. A New Look at Molecular and Electronic Structure of Homoleptic Diiron(II,II) Complexes with
N,N
‐Bidentate Ligands: Combined Experimental and Theoretical Study. Chemistry 2022; 28:e202200620. [DOI: 10.1002/chem.202200620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Krzesimir Korona
- Faculty of Chemistry Warsaw University of Technology Noakowskiego 3 00-664 Warsaw Poland
| | - Michał Terlecki
- Faculty of Chemistry Warsaw University of Technology Noakowskiego 3 00-664 Warsaw Poland
| | - Iwona Justyniak
- Institute of Physical Chemistry Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| | - Michał Magott
- Faculty of Chemistry Jagiellonian University Gronostajowa 2 30-387 Cracow Poland
| | - Jan Żukrowski
- Academic Centre for Materials and Nanotechnology AGH University of Science and Technology Av. A. Mickiewicza 30 30-059 Cracow Poland
| | - Arkadiusz Kornowicz
- Institute of Physical Chemistry Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| | - Dawid Pinkowicz
- Faculty of Chemistry Jagiellonian University Gronostajowa 2 30-387 Cracow Poland
| | - Adam Kubas
- Institute of Physical Chemistry Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| | - Janusz Lewiński
- Faculty of Chemistry Warsaw University of Technology Noakowskiego 3 00-664 Warsaw Poland
- Institute of Physical Chemistry Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| |
Collapse
|
5
|
Hertler PR, Kautzsch L, Touchton AJ, Wu G, Hayton TW. Metal-Metal-Bonded Fe 4 Clusters with Slow Magnetic Relaxation. Inorg Chem 2022; 61:9997-10005. [PMID: 35709487 DOI: 10.1021/acs.inorgchem.2c00865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Reaction of FeBr2 with Li(N═CtBu2) (0.5 equiv) and Zn0 (2 equiv) results in the formation of the formally mixed-valent cluster [Fe4Br2(N═CtBu2)4] (1) in moderate yield. The subsequent reaction of 1 with Na(N═CtBu2) results in formation of [Fe4Br(N═CtBu2)5] (2), also in moderate yield. Both 1 and 2 were characterized by zero-field 57Fe Mössbauer spectroscopy, X-ray crystallography, and superconducting quantum interference device magnetometry. Their tetrahedral [Fe4]6+ cores feature short Fe-Fe interactions (ca. 2.50 Å). Additionally, both 1 and 2 display S = 7 ground states at room temperature and slow magnetic relaxation with zero-field relaxation barriers of Ueff = 14.7(4) and 15.6(7) cm-1, respectively. Moreover, AC magnetic susceptibility measurements were well modeled by assuming an Orbach relaxation process.
Collapse
Affiliation(s)
- Phoebe R Hertler
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Linus Kautzsch
- Materials Department and Materials Research Laboratory, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Alexander J Touchton
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Guang Wu
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Trevor W Hayton
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
6
|
Srinivasan A, Musgrave RA, Rouzières M, Clérac R, McGrady JE, Hillard EA. A linear metal-metal bonded tri-iron single-molecule magnet. Chem Commun (Camb) 2021; 57:13357-13360. [PMID: 34821230 DOI: 10.1039/d1cc05043e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The linear trinuclear complex cation [Fe3(DpyF)4]2+ was prepared as [Fe3(DpyF)4](BF4)2·2CH3CN. With large Fe-Fe distances of 2.78 Å, this complex demonstrates intramolecular ferromagnetic coupling between the anisotropic FeII centers (J/kB = +20.9(5) K) giving an ST = 6 ground state and exhibits single-molecule magnet properties.
Collapse
Affiliation(s)
- Anandi Srinivasan
- Univ. Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR 5031, Pessac, F-33600, France.
| | - Rebecca A Musgrave
- Univ. Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR 5031, Pessac, F-33600, France.
| | - Mathieu Rouzières
- Univ. Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR 5031, Pessac, F-33600, France.
| | - Rodolphe Clérac
- Univ. Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR 5031, Pessac, F-33600, France.
| | - John E McGrady
- Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK
| | - Elizabeth A Hillard
- Univ. Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR 5031, Pessac, F-33600, France.
| |
Collapse
|
7
|
Taylor MG, Nandy A, Lu CC, Kulik HJ. Deciphering Cryptic Behavior in Bimetallic Transition-Metal Complexes with Machine Learning. J Phys Chem Lett 2021; 12:9812-9820. [PMID: 34597514 DOI: 10.1021/acs.jpclett.1c02852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We demonstrate an alternative, data-driven approach to uncovering structure-property relationships for the rational design of heterobimetallic transition-metal complexes that exhibit metal-metal bonding. We tailor graph-based representations of the metal-local environment for these complexes for use in multiple linear regression and kernel ridge regression (KRR) models. We curate a set of 28 experimentally characterized complexes to develop a multiple linear regression model for oxidation potentials. We achieve good accuracy (mean absolute error of 0.25 V) and preserve transferability to unseen experimental data with a new ligand structure. We also train a KRR model on a subset of 330 structurally characterized heterobimetallics to predict the degree of metal-metal bonding. This KRR model predicts relative metal-metal bond lengths in the test set to within 5%, and analysis of key features reveals the fundamental atomic contributions (e.g., the valence electron configuration) that most strongly influence the behavior of these complexes. Our work provides guidance for rational bimetallic design, suggesting that properties, including the formal shortness ratio, should be transferable from one period to another.
Collapse
Affiliation(s)
- Michael G Taylor
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Aditya Nandy
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Connie C Lu
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Heather J Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
8
|
Hujon F, Lyngdoh RHD, King RB. Iron‐Iron Bond Lengths and Bond Orders in Diiron Lantern‐Type Complexes with High Spin Ground States. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202000897] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Fitzerald Hujon
- Department of Chemistry North-Eastern Hill University Shillong 793 022 India
| | | | - R. Bruce King
- Center for Computational Quantum Chemistry University of Georgia Athens 30602 United States
| |
Collapse
|
9
|
Lamb JR, Brown CM, Johnson JA. N-Heterocyclic carbene-carbodiimide (NHC-CDI) betaine adducts: synthesis, characterization, properties, and applications. Chem Sci 2021; 12:2699-2715. [PMID: 34164037 PMCID: PMC8179359 DOI: 10.1039/d0sc06465c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/18/2021] [Indexed: 11/21/2022] Open
Abstract
N-Heterocyclic carbenes (NHCs) are an important class of reactive organic molecules used as ligands, organocatalysts, and σ-donors in a variety of electroneutral ylide or betaine adducts with main-group compounds. An emerging class of betaine adducts made from the reaction of NHCs with carbodiimides (CDIs) form zwitterionic amidinate-like structures with tunable properties based on the highly modular NHC and CDI scaffolds. The adduct stability is controlled by the substituents on the CDI nitrogens, while the NHC substituents greatly affect the configuration of the adduct in the solid state. This Perspective is intended as a primer to these adducts, touching on their history, synthesis, characterization, and general properties. Despite the infancy of the field, NHC-CDI adducts have been applied as amidinate-type ligands for transition metals and nanoparticles, as junctions in zwitterionic polymers, and to stabilize distonic radical cations. These applications and potential future directions are discussed.
Collapse
Affiliation(s)
- Jessica R Lamb
- Department of Chemistry, Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge Massachusetts 02139 USA
| | - Christopher M Brown
- Department of Chemistry, Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge Massachusetts 02139 USA
| | - Jeremiah A Johnson
- Department of Chemistry, Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge Massachusetts 02139 USA
| |
Collapse
|
10
|
Greer SM, Gramigna KM, Thomas CM, Stoian SA, Hill S. Insights into Molecular Magnetism in Metal-Metal Bonded Systems as Revealed by a Spectroscopic and Computational Analysis of Diiron Complexes. Inorg Chem 2020; 59:18141-18155. [PMID: 33253552 DOI: 10.1021/acs.inorgchem.0c02605] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A pair of bimetallic compounds featuring Fe-Fe bonds, [Fe(iPrNPPh2)3FeR] (R = PMe3, ≡NtBu), have been investigated using High-Frequency Electron Paramagnetic Resonance (HFEPR) as well as field- and temperature-dependent 57Fe nuclear γ resonance (Mössbauer) spectroscopy. To gain insight into the local site electronic structure, we have concurrently studied a compound containing a single Fe(II) in a geometry analogous to that of one of the dimer sites. Our spectroscopic studies have allowed for the assessment of the electronic structure via the determination of the zero-field splitting and 57Fe hyperfine parameters for the entire series. We also report on our efforts to correlate structure with physical properties in metal-metal bonded systems using ligand field theory guided by quantum chemical calculations. Through the insight gained in this study, we discuss strategies for the design of single-molecule magnets based on polymetallic compounds linked via direct metal-metal bonds.
Collapse
Affiliation(s)
- Samuel M Greer
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States.,Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Kathryn M Gramigna
- Department of Chemistry, Brandeis University, Waltham, Massachusetts 02453, United States
| | - Christine M Thomas
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Sebastian A Stoian
- Department of Chemistry, University of Idaho, Moscow, Idaho 83844, United States
| | - Stephen Hill
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States.,Department of Physics, Florida State University, Tallahassee, Florida 32306, United States
| |
Collapse
|
11
|
Chakarawet K, Atanasov M, Marbey J, Bunting PC, Neese F, Hill S, Long JR. Strong Electronic and Magnetic Coupling in M 4 (M = Ni, Cu) Clusters via Direct Orbital Interactions between Low-Coordinate Metal Centers. J Am Chem Soc 2020; 142:19161-19169. [PMID: 33111523 DOI: 10.1021/jacs.0c08460] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We present an extensive study of tetranuclear transition-metal cluster compounds M4(NPtBu3)4 and [M4(NPtBu3)4][B(C6F5)4] (M = Ni, Cu; tBu = tert-butyl), which feature low-coordinate metal centers and direct metal-metal orbital overlap. X-ray diffraction, electrochemical, magnetic, spectroscopic, and computational analysis elucidate the nature of the bonding interactions in these clusters and the impact of these interactions on the electronic and magnetic properties. Direct orbital overlap results in strongly coupled, large-spin ground states in the [Ni4(NPtBu3)4]+/0 clusters and fully delocalized, spin-correlated electrons. Correlated electronic structure calculations confirm the presence of ferromagnetic ground states that arise from direct exchange between magnetic orbitals, and, in the case of the neutral cluster, itinerant electron magnetism similar to that in metallic ferromagnets. The cationic nickel cluster also possesses large magnetic anisotropy exemplified by a large, positive axial zero-field splitting parameter of D = +7.95 or +9.2 cm-1, as determined by magnetometry or electron paramagnetic resonance spectroscopy, respectively. The [Ni4(NPtBu3)4]+ cluster is also the first molecule with easy-plane magnetic anisotropy to exhibit zero-field slow magnetic relaxation, and under a small applied field, it exhibits relaxation exclusively through an Orbach mechanism with a spin relaxation barrier of 16 cm-1. The S = 1/2 complex [Cu4(NPtBu3)4]+ exhibits slow magnetic relaxation via a Raman process on the millisecond time scale, supporting the presence of slow relaxation via an Orbach process in the nickel analogue. Overall, this work highlights the unique electronic and magnetic properties that can be realized in metal clusters featuring direct metal-metal orbital interactions between low-coordinate metal centers.
Collapse
Affiliation(s)
| | - Mihail Atanasov
- Max-Planck Institut für Kohlenforschung, Mülheim an der Ruhr D-45470, Germany.,Institute of General and Inorganic Chemistry, Bulgarian Academy of Science, Akad. Georgi Bontchev, Street 11, 1113 Sofia, Bulgaria
| | - Jonathan Marbey
- Department of Physics and National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, United States
| | | | - Frank Neese
- Max-Planck Institut für Kohlenforschung, Mülheim an der Ruhr D-45470, Germany
| | - Stephen Hill
- Department of Physics and National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, United States
| | - Jeffrey R Long
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
12
|
Tanimoto R, Suzuki S, Kozaki M, Kanzaki Y, Shiomi D, Sato K, Takui T, Tanaka R, Okada K. Magnetic Properties of Metal Clusters Coordinated with (Nitronyl Nitroxide)‐Substituted Amidinate Ligands. ChemistrySelect 2020. [DOI: 10.1002/slct.202002927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ryu Tanimoto
- Graduate School of Science Osaka City University Sumiyoshi-ku Osaka 558-8585 Japan
| | - Shuichi Suzuki
- Graduate School of Science Osaka City University Sumiyoshi-ku Osaka 558-8585 Japan
- Graduate School of Engineering Science Osaka University Toyonaka Osaka 560-8531 Japan
| | - Masatoshi Kozaki
- Graduate School of Science Osaka City University Sumiyoshi-ku Osaka 558-8585 Japan
- Osaka City University Advanced Research Institute for Natural Science and Technology (OCARINA) Sumiyoshi-ku Osaka Osaka 558-8585 Japan
| | - Yuki Kanzaki
- Graduate School of Science Osaka City University Sumiyoshi-ku Osaka 558-8585 Japan
| | - Daisuke Shiomi
- Graduate School of Science Osaka City University Sumiyoshi-ku Osaka 558-8585 Japan
| | - Kazunobu Sato
- Graduate School of Science Osaka City University Sumiyoshi-ku Osaka 558-8585 Japan
| | - Takeji Takui
- Graduate School of Science Osaka City University Sumiyoshi-ku Osaka 558-8585 Japan
| | - Rika Tanaka
- X-ray Crystal Analysis Laboratory Graduate School of Engineering Osaka City University Sumiyoshi-ku Osaka 558-8585 Japan
| | - Keiji Okada
- Graduate School of Science Osaka City University Sumiyoshi-ku Osaka 558-8585 Japan
- Osaka City University Advanced Research Institute for Natural Science and Technology (OCARINA) Sumiyoshi-ku Osaka Osaka 558-8585 Japan
| |
Collapse
|
13
|
Coll RP, Dunbar KR. Three Reversible Redox States of Thiolate-Bridged Dirhodium Complexes without Metal–Metal Bonds. J Am Chem Soc 2020; 142:16313-16323. [DOI: 10.1021/jacs.0c06205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Ryan P. Coll
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Kim R. Dunbar
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
14
|
Kaniewska K, Ponikiewski Ł, Szynkiewicz N, Cieślik B, Pikies J, Krzystek J, Dragulescu-Andrasi A, Stoian SA, Grubba R. Homoleptic mono-, di-, and tetra-iron complexes featuring phosphido ligands: a synthetic, structural, and spectroscopic study. Dalton Trans 2020; 49:10091-10103. [PMID: 32661526 DOI: 10.1039/d0dt01503b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We report the first series of homoleptic phosphido iron complexes synthesized by treating either the β-diketiminato complex [(Dippnacnac)FeCl2Li(dme)2] (Dippnacnac = HC[(CMe)N(C6H3-2,6-iPr2)]2) or [FeBr2(thf)2] with an excess of phosphides R2PLi (R = tBu, tBuPh, Cy, iPr). Reaction outcomes depend strongly on the bulkiness of the phosphido ligands. The use of tBu2PLi precursor led to an anionic diiron complex 1 encompassing a planar Fe2P2 core with two bridging and two terminal phosphido ligands. An analogous reaction employing less sterically demanding phosphides, tBuPhPLi and Cy2PLi yielded diiron anionic complexes 2 and 3, respectively, featuring a short Fe-Fe interaction supported by three bridging phosphido groups and one additional terminal R2P- ligand at each iron center. Further tuning of the P-substrates bulkiness gave a neutral phosphido complex 4 possessing a tetrahedral Fe4 cluster core held together by six bridging iPr2P moieties. Moreover, we also describe the first homoleptic phosphanylphosphido iron complex 5, which features an iron center with low coordination provided by three tBu2P-P(SiMe3)- ligands. The structures of compounds 1-5 were determined by single-crystal X-ray diffraction and 1-3 by 1H NMR spectroscopy. Moreover, the electronic structures of 1-3 were interrogated using zero-field Mössbauer spectroscopy and DFT methods.
Collapse
Affiliation(s)
- Kinga Kaniewska
- Department of Inorganic Chemistry, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza St. 11/12, Gdańsk PL-80-233, Poland.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Guillet GL, Arpin KY, Boltin AM, Gordon JB, Rave JA, Hillesheim PC. Synthesis and Characterization of a Linear Triiron(II) Extended Metal Atom Chain Complex with Fe–Fe Bonds. Inorg Chem 2020; 59:11238-11243. [DOI: 10.1021/acs.inorgchem.0c01625] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Gary L. Guillet
- Department of Chemistry and Biochemistry, Georgia Southern University, 11935 Abercorn Street, Savannah, Georgia 31419, United States
| | - Kathleen Y. Arpin
- Department of Chemistry and Biochemistry, Georgia Southern University, 11935 Abercorn Street, Savannah, Georgia 31419, United States
| | - Alan M. Boltin
- Department of Chemistry and Biochemistry, Georgia Southern University, 11935 Abercorn Street, Savannah, Georgia 31419, United States
| | - Jesse B. Gordon
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Justin A. Rave
- Department of Chemistry and Biochemistry, Georgia Southern University, 11935 Abercorn Street, Savannah, Georgia 31419, United States
| | - Patrick C. Hillesheim
- Department of Chemistry and Physics, Ave Maria University, 5050 Ave Maria Boulevard, Ave Maria, Florida 34142, United States
| |
Collapse
|
16
|
Toniolo D, Scopelliti R, Zivkovic I, Mazzanti M. Assembly of High-Spin [Fe 3] Clusters by Ligand-Based Multielectron Reduction. J Am Chem Soc 2020; 142:7301-7305. [PMID: 32248681 DOI: 10.1021/jacs.0c01664] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The hexanuclear [Na12Fe6(tris-cyclo-salophen)2(THF)14], 1-THF, and the trinuclear [Na6Fe3(tris-cyclo-salophen)(py)9], 1-py, Fe(II) clusters can be easily assembled in one step from the ligand-based reduction of the [FeII(salophen)(THF)] complex. These complexes consist of triangular cores where three Fe(II) ions are held together, within range of bonding interaction, by the hexa-amide, hexaphenolate macrocyclic ligand tris-cyclo-salophen12-. The tris-cyclo-salophen12- ligand is perfectly suited for binding three Fe(II) centers at short distances, allowing for strong magnetic coupling between the Fe(II) centers. The macrocyclic ligand is generated by the reductive coupling of the imino groups of three salophen ligands, resulting in three new C-C bonds. The six electrons stored in the ligand become available for the reduction of carbon dioxide with selective formation of carbonate.
Collapse
Affiliation(s)
- Davide Toniolo
- Insititut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Rosario Scopelliti
- Insititut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Ivica Zivkovic
- Laboratory for Quantum Magnetism, Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Marinella Mazzanti
- Insititut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
17
|
Cook AW, Bocarsly JD, Lewis RA, Touchton AJ, Morochnik S, Hayton TW. An iron ketimide single-molecule magnet [Fe 4(N[double bond, length as m-dash]CPh 2) 6] with suppressed through-barrier relaxation. Chem Sci 2020; 11:4753-4757. [PMID: 34122931 PMCID: PMC8159258 DOI: 10.1039/d0sc01578d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Reaction of FeBr2 with 1.5 equiv. of LiN[double bond, length as m-dash]CPh2 and 2 equiv. of Zn, in THF, results in the formation of the tetrametallic iron ketimide cluster [Fe4(N[double bond, length as m-dash]CPh2)6] (1) in moderate yield. Formally, two Fe centers in 1 are Fe(i) and two are Fe(ii); however, Mössbauer spectroscopy and SQUID magnetometry suggests that the [Fe4]6+ core of 1 exhibits complete valence electron delocalization, with a thermally-persistent spin ground state of S = 7. AC and DC SQUID magnetometry reveals the presence of slow magnetic relaxation in 1, indicative of single-molecule magnetic (SMM) behaviour with a relaxation barrier of U eff = 29 cm-1. Remarkably, very little quantum tunnelling or Raman relaxation is observed down to 1.8 K, which leads to an open hysteresis loop and long relaxation times (up to 34 s at 1.8 K and zero field and 440 s at 1.67 kOe). These results suggest that transition metal ketimide clusters represent a promising avenue to create long-lifetime single molecule magnets.
Collapse
Affiliation(s)
- Andrew W Cook
- Department of Chemistry and Biochemistry, University of California Santa Barbara California 93106 USA
| | - Joshua D Bocarsly
- Materials Department and Materials Research Laboratory, University of California, Santa Barbara Santa Barbara California 93106 USA
| | - Richard A Lewis
- Department of Chemistry and Biochemistry, University of California Santa Barbara California 93106 USA
| | - Alexander J Touchton
- Department of Chemistry and Biochemistry, University of California Santa Barbara California 93106 USA
| | - Simona Morochnik
- Department of Chemistry and Biochemistry, University of California Santa Barbara California 93106 USA
| | - Trevor W Hayton
- Department of Chemistry and Biochemistry, University of California Santa Barbara California 93106 USA
| |
Collapse
|
18
|
Duncan Lyngdoh RH, Schaefer HF, King RB. Metal-Metal (MM) Bond Distances and Bond Orders in Binuclear Metal Complexes of the First Row Transition Metals Titanium Through Zinc. Chem Rev 2018; 118:11626-11706. [PMID: 30543419 DOI: 10.1021/acs.chemrev.8b00297] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This survey of metal-metal (MM) bond distances in binuclear complexes of the first row 3d-block elements reviews experimental and computational research on a wide range of such systems. The metals surveyed are titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, and zinc, representing the only comprehensive presentation of such results to date. Factors impacting MM bond lengths that are discussed here include (a) the formal MM bond order, (b) size of the metal ion present in the bimetallic core (M2) n+, (c) the metal oxidation state, (d) effects of ligand basicity, coordination mode and number, and (e) steric effects of bulky ligands. Correlations between experimental and computational findings are examined wherever possible, often yielding good agreement for MM bond lengths. The formal bond order provides a key basis for assessing experimental and computationally derived MM bond lengths. The effects of change in the metal upon MM bond length ranges in binuclear complexes suggest trends for single, double, triple, and quadruple MM bonds which are related to the available information on metal atomic radii. It emerges that while specific factors for a limited range of complexes are found to have their expected impact in many cases, the assessment of the net effect of these factors is challenging. The combination of experimental and computational results leads us to propose for the first time the ranges and "best" estimates for MM bond distances of all types (Ti-Ti through Zn-Zn, single through quintuple).
Collapse
Affiliation(s)
| | - Henry F Schaefer
- Centre for Computational Quantum Chemistry , University of Georgia , Athens , Georgia 30602 , United States
| | - R Bruce King
- Centre for Computational Quantum Chemistry , University of Georgia , Athens , Georgia 30602 , United States
| |
Collapse
|
19
|
Sánchez RH, Betley TA. Thermally Persistent High-Spin Ground States in Octahedral Iron Clusters. J Am Chem Soc 2018; 140:16792-16806. [PMID: 30403845 DOI: 10.1021/jacs.8b10181] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chemical oxidation and reduction of the all-ferrous (HL)2Fe6 in THF affords isostructural, coordinatively unsaturated clusters of the type [(HL)2Fe6] n: [(HL)2Fe6][BArF24] (1, n = +1; where [BArF24]- = tetrakis[(3,5-trifluoromethyl)phenyl]borate), [Bu4N][(HL)2Fe6] (2a, n = -1), [P][(HL)2Fe6] (2b, n = -1; where [P]+ = tributyl(1,3-dioxolan-2-ylmethyl)phosphonium), and [Bu4N]2[(HL)2Fe6] (3, n = -2). Each member of the redox-transfer series was characterized by zero-field 57Fe Mössbauer spectroscopy, near-infrared spectroscopy, single-crystal X-ray crystallography, and magnetometry. Redox-directed trends are observed when comparing the structural metrics within the [Fe6] core. The metal octahedron [Fe6] decreases marginally in volume as the molecular reduction state increases as gauged by the Fe-Feavg distance varying from 2.608(11) Å ( n = +1) to 2.573(3) ( n = -2). In contrast, the mean Fe-N distances and ∠Fe-N-Fe angles correlate linearly with the [Fe6] oxidation level, or alternatively, the changes observed within the local Fe-N4 coordination planes vary linearly with the aggregate spin ground state. In general, as the spin ground state ( S) increases, the Fe-N(H)avg distances also increase. The structural metric perturbations within the [Fe6] core and measured spin ground states were rationalized extending the previously proposed molecular orbital diagram derived for (HL)2Fe6. Chemical reduction of the (HL)2Fe6 cluster results in an abrupt increase in spin ground state from S = 6 for the all-ferrous cluster, to S = 19/2 in the monoanionic 2b and S = 11 for the dianionic 3. The observation of asymmetric intervalence charge transfer bands in 3 provides further evidence of the fully delocalized ground state observed by 57Fe Mössbauer spectroscopy for all species examined (1-3). For each of the clusters examined within the electron-transfer series, the observed spin ground states thermally persist to 300 K. In particular, the S = 11 in dianionic 3 and S = 19/2 in the monoanionic 2b represent the highest spin ground states isolated up to room temperature known to date. The increase in spin ground state results from population of the antibonding orbital band comprised of the Fe-N σ* interactions. As such, the thermally persistent ground states arise from population of the resultant single spin manifolds in accordance with Hund's rules. The large spin ground states, indicative of strong ferromagnetic electronic alignment of the valence electrons, result from strong direct exchange electronic coupling mediated by Fe-Fe orbital overlap within the [Fe6] cores, equivalent to a strong double exchange magnetic coupling B for 3 that was calculated to be 309 cm-1.
Collapse
Affiliation(s)
- Raúl Hernández Sánchez
- Department of Chemistry and Chemical Biology , Harvard University , 12 Oxford Street , Cambridge , Massachusetts 02138 , United States
| | - Theodore A Betley
- Department of Chemistry and Chemical Biology , Harvard University , 12 Oxford Street , Cambridge , Massachusetts 02138 , United States
| |
Collapse
|
20
|
Liu Y, Hua S, Cheng M, Yu L, Demeshko S, Dechert S, Meyer F, Lee G, Chiang M, Peng S. Electron Delocalization of Mixed‐Valence Diiron Sites Mediated by Group 10 Metal Ions in Heterotrimetallic Fe‐M‐Fe (M=Ni, Pd, and Pt) Chain Complexes. Chemistry 2018; 24:11649-11666. [DOI: 10.1002/chem.201801325] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 05/28/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Yu‐Chiao Liu
- Institute of ChemistryAcademia Sinica Taipei 11529 Taiwan
| | - Shao‐An Hua
- Department of Chemistry and Center for Emerging Material and Advanced DevicesNational Taiwan University Taipei 10617 Taiwan
- Present address: Institut für Anorganische ChemieUniversität Göttingen Tammannstr. 4 37077 Göttingen Germany
| | | | - Li‐Chung Yu
- Department of Chemistry and Center for Emerging Material and Advanced DevicesNational Taiwan University Taipei 10617 Taiwan
- Present address: National Synchrotron Radiation Research Center Hsinchu 30076 Taiwan
| | - Serhiy Demeshko
- Institut für Anorganische ChemieUniversität Göttingen Tammannstr. 4 37077 Göttingen Germany
| | - Sebastian Dechert
- Institut für Anorganische ChemieUniversität Göttingen Tammannstr. 4 37077 Göttingen Germany
| | - Franc Meyer
- Institut für Anorganische ChemieUniversität Göttingen Tammannstr. 4 37077 Göttingen Germany
| | - Gene‐Hsiang Lee
- Department of Chemistry and Center for Emerging Material and Advanced DevicesNational Taiwan University Taipei 10617 Taiwan
| | | | - Shie‐Ming Peng
- Institute of ChemistryAcademia Sinica Taipei 11529 Taiwan
- Department of Chemistry and Center for Emerging Material and Advanced DevicesNational Taiwan University Taipei 10617 Taiwan
| |
Collapse
|
21
|
Nicolini A, Galavotti R, Barra AL, Borsari M, Caleffi M, Luo G, Novitchi G, Park K, Ranieri A, Rigamonti L, Roncaglia F, Train C, Cornia A. Filling the Gap in Extended Metal Atom Chains: Ferromagnetic Interactions in a Tetrairon(II) String Supported by Oligo-α-pyridylamido Ligands. Inorg Chem 2018; 57:5438-5448. [PMID: 29668273 DOI: 10.1021/acs.inorgchem.8b00405] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The stringlike complex [Fe4(tpda)3Cl2] (2; H2tpda = N2, N6-bis(pyridin-2-yl)pyridine-2,6-diamine) was obtained as the first homometallic extended metal atom chain based on iron(II) and oligo-α-pyridylamido ligands. The synthesis was performed under strictly anaerobic and anhydrous conditions using dimesityliron, [Fe2(Mes)4] (1; HMes = mesitylene), as both an iron source and a deprotonating agent for H2tpda. The four lined-up iron(II) ions in the structure of 2 (Fe···Fe = 2.94-2.99 Å, Fe···Fe···Fe = 171.7-168.8°) are wrapped by three doubly deprotonated twisted ligands, and the chain is capped at its termini by two chloride ions. The spectroscopic and electronic properties of 2 were investigated in dichloromethane by UV-vis-NIR absorption spectroscopy, 1H NMR spectroscopy, and cyclic voltammetry. The electrochemical measurements showed four fully resolved, quasi-reversible one-electron-redox processes, implying that 2 can adopt five oxidation states in a potential window of only 0.8 V. Direct current (dc) magnetic measurements indicate dominant ferromagnetic coupling at room temperature, although the ground state is only weakly magnetic. On the basis of density functional theory and angular overlap model calculations, this magnetic behavior was explained as being due to two pairs of ferromagnetically coupled iron(II) ions ( J = -21 cm-1 using JŜ i·Ŝ j convention) weakly antiferromagnetically coupled with each other. Alternating-current susceptibility data in the presence of a 2 kOe dc field and at frequencies up to 1.5 kHz revealed the onset of slow magnetic relaxation below 2.8 K, with the estimated energy barrier Ueff/ kB = 10.1(1.3) K.
Collapse
Affiliation(s)
- Alessio Nicolini
- Department of Chemical and Geological Sciences , University of Modena and Reggio Emilia & INSTM , I-41125 Modena , Italy.,Department of Physics, Informatics and Mathematics , University of Modena and Reggio Emilia , I-41125 Modena , Italy
| | - Rita Galavotti
- Department of Chemical and Geological Sciences , University of Modena and Reggio Emilia & INSTM , I-41125 Modena , Italy
| | - Anne-Laure Barra
- Laboratoire National des Champs Magnétiques Intenses-CNRS , Université Grenoble-Alpes , F-38042 Grenoble Cedex 9 , France
| | - Marco Borsari
- Department of Chemical and Geological Sciences , University of Modena and Reggio Emilia & INSTM , I-41125 Modena , Italy
| | - Matteo Caleffi
- Department of Chemical and Geological Sciences , University of Modena and Reggio Emilia & INSTM , I-41125 Modena , Italy
| | - Guangpu Luo
- Department of Physics , Virginia Tech , Blacksburg , Virginia 24061 , United States
| | - Ghenadie Novitchi
- Laboratoire National des Champs Magnétiques Intenses-CNRS , Université Grenoble-Alpes , F-38042 Grenoble Cedex 9 , France
| | - Kyungwha Park
- Department of Physics , Virginia Tech , Blacksburg , Virginia 24061 , United States
| | - Antonio Ranieri
- Department of Life Sciences , University of Modena and Reggio Emilia , I-41125 Modena , Italy
| | - Luca Rigamonti
- Department of Chemical and Geological Sciences , University of Modena and Reggio Emilia & INSTM , I-41125 Modena , Italy
| | - Fabrizio Roncaglia
- Department of Chemical and Geological Sciences , University of Modena and Reggio Emilia & INSTM , I-41125 Modena , Italy
| | - Cyrille Train
- Laboratoire National des Champs Magnétiques Intenses-CNRS , Université Grenoble-Alpes , F-38042 Grenoble Cedex 9 , France
| | - Andrea Cornia
- Department of Chemical and Geological Sciences , University of Modena and Reggio Emilia & INSTM , I-41125 Modena , Italy
| |
Collapse
|
22
|
Pick FS, Leznoff DB, Fryzuk MD. Redox behaviour of ([fc(NPiPr2)2]Fe)2, formation of an iron–iron bond and cleavage of azobenzene. Dalton Trans 2018; 47:10925-10931. [DOI: 10.1039/c8dt00828k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The redox behaviour of the dimeric tetrairon complex, ([fc(NPiPr2)2]Fe)2 (where fc(NPiPr2)2 = 1,1′-(C5H4NPiPr2)2Fe) has been investigated.
Collapse
Affiliation(s)
- Fraser S. Pick
- Department of Chemistry
- The University of British Columbia
- Vancouver
- Canada
| | - Daniel B. Leznoff
- Deprtment of Chemistry
- Simon Fraser University
- 8888 University Drive
- Burnaby
- Canada V5A 1S6
| | - Michael D. Fryzuk
- Department of Chemistry
- The University of British Columbia
- Vancouver
- Canada
| |
Collapse
|
23
|
McWilliams SF, Brennan-Wydra E, MacLeod KC, Holland PL. Density Functional Calculations for Prediction of 57Fe Mössbauer Isomer Shifts and Quadrupole Splittings in β-Diketiminate Complexes. ACS OMEGA 2017; 2:2594-2606. [PMID: 28691111 PMCID: PMC5494642 DOI: 10.1021/acsomega.7b00595] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 05/24/2017] [Indexed: 05/09/2023]
Abstract
The relative ease of Mössbauer spectroscopy and of density functional theory (DFT) calculations encourages the use of Mössbauer parameters as a validation method for calculations, and the use of calculations as a double check on crystallographic structures. A number of studies have proposed correlations between the computationally determined electron density at the iron nucleus and the observed isomer shift, but deviations from these correlations in low-valent iron β-diketiminate complexes encouraged us to determine a new correlation for these compounds. The use of B3LYP/def2-TZVP in the ORCA platform provides an excellent balance of accuracy and speed. We provide here not only this new correlation and a clear guide to its use but also a systematic analysis of the limitations of this approach. We also highlight the impact of crystallographic inaccuracies, DFT model truncation, and spin states, with intent to assist experimentalists to use Mössbauer spectroscopy and calculations together.
Collapse
Affiliation(s)
- Sean F McWilliams
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Emma Brennan-Wydra
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - K Cory MacLeod
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Patrick L Holland
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| |
Collapse
|
24
|
Miller DL, Siedschlag RB, Clouston LJ, Young VG, Chen YS, Bill E, Gagliardi L, Lu CC. Redox Pairs of Diiron and Iron–Cobalt Complexes with High-Spin Ground States. Inorg Chem 2016; 55:9725-9735. [DOI: 10.1021/acs.inorgchem.6b01487] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Deanna L. Miller
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, United States
| | - Randall B. Siedschlag
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, United States
| | - Laura J. Clouston
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, United States
| | - Victor G. Young
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, United States
| | - Yu-Sheng Chen
- ChemMatCARS, University of Chicago, Argonne, Illinois 60439, United States
| | - Eckhard Bill
- Max Planck Institut für Chemische Energiekonversion, Stiftstraße
34−36, 45470 Mülheim an der Ruhr, Germany
| | - Laura Gagliardi
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, United States
- Supercomputing
Institute and Chemical Theory Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Connie C. Lu
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, United States
| |
Collapse
|
25
|
Sánchez RH, Bartholomew AK, Powers TM, Ménard G, Betley TA. Maximizing Electron Exchange in a [Fe3] Cluster. J Am Chem Soc 2016; 138:2235-43. [PMID: 26799500 PMCID: PMC5567842 DOI: 10.1021/jacs.5b12181] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The one-electron reduction of ((tbs)L)Fe₃(thf)¹ furnishes [M][((tbs)L)Fe₃] ([M]⁺ = [(18-C-6)K(thf)₂]⁺ (1, 76%) or [(crypt-222)K]⁺ (2, 54%)). Upon reduction, the ligand (tbs)L⁶⁻ rearranges around the triiron core to adopt an almost ideal C₃-symmetry. Accompanying the ((tbs)L) ligand rearrangement, the THF bound to the neutral starting material is expelled, and the Fe-Fe distances within the trinuclear cluster contract by ∼0.13 Å in 1. Variable-temperature magnetic susceptibility data indicates a well-isolated S = 11/2 spin ground state that persists to room temperature. Slow magnetic relaxation is observed at low temperature as evidenced by the out-of-phase (χ(M)″) component of the alternating current (ac) magnetic susceptibility data and by the appearance of hyperfine splitting in the zero-field ⁵⁷Fe Mössbauer spectra at 4.2 K. Analysis of the ac magnetic susceptibility yields an effective spin reversal barrier (U(eff)) of 22.6(2) cm⁻¹, nearly matching the theoretical barrier of 38.7 cm⁻¹ calculated from the axial zero-field splitting parameter (D = -1.29 cm⁻¹) extracted from the reduced magnetization data. A polycrystalline sample of 1 displays three sextets in the Mössbauer spectrum at 4.2 K (H(ext) = 0) which converge to a single six-line pattern in a frozen 2-MeTHF glass sample, indicating a unique iron environment and thus strong electron delocalization. The spin ground state and ligand rearrangement are discussed within the framework of a fully delocalized cluster exhibiting strong double and direct exchange interactions.
Collapse
Affiliation(s)
- Raúl Hernández Sánchez
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Amymarie K. Bartholomew
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | | | | | - Theodore A. Betley
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
26
|
Abstract
Alfred Werner, who pioneered the field of coordination chemistry, envisioned coordination complexes as a single, transition metal atom at the epicenter of a vast ligand space. The idea that the locus of a coordination complex could be shared by multiple metals held together with covalent bonds would eventually lead to the discovery of the quadruple and quintuple bond, which have no analogues outside of the transition metal block. Metal-metal bonding can be classified into homometallic and heterometallic groups. Although the former is dominant, the latter is arguably more intriguing because of the inherently larger chemical space in which metal-metal bonding can be explored. In 2013, Lu and Thomas independently reported the isolation of heterometallic multiple bonds with exclusively first-row transition metals. Structural and theoretical data supported triply bonded Fe-Cr and Fe-V cores. This Account describes our continued efforts to configure bonds between first-row transition metals from titanium to copper. Double-decker ligands, or binucleating platforms that brace two transition metals in proximity, have enabled the modular synthesis of diverse metal-metal complexes. The resulting complexes are also ideal for investigating the effects of an "ancillary" metal on the properties and reactivities of an "active" metal center. A total of 38 bimetallic complexes have been compiled comprising 18 unique metal-metal pairings. Twenty-one of these bimetallics are strictly isostructural, allowing for a systematic comparison of metal-metal bonding. The nature of the chemical bond between first-row metals is remarkably variable and depends on two primary factors: the total d-electron count, and the metals' relative d-orbital energies. Showcasing the range of covalent bonding are a quintuply bonded (d-d)(10) Mn-Cr heterobimetallic and the singly bonded late-late pairings, e.g., Fe-Co, which adopt unusually high spin states. A long-term goal is to rationally tailor the properties and reactivities of the bimetallic complexes. In some cases, synergistic redox and magnetic properties were found that are different from the expected sum of the individual metals. Intermetal charge transfer was shown in a Co-M series, for M = Mn to Cu, where the transition energy decreases as M is varied across the first-row period. The potential of using metal-metal complexes for multielectron reduction of small-molecules is addressed by N2 binding studies and a mechanistic study of a dicobalt catalyst in reductive silylation of N2 to N(SiMe3)3. Finally, metal-ion exchange reactions with metal-metal complexes can be selective under appropriate reaction conditions, providing an alternative synthetic route to metal-metal species.
Collapse
Affiliation(s)
- Reed J. Eisenhart
- Department of Chemistry and Center for Metals in Biocatalysis, University Of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Laura J. Clouston
- Department of Chemistry and Center for Metals in Biocatalysis, University Of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Connie C. Lu
- Department of Chemistry and Center for Metals in Biocatalysis, University Of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
27
|
Márquez A, Ávila E, Urbaneja C, Álvarez E, Palma P, Cámpora J. Copper(I) Complexes of Zwitterionic Imidazolium-2-Amidinates, a Promising Class of Electroneutral, Amidinate-Type Ligands. Inorg Chem 2015; 54:11007-17. [PMID: 26517572 DOI: 10.1021/acs.inorgchem.5b02141] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The first complexes containing imidazolium-2-amidinates as ligands (betaine-type adducts of imidazolium-based carbenes and carbodiimides, NHC-CDI) are reported. Interaction of the sterically hindered betaines ICyCDI(DiPP) and IMeCDI(DiPP) [both bearing 2,6-diisopropylphenyl (DiPP) substituents on the terminal N atoms] with Cu(I) acetate affords mononuclear, electroneutral complexes 1a and 1b, which contain NHC-CDI and acetate ligands terminally bound to linear Cu(I) centers. In contrast, the less encumbered ligand ICyCDI(p-Tol), with p-tolyl substituents on the nitrogen donor atoms, affords a dicationic trigonal paddlewheel complex, [Cu2(μ-ICyCDI(p-Tol))3](2+)[OAc(-)]2 (2-OAc). The nuclear magnetic resonance (NMR) resonances of this compound are broad and indicate that in solution the acetate anion and the betaine ligands compete for binding the Cu atom. Replacing the external acetate with the less coordinating tetraphenylborate anion provides the corresponding derivative 2-BPh4 that, in contrast with 2-OAc, gives rise to sharp and well-defined NMR spectra. The short Cu-Cu distance in the binuclear dication [Cu2(μ-ICyCDI(p-Tol))3](2+) observed in the X-ray structures of 2-BPh4 and 2-OAc, ca. 2.42 Å, points to a relatively strong "cuprophilic" interaction. Attempts to force the bridging coordination mode of IMeCDI(DiPP) displacing the acetate anion with BPh4(-) led to the isolation of the cationic mononuclear derivative [Cu(IMeCDI(DiPP))2](+)[BPh4](-) (3b) that contains two terminally bound betaine ligands. Compound 3b readily decomposes upon being heated, cleanly affording the bis-carbene complex [Cu(IMe)2](+)[BPh4(-)] (4) and releasing the corresponding carbodiimide (C(═N-DiPP)2).
Collapse
Affiliation(s)
- Astrid Márquez
- Instituto de Investigaciones Químicas, CSIC-Universidad de Sevilla , C/Américo Vespucio, 49, 41092 Sevilla, Spain
| | - Elena Ávila
- Instituto de Investigaciones Químicas, CSIC-Universidad de Sevilla , C/Américo Vespucio, 49, 41092 Sevilla, Spain
| | - Carmen Urbaneja
- Instituto de Investigaciones Químicas, CSIC-Universidad de Sevilla , C/Américo Vespucio, 49, 41092 Sevilla, Spain
| | - Eleuterio Álvarez
- Instituto de Investigaciones Químicas, CSIC-Universidad de Sevilla , C/Américo Vespucio, 49, 41092 Sevilla, Spain
| | - Pilar Palma
- Instituto de Investigaciones Químicas, CSIC-Universidad de Sevilla , C/Américo Vespucio, 49, 41092 Sevilla, Spain
| | - Juan Cámpora
- Instituto de Investigaciones Químicas, CSIC-Universidad de Sevilla , C/Américo Vespucio, 49, 41092 Sevilla, Spain
| |
Collapse
|
28
|
Abstract
The field of single molecule magnetism remains predicated on super- and double exchange mechanisms to engender large spin ground states. An alternative approach to achieving high-spin architectures involves synthesizing weak-field clusters featuring close M-M interactions to produce a single valence orbital manifold. Population of this orbital manifold in accordance with Hund's rules could potentially yield thermally persistent high-spin ground states under which the valence electrons remain coupled. We now demonstrate this effect with a reduced hexanuclear iron cluster that achieves an S = 19/2 (χ(M)T ≈ 53 cm(3) K/mol) ground state that persists to 300 K, representing the largest spin ground state persistent to room temperature reported to date. The reduced cluster displays single molecule magnet behavior manifest in both variable-temperature zero-field (57)Fe Mössbauer and magnetometry with a spin reversal barrier of 42.5(8) cm(-1) and a magnetic blocking temperature of 2.9 K (0.059 K/min).
Collapse
Affiliation(s)
- Rauĺ Hernández Sánchez
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Theodore A. Betley
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
29
|
Sánchez RH, Zheng SL, Betley TA. Ligand Field Strength Mediates Electron Delocalization in Octahedral [((H)L)2Fe6(L')m](n+) Clusters. J Am Chem Soc 2015; 137:11126-43. [PMID: 26231520 PMCID: PMC5572642 DOI: 10.1021/jacs.5b06453] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
To assess the impact of terminal ligand binding on a variety of cluster properties (redox delocalization, ground-state stabilization, and breadth of redox state accessibility), we prepared three electron-transfer series based on the hexanuclear iron cluster [((H)L)2Fe6(L')m](n+) in which the terminal ligand field strength was modulated from weak to strong (L' = DMF, MeCN, CN). The extent of intracore M-M interactions is gauged by M-M distances, spin ground state persistence, and preference for mixed-valence states as determined by electrochemical comproportionation constants. Coordination of DMF to the [((H)L)2Fe6] core leads to weaker Fe-Fe interactions, as manifested by the observation of ground states populated only at lower temperatures (<100 K) and by the greater evidence of valence trapping within the mixed-valence states. Comproportionation constants determined electrochemically (Kc = 10(4)-10(8)) indicate that the redox series exhibits electronic delocalization (class II-III), yet no intervalence charge transfer (IVCT) bands are observable in the near-IR spectra. Ligation of the stronger σ donor acetonitrile results in stabilization of spin ground states to higher temperatures (∼300 K) and a high degree of valence delocalization (Kc = 10(2)-10(8)) with observable IVCT bands. Finally, the anionic cyanide-bound series reveals the highest degree of valence delocalization with the most intense IVCT bands (Kc = 10(12)-10(20)) and spin ground state population beyond room temperature. Across the series, at a given formal oxidation level, the capping ligand on the hexairon cluster dictates the overall properties of the aggregate, modulating the redox delocalization and the persistence of the intracore coupling of the metal sites.
Collapse
Affiliation(s)
- Raúl Hernández Sánchez
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Shao-Liang Zheng
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Theodore A. Betley
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
30
|
Carlson RK, Odoh SO, Tereniak SJ, Lu CC, Gagliardi L. Can Multiconfigurational Self-Consistent Field Theory and Density Functional Theory Correctly Predict the Ground State of Metal–Metal-Bonded Complexes? J Chem Theory Comput 2015; 11:4093-101. [DOI: 10.1021/acs.jctc.5b00412] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Rebecca K. Carlson
- Department
of Chemistry,
Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Samuel O. Odoh
- Department
of Chemistry,
Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Stephen J. Tereniak
- Department
of Chemistry,
Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Connie C. Lu
- Department
of Chemistry,
Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Laura Gagliardi
- Department
of Chemistry,
Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
31
|
Eisenhart RJ, Rudd PA, Planas N, Boyce DW, Carlson RK, Tolman WB, Bill E, Gagliardi L, Lu CC. Pushing the Limits of Delta Bonding in Metal-Chromium Complexes with Redox Changes and Metal Swapping. Inorg Chem 2015; 54:7579-92. [PMID: 26168331 PMCID: PMC5960016 DOI: 10.1021/acs.inorgchem.5b01163] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Into the metalloligand Cr[N(o-(NCH2P((i)Pr)2)C6H4)3] (1, CrL) was inserted a second chromium atom to generate the dichromium complex Cr2L (2), which is a homobimetallic analogue of the known MCrL complexes, where M is manganese (3) or iron (4). The cationic and anionic counterparts, [MCrL](+) and [MCrL](-), respectively, were targeted, and each MCr pair was isolated in at least one other redox state. The solid-state structures of the [MCrL](+,0,-) redox members are essentially the same, with ultrashort metal-metal bonds between 1.96 and 1.74 Å. The formal shortness ratios (r) of these interactions are between 0.84 and 0.74 and are interpreted as triple to quintuple metal-metal bonds with the aid of theory. The trio of (d-d)(10) species [Cr2L](-) (2(red)), MnCrL (3), and [FeCrL](+) (4(ox)) are S = 0 diamagnets. On the basis of M-Cr bond distances and theoretical calculations, the strength of the metal-metal bond across the (d-d)(10) series increases in the order Fe < Mn < Cr. The methylene protons in the ligand are shifted downfield in the (1)H NMR spectra, and the diamagnetic anisotropy of the metal-metal bond was calculated as -3500 × 10(-36), -3900 × 10(-36), and -5800 × 10(-36) m(3) molecule(-1) for 2(red), 3, and 4(ox) respectively. The magnitude of diamagnetic anisotropy is, thus, affected more by bond polarity than by bond order. A comparative vis-NIR study of quintuply bonded 2(red) and 3 revealed a large red shift in the δ(4) → δ(3)δ* transition energy upon swapping from the (Cr2)(2+) to the (MnCr)(3+) core. Complex 2(red) was further investigated by resonance Raman spectroscopy, and a band at 434 cm(-1) was assigned as the Cr-Cr bond vibration. Finally, 4(ox) exhibited a Mössbauer doublet with an isomer shift of 0.18 mm/s that suggests a primarily Fe-based oxidation to Fe(I).
Collapse
Affiliation(s)
- Reed J. Eisenhart
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - P. Alex Rudd
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Nora Planas
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Supercomputing Institute and Chemical Theory Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - David W. Boyce
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Rebecca K. Carlson
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Supercomputing Institute and Chemical Theory Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - William B. Tolman
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Eckhard Bill
- Max Planck Institut für Chemische Energiekonversion (MPI-CEC), Stiftstraße 34–36, 45470 Mülheim an der Ruhr, Germany
| | - Laura Gagliardi
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Supercomputing Institute and Chemical Theory Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Connie C. Lu
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
32
|
Dunn PL, Reath AH, Clouston LJ, Young VG, Tonks IA. Homo- and heteroleptic group 4 2-(diphenylphosphino)pyrrolide complexes: Synthesis, coordination chemistry and solution state dynamics. Polyhedron 2014. [DOI: 10.1016/j.poly.2014.06.047] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
33
|
Krogman JP, Thomas CM. Metal–metal multiple bonding in C3-symmetric bimetallic complexes of the first row transition metals. Chem Commun (Camb) 2014; 50:5115-27. [DOI: 10.1039/c3cc47537a] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
34
|
Kuppuswamy S, Bezpalko MW, Powers TM, Wilding MJT, Brozek CK, Foxman BM, Thomas CM. A series of C3-symmetric heterobimetallic Cr–M (M = Fe, Co and Cu) complexes. Chem Sci 2014. [DOI: 10.1039/c3sc52943f] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
35
|
Zall CM, Clouston LJ, Young VG, Ding K, Kim HJ, Zherebetskyy D, Chen YS, Bill E, Gagliardi L, Lu CC. Mixed-Valent Dicobalt and Iron–Cobalt Complexes with High-Spin Configurations and Short Metal–Metal Bonds. Inorg Chem 2013; 52:9216-28. [DOI: 10.1021/ic400292g] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Christopher M. Zall
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota
55455-0431, United States
| | - Laura J. Clouston
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota
55455-0431, United States
| | - Victor G. Young
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota
55455-0431, United States
| | - Keying Ding
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota
55455-0431, United States
| | - Hyun Jung Kim
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota
55455-0431, United States
- Supercomputing Institute, and Chemical Theory Center, University of Minnesota, Minneapolis, Minnesota, 55455,
United States
| | - Danylo Zherebetskyy
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota
55455-0431, United States
- Supercomputing Institute, and Chemical Theory Center, University of Minnesota, Minneapolis, Minnesota, 55455,
United States
| | - Yu-Sheng Chen
- Advanced Photon Source, Argonne, Illinois 60439, United
States
| | - Eckhard Bill
- Max Planck Institut für Chemische Energiekonversion, Stiftstrasse 34-36, 45470, Mülheim an der Ruhr, Germany
| | - Laura Gagliardi
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota
55455-0431, United States
- Supercomputing Institute, and Chemical Theory Center, University of Minnesota, Minneapolis, Minnesota, 55455,
United States
| | - Connie C. Lu
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota
55455-0431, United States
| |
Collapse
|
36
|
Győrffy W, Shiozaki T, Knizia G, Werner HJ. Analytical energy gradients for second-order multireference perturbation theory using density fitting. J Chem Phys 2013; 138:104104. [DOI: 10.1063/1.4793737] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
37
|
Kuppuswamy S, Powers TM, Johnson BM, Bezpalko MW, Brozek CK, Foxman BM, Berben LA, Thomas CM. Metal–Metal Interactions in C3-Symmetric Diiron Imido Complexes Linked by Phosphinoamide Ligands. Inorg Chem 2012; 52:4802-11. [DOI: 10.1021/ic302108k] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Subramaniam Kuppuswamy
- Department of Chemistry, Brandeis University, 415 South Street MS 015, Waltham,
Massachusetts 02454, United States
| | - Tamara M. Powers
- Department of Chemistry and
Chemical Biology, Harvard University, Cambridge,
Massachusetts 02139, United States
| | - Bruce M. Johnson
- Department of Chemistry, University of California—Davis, Davis, California
95616, United States
| | - Mark W. Bezpalko
- Department of Chemistry, Brandeis University, 415 South Street MS 015, Waltham,
Massachusetts 02454, United States
| | - Carl K. Brozek
- Department
of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts
Avenue, Cambridge, Massachusetts 02139-4307, United States
| | - Bruce M. Foxman
- Department of Chemistry, Brandeis University, 415 South Street MS 015, Waltham,
Massachusetts 02454, United States
| | - Louise A. Berben
- Department of Chemistry, University of California—Davis, Davis, California
95616, United States
| | - Christine M. Thomas
- Department of Chemistry, Brandeis University, 415 South Street MS 015, Waltham,
Massachusetts 02454, United States
| |
Collapse
|
38
|
Lewis RA, Morochnik S, Chapovetsky A, Wu G, Hayton TW. Synthesis and Characterization of [M2(NCtBu2)5]−(M=Mn, Fe, Co): Metal Ketimide Complexes with Strong Metal-Metal Interactions. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201206790] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
39
|
Lewis RA, Morochnik S, Chapovetsky A, Wu G, Hayton TW. Synthesis and Characterization of [M2(NCtBu2)5]−(M=Mn, Fe, Co): Metal Ketimide Complexes with Strong Metal-Metal Interactions. Angew Chem Int Ed Engl 2012; 51:12772-5. [DOI: 10.1002/anie.201206790] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Indexed: 11/11/2022]
|
40
|
Kuppuswamy S, Bezpalko MW, Powers TM, Turnbull MM, Foxman BM, Thomas CM. Utilization of Phosphinoamide Ligands in Homobimetallic Fe and Mn Complexes: The Effect of Disparate Coordination Environments on Metal–Metal Interactions and Magnetic and Redox Properties. Inorg Chem 2012; 51:8225-40. [DOI: 10.1021/ic300776y] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Subramaniam Kuppuswamy
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts
02454, United States
| | - Mark W. Bezpalko
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts
02454, United States
| | - Tamara M. Powers
- Department of Chemistry and Chemical
Biology, Harvard University, Cambridge,
Massachusetts 02139, United States
| | - Mark M. Turnbull
- Carlson
School of Chemistry
and Biochemistry, Clark University, 950
Main Street, Worcester, Massachusetts 01610, United States
| | - Bruce M. Foxman
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts
02454, United States
| | - Christine M. Thomas
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts
02454, United States
| |
Collapse
|
41
|
Fohlmeister L, Liu S, Schulten C, Moubaraki B, Stasch A, Cashion JD, Murray KS, Gagliardi L, Jones C. Low-Coordinate Iron(I) and Manganese(I) Dimers: Kinetic Stabilization of an Exceptionally Short FeFe Multiple Bond. Angew Chem Int Ed Engl 2012; 51:8294-8. [DOI: 10.1002/anie.201203711] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 06/14/2012] [Indexed: 11/12/2022]
|
42
|
Fohlmeister L, Liu S, Schulten C, Moubaraki B, Stasch A, Cashion JD, Murray KS, Gagliardi L, Jones C. Low-Coordinate Iron(I) and Manganese(I) Dimers: Kinetic Stabilization of an Exceptionally Short FeFe Multiple Bond. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201203711] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|