1
|
Savastano M, Osman HH, Vegas Á, Manjón FJ. Rethinking polyiodides: the role of electron-deficient multicenter bonds. Chem Commun (Camb) 2024; 60:12677-12689. [PMID: 39365340 DOI: 10.1039/d4cc02832e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Despite a bicentennial history, the interest in polyiodides and related systems still flourishes. The chemical puzzle provided by the intricate nature of chemical bonding in these polyanions remains challenging these days. The advent of the halogen bond and the spreading interest in supramolecular interactions of halogen-based systems promoted further recent interest. Research in the area of materials, where local bonding details eventually result in desired macroscopic properties, provided a further boost. Herein, we illustrate the consequences of contemplating a different bonding scheme for polyiodides, one making explicit use of electron-deficient multicenter bonds (EDMBs), an emerging concept in this area. We present a reinterpretation of polyiodide bonding using a revised approach to the Lewis dot formulas, leading to a clearer pen-and-paper understanding of their bonding. The model is general and can be applied to other related problems (here polyiodonium cations, and other homo- and hetero-polyhalides). Our alternative narrative has a few interesting consequences on several traditional and currently hot topics, including the nature of basic building blocks for polyiodides, hypervalency vs. hypercoordination, the distinction between covalent bonds and supramolecular interactions, and the nature of secondary and halogen bonds.
Collapse
Affiliation(s)
- Matteo Savastano
- Department of Human Sciences for the Promotion of Quality of Life, University San Raffaele Roma, via di Val Cannuta 247, 00166 Rome, Italy.
| | - Hussien H Osman
- Instituto de Diseño para la Fabricación y Producción Automatizada, MALTA Consolider Team, Universitat Politècnica de València, 46022 València, Spain.
- Departamento de Física Aplicada-ICMUV, MALTA Consolider Team, Universitat de València, 46100 Burjassot, Spain
- Chemistry Department, Helwan University, Ain-Helwan 11795, Cairo, Egypt
| | - Ángel Vegas
- Universidad de Burgos, Hospital del Rey, 09001 Burgos, Spain
| | - Francisco Javier Manjón
- Instituto de Diseño para la Fabricación y Producción Automatizada, MALTA Consolider Team, Universitat Politècnica de València, 46022 València, Spain.
| |
Collapse
|
2
|
Kumar N, Sharma N, Kumar V, Kumar V, Jangid K, Devi B, Dwivedi AR, Giri K, Kumar R, Kumar V. Iodine-PEG as a unique combination for the metal-free synthesis of flavonoids through iodonium-triiodide ion-pair complexation. RSC Adv 2024; 14:6225-6233. [PMID: 38375003 PMCID: PMC10875328 DOI: 10.1039/d3ra08810c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 02/08/2024] [Indexed: 02/21/2024] Open
Abstract
An efficient metal-free single-step protocol has been developed for the direct synthesis of flavones from 2-hydroxyacetophenone and substituted benzaldehydes. This chemical transformation is exclusively promoted by the iodonium-triiodide ion couple formed through iodine and PEG-400 complexation. The triiodide anion not only helps in the abstraction of a proton from the acetophenone but also promotes the cyclization of intermediate chalcone to the corresponding flavones. The flavones were obtained in very high yields without using any toxic metal catalysts or harsh reaction conditions. The reaction mechanism was established through a series of test reactions and entrapping of reaction intermediates. The developed protocol provides direct access to flavones in high yields under milder reaction conditions with great substrate compatibility, including hydroxylated derivatives.
Collapse
Affiliation(s)
- Naveen Kumar
- Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, Central University of Punjab Bathinda Punjab India-151401 +911642864214
| | - Navneet Sharma
- Department of Computational Sciences, Central University of Punjab Bathinda Punjab India-151401
| | - Vijay Kumar
- Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, Central University of Punjab Bathinda Punjab India-151401 +911642864214
| | - Vinay Kumar
- Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, Central University of Punjab Bathinda Punjab India-151401 +911642864214
| | - Kailash Jangid
- Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, Central University of Punjab Bathinda Punjab India-151401 +911642864214
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab Bathinda Punjab India-151401
| | - Bharti Devi
- Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, Central University of Punjab Bathinda Punjab India-151401 +911642864214
| | - Ashish Ranjan Dwivedi
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab Bathinda Punjab India-151401
- Gitam School of Pharmacy Hyderabad Telangana 502329 India
| | - Kousik Giri
- Department of Computational Sciences, Central University of Punjab Bathinda Punjab India-151401
| | - Rakesh Kumar
- Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, Central University of Punjab Bathinda Punjab India-151401 +911642864214
| | - Vinod Kumar
- Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, Central University of Punjab Bathinda Punjab India-151401 +911642864214
| |
Collapse
|
3
|
Hu J, Xu Z, Murrey TL, Pelczer I, Kahn A, Schwartz J, Rand BP. Triiodide Attacks the Organic Cation in Hybrid Lead Halide Perovskites: Mechanism and Suppression. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303373. [PMID: 37363828 DOI: 10.1002/adma.202303373] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/08/2023] [Indexed: 06/28/2023]
Abstract
Molecular I2 can be produced from iodide-based lead perovskites under thermal stress; triiodide, I3 - , is formed from this I2 and I- . Triiodide attacks protic cation MA+ - or FA+ -based lead halide perovskites (MA+ , methylammonium; FA+ , formamidinium) as explicated through solution-based nuclear magnetic resonance (NMR) studies: triiodide has strong hydrogen-bonding affinity for MA+ or FA+ , which leads to their deprotonation and perovskite decomposition. Triiodide is a catalyst for this decomposition that can be obviated through perovskite surface treatment with thiol reducing agents. In contrast to methods using thiol incorporation into perovskite precursor solutions, no penetration of the thiol into the bulk perovskite is observed, yet its surface application stabilizes the perovskite against triiodide-mediated thermal stress. Thiol applied to the interface between FAPbI3 and Spiro-OMeTAD ("Spiro") prevents oxidized iodine species penetration into Spiro and thus preserves its hole-transport efficacy. Surface-applied thiol affects the perovskite work function; it ameliorates hole injection into the Spiro overlayer, thus improving device performance. It helps to increase interfacial adhesion ("wetting"): fewer voids are observed at the Spiro/perovskite interface if thiols are applied. Perovskite solar cells (PSCs) incorporating interfacial thiol treatment maintain over 80% of their initial power conversion efficiency (PCE) after 300 h of 85 °C thermal stress.
Collapse
Affiliation(s)
- Junnan Hu
- Department of Electrical and Computer Engineering, Princeton University, Princeton, NJ, 08544, USA
| | - Zhaojian Xu
- Department of Electrical and Computer Engineering, Princeton University, Princeton, NJ, 08544, USA
| | - Tucker L Murrey
- Department of Electrical and Computer Engineering, Princeton University, Princeton, NJ, 08544, USA
| | - István Pelczer
- Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA
| | - Antoine Kahn
- Department of Electrical and Computer Engineering, Princeton University, Princeton, NJ, 08544, USA
| | - Jeffrey Schwartz
- Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA
| | - Barry P Rand
- Department of Electrical and Computer Engineering, Princeton University, Princeton, NJ, 08544, USA
- Andlinger Center for Energy and the Environment, Princeton University, Princeton, NJ, 08544, USA
| |
Collapse
|
4
|
Li D, Xia T, Feng W, Cheng L. Revisiting the covalent nature of halogen bonding: a polarized three-center four-electron bond. RSC Adv 2021; 11:32852-32860. [PMID: 35493597 PMCID: PMC9042191 DOI: 10.1039/d1ra05695f] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/20/2021] [Indexed: 11/29/2022] Open
Abstract
As an important intermolecular interaction, halogen bonding has been studied extensively, but its nature still suffers from controversy without one uniform essence. Electrostatics, charge transfer, polarization and dispersion are emphasized, but the covalent nature is usually overlooked except for the strong halogen bonding species I3−, which is widely accepted as a result of a three-center four-electron (3c-4e) interaction. In our study, the potential energy surface of I3− has been evaluated to explore the dissociation from I3− to I2⋯I−. We found that different from an equivalent 3c-4e bond in I3−, I2⋯I− can be rationalized by a polarized one. In addition, when the orbitals are polarized, it is exactly what traditional charge transfer or the popular σ-hole picture describes. I3− can be described by the Lewis theory model with the middle I+ cation serving as the Lewis acid and two terminal I− anions acting as Lewis base. Therefore, we further extended this model to a series of I-containing species with chemical composition of L–I+–L, F−–I+–L and H3P–I+–L (L = OH−, F−, Cl−, Br−, I−, PH3, NH3, H2S, HI, H2O, HBr and HCl) to explore the nature of halogen bonding. When the forces of two bases around I+ are the same, it corresponds to an equivalent 3c-4e bond, such as I3−. Otherwise, it is a polarized multicenter bond, such as I2⋯I−. This work gives a new insight into the nature of halogen bonding compounds: besides the well-known I3−, the nature of the other species is also a multicenter bond, existing as equivalent and polarized 3c-4e bonds, respectively. The halogen bond could be described with a polarized 3c-4e bond.![]()
Collapse
Affiliation(s)
- Dan Li
- Department of Chemistry, Anhui University Hefei 230601 PR China
| | - Tao Xia
- Department of Chemistry, Anhui University Hefei 230601 PR China
| | - Wanwan Feng
- Department of Chemistry, Anhui University Hefei 230601 PR China
| | - Longjiu Cheng
- Department of Chemistry, Anhui University Hefei 230601 PR China .,Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education Hefei 230601 PR China
| |
Collapse
|
5
|
Wang E, Xu WW, Zhu B, Gao Y. Understanding the Chemical Insights of Staple Motifs of Thiolate-Protected Gold Nanoclusters. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2001836. [PMID: 32761984 DOI: 10.1002/smll.202001836] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/12/2020] [Indexed: 06/11/2023]
Abstract
Improving the fundamental understanding of the basic structures of ligand-protected gold nanoclusters is essential to their bottom-up synthesis as well as their further application explorations. The thiolate ligands that cover the central metal core in staple motifs are vital for the stability of the gold clusters. However, the knowledge about the geometrical and bonding characters of the thiolate ligands has not been fully uncovered yet. In this work, density functional theory calculations and molecular orbital analysis are applied to show that the Au atoms in the thiolate ligands are hypervalent. The chemical insights of the linear SAuS configuration as well as the lengthened AuS bond by combining the 3-center 4-electron (3c-4e) model and the well-recognized valence shell electron pair repulsion theory are revealed. Valence bond formulations of the motifs are given to provide more chemical insights, for example, the resonant structures, to show how the thiolate motif forms one covalent bond and one dative covalent bond with the Au core. This work provides a thorough understanding of the structure and bonding pattern of thiolate ligands of Au nanoclusters, which is important for the rational design of ligands-protected Au nanoclusters.
Collapse
Affiliation(s)
- Endong Wang
- Division of Interfacial Water and Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, P. R. China
| | - Wen Wu Xu
- Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo, 315211, P. R. China
| | - Beien Zhu
- Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P. R. China
| | - Yi Gao
- Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P. R. China
| |
Collapse
|
6
|
Abstract
We systematically investigated iodine–metal and iodine–iodine bonding in van Koten’s pincer complex and 19 modifications changing substituents and/or the transition metal with a PBE0–D3(BJ)/aug–cc–pVTZ/PP(M,I) model chemistry. As a novel tool for the quantitative assessment of the iodine–metal and iodine–iodine bond strength in these complexes we used the local mode analysis, originally introduced by Konkoli and Cremer, complemented with NBO and Bader’s QTAIM analyses. Our study reveals the major electronic effects in the catalytic activity of the M–I–I non-classical three-center bond of the pincer complex, which is involved in the oxidative addition of molecular iodine I2 to the metal center. According to our investigations the charge transfer from the metal to the σ* antibonding orbital of the I–I bond changes the 3c–4e character of the M–I–I three-center bond, which leads to weakening of the iodine I–I bond and strengthening of the metal–iodine M–I bond, facilitating in this way the oxidative addition of I2 to the metal. The charge transfer can be systematically modified by substitution at different places of the pincer complex and by different transition metals, changing the strength of both the M–I and the I2 bonds. We also modeled for the original pincer complex how solvents with different polarity influence the 3c–4e character of the M–I–I bond. Our results provide new guidelines for the design of pincer complexes with specific iodine–metal bond strengths and introduce the local vibrational mode analysis as an efficient tool to assess the bond strength in complexes.
Collapse
|
7
|
Attia AS, Alfallous KA, El-Shahat M. A novel quinoxalinedione-bicapped tri-ruthenium carbonyl cluster [Ru3(μ-H)2(CO)6(μ3-HDCQX)2]: synthesis, characterization, anticancer activity and theoretical investigation of Ru–Ru and Ru–Ligand bonding interactions. Polyhedron 2021. [DOI: 10.1016/j.poly.2020.114889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Gupta R, Rezabal E, Hasrack G, Frison G. Comparison of Chemical and Interpretative Methods: the Carbon-Boron π-Bond as a Test Case*. Chemistry 2020; 26:17230-17241. [PMID: 32780465 DOI: 10.1002/chem.202001945] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 08/05/2020] [Indexed: 12/16/2022]
Abstract
Quantum chemical calculations and NBO, ETS-NOCV, QTAIM and ELF interpretative approaches have been carried out on C-donor ligand-stabilized dihydrido borenium cations. Numerous descriptors of the C-B π-bond strength obtained from orbital localization, energy partitioning or topological methods as well as from structural and chemical parameters have been calculated for 39 C-donor ligands including N-heterocyclic carbenes and carbones. Comparison of the results allows the identification of relative and absolute descriptors of the π interaction. For both families of descriptors excellent correlations are obtained. This enables the establishment of a π-donation capability scale and shows that the interpretative methods, despite their conceptual differences, describe the same chemical properties. These results also reveal noticeable shortcomings in these popular methods, and some precautions that need to be taken to interpret their results adequately.
Collapse
Affiliation(s)
- Radhika Gupta
- LCM, CNRS, École polytechnique, Institut Polytechnique de Paris, 91128, Palaiseau, France
| | - Elixabete Rezabal
- LCM, CNRS, École polytechnique, Institut Polytechnique de Paris, 91128, Palaiseau, France.,Faculty of Chemistry, Donostia International Physics Center (DIPC), University of the Basque Country UPV/EHU, 20018, Donostia, Spain
| | - Golshid Hasrack
- LCM, CNRS, École polytechnique, Institut Polytechnique de Paris, 91128, Palaiseau, France
| | - Gilles Frison
- LCM, CNRS, École polytechnique, Institut Polytechnique de Paris, 91128, Palaiseau, France
| |
Collapse
|
9
|
Oliveira VP, Marcial BL, Machado FBC, Kraka E. Metal-Halogen Bonding Seen through the Eyes of Vibrational Spectroscopy. MATERIALS 2019; 13:ma13010055. [PMID: 31861904 PMCID: PMC6982077 DOI: 10.3390/ma13010055] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 12/09/2019] [Accepted: 12/15/2019] [Indexed: 11/17/2022]
Abstract
Incorporation of a metal center into halogen-bonded materials can efficiently fine-tune the strength of the halogen bonds and introduce new electronic functionalities. The metal atom can adopt two possible roles: serving as halogen acceptor or polarizing the halogen donor and acceptor groups. We investigated both scenarios for 23 metal–halogen dimers trans-M(Y2)(NC5H4X-3)2 with M = Pd(II), Pt(II); Y = F, Cl, Br; X = Cl, Br, I; and NC5H4X-3 = 3-halopyridine. As a new tool for the quantitative assessment of metal–halogen bonding, we introduced our local vibrational mode analysis, complemented by energy and electron density analyses and electrostatic potential studies at the density functional theory (DFT) and coupled-cluster single, double, and perturbative triple excitations (CCSD(T)) levels of theory. We could for the first time quantify the various attractive contacts and their contribution to the dimer stability and clarify the special role of halogen bonding in these systems. The largest contribution to the stability of the dimers is either due to halogen bonding or nonspecific interactions. Hydrogen bonding plays only a secondary role. The metal can only act as halogen acceptor when the monomer adopts a (quasi-)planar geometry. The best strategy to accomplish this is to substitute the halo-pyridine ring with a halo-diazole ring, which considerably strengthens halogen bonding. Our findings based on the local mode analysis provide a solid platform for fine-tuning of existing and for design of new metal–halogen-bonded materials.
Collapse
Affiliation(s)
- Vytor P. Oliveira
- Departamento de Química, Instituto Tecnológico de Aeronáutica (ITA), São José dos Campos, 12228-900 São Paulo, Brazil; (V.P.O.); (F.B.C.M.)
| | - Bruna L. Marcial
- Núcleo de Química, Instituto Federal Goiano (IF Goiano), Campus Morrinhos, 75650-000 Goiás, Brazil;
| | - Francisco B. C. Machado
- Departamento de Química, Instituto Tecnológico de Aeronáutica (ITA), São José dos Campos, 12228-900 São Paulo, Brazil; (V.P.O.); (F.B.C.M.)
| | - Elfi Kraka
- Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, TX 75275-0314, USA
- Correspondence: ; Tel.: +1-214-768-2611
| |
Collapse
|
10
|
Troian-Gautier L, Turlington MD, Wehlin SAM, Maurer AB, Brady MD, Swords WB, Meyer GJ. Halide Photoredox Chemistry. Chem Rev 2019; 119:4628-4683. [PMID: 30854847 DOI: 10.1021/acs.chemrev.8b00732] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Halide photoredox chemistry is of both practical and fundamental interest. Practical applications have largely focused on solar energy conversion with hydrogen gas, through HX splitting, and electrical power generation, in regenerative photoelectrochemical and photovoltaic cells. On a more fundamental level, halide photoredox chemistry provides a unique means to generate and characterize one electron transfer chemistry that is intimately coupled with X-X bond-breaking and -forming reactivity. This review aims to deliver a background on the solution chemistry of I, Br, and Cl that enables readers to understand and utilize the most recent advances in halide photoredox chemistry research. These include reactions initiated through outer-sphere, halide-to-metal, and metal-to-ligand charge-transfer excited states. Kosower's salt, 1-methylpyridinium iodide, provides an early outer-sphere charge-transfer excited state that reports on solvent polarity. A plethora of new inner-sphere complexes based on transition and main group metal halide complexes that show promise for HX splitting are described. Long-lived charge-transfer excited states that undergo redox reactions with one or more halogen species are detailed. The review concludes with some key goals for future research that promise to direct the field of halide photoredox chemistry to even greater heights.
Collapse
Affiliation(s)
- Ludovic Troian-Gautier
- Department of Chemistry , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Michael D Turlington
- Department of Chemistry , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Sara A M Wehlin
- Department of Chemistry , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Andrew B Maurer
- Department of Chemistry , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Matthew D Brady
- Department of Chemistry , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Wesley B Swords
- Department of Chemistry , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Gerald J Meyer
- Department of Chemistry , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| |
Collapse
|
11
|
Wlaźlak E, Kalinowska-Tłuścik J, Nitek W, Klejna S, Mech K, Macyk W, Szaciłowski K. Triiodide Organic Salts: Photoelectrochemistry at the Border between Insulators and Semiconductors. ChemElectroChem 2018. [DOI: 10.1002/celc.201800975] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Ewelina Wlaźlak
- Faculty of Chemistry; Jagiellonian University ul. Gronostajowa 2; 30-387 Kraków Poland
- AGH University of Science and Technology; Academic Centre for Materials and Nanotechnology al. A. Mickiewicza 30; 30-059 Kraków Poland E-mails
| | | | - Wojciech Nitek
- Faculty of Chemistry; Jagiellonian University ul. Gronostajowa 2; 30-387 Kraków Poland
| | - Sylwia Klejna
- AGH University of Science and Technology; Academic Centre for Materials and Nanotechnology al. A. Mickiewicza 30; 30-059 Kraków Poland E-mails
| | - Krzysztof Mech
- AGH University of Science and Technology; Academic Centre for Materials and Nanotechnology al. A. Mickiewicza 30; 30-059 Kraków Poland E-mails
| | - Wojciech Macyk
- Faculty of Chemistry; Jagiellonian University ul. Gronostajowa 2; 30-387 Kraków Poland
| | - Konrad Szaciłowski
- AGH University of Science and Technology; Academic Centre for Materials and Nanotechnology al. A. Mickiewicza 30; 30-059 Kraków Poland E-mails
| |
Collapse
|
12
|
Kishimura H, Aono M, Kyuko Y, Nagaya S, Koyama S, Abe H. Spontaneous polyiodide formation by unbalancing of charge in room-temperature ionic liquid-lithium salt solutions. Chem Phys 2018. [DOI: 10.1016/j.chemphys.2018.01.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Kobra K, O’Donnell S, Ferrari A, McMillen CD, Pennington WT. Halogen bonding and triiodide asymmetry in cocrystals of triphenylmethylphosphonium triiodide with organoiodines. NEW J CHEM 2018. [DOI: 10.1039/c8nj01373j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Halogen bonding in triiodide–organoiodine cocrystals.
Collapse
|
14
|
Sun Z, Moore KB, Hill JG, Peterson KA, Schaefer HF, Hoffmann R. Alkali-Metal Trihalides: M+X3– Ion Pair or MX–X2 Complex? J Phys Chem B 2017; 122:3339-3353. [DOI: 10.1021/acs.jpcb.7b10005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zhi Sun
- Center for Computational Quantum Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Kevin B. Moore
- Center for Computational Quantum Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - J. Grant Hill
- Department of Chemistry, University of Sheffield, Sheffield S3 7HF, United Kingdom
| | - Kirk A. Peterson
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
| | - Henry F. Schaefer
- Center for Computational Quantum Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Roald Hoffmann
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853-1301, United States
| |
Collapse
|
15
|
Maurer AB, Hu K, Meyer GJ. Light Excitation of a Bismuth Iodide Complex Initiates I-I Bond Formation Reactions of Relevance to Solar Energy Conversion. J Am Chem Soc 2017; 139:8066-8069. [PMID: 28551984 DOI: 10.1021/jacs.7b01793] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The titration of iodide into acetonitrile solutions of BiI3 resulted in the formation of [BiI6]3-. Ligand-to-metal charge transfer (LMCT) excitation of [BiI6]3- yielded a transient species assigned as the diiodide anion I2•- directly ligated to Bi, [Bi(I2•-)Ix]n. With 20 ns time resolution, transient absorption measurements revealed the appearance of two species assigned on the analysis of the iodine molecular orbitals as an η2 ligated I2•-, [(η2-I2)BiI4]3- (λmax = 640 nm), and an η1 species [(η1-I2)BiI4]3- (λmax = 750 nm). The rapid appearance of this intermediate was attributed to intramolecular I-I bond formation. The [(η2-I2)BiI4]3- subsequently reacted with 1 equiv of iodide to yield [(η1-I2)BiI5]4-. Interestingly, [(η1-I2)BiI5]4- decayed to ground state products with a first-order rate constant of k = 2 × 103 s-1. Under the same experimental conditions, I2•- in CH3CN rapidly disproportionates with a tremendous loss of free energy, ΔGo = -2.6 eV. The finding that metal ligation inhibits this energy wasting reaction is of direct relevance to solar energy conversion. The photochemistry itself provides a rare example of one electron oxidized halide species coordinated to a metal ion of possible relevance to reductive elimination/oxidation addition reaction chemistry of transition metal catalysts.
Collapse
Affiliation(s)
- Andrew B Maurer
- Department of Chemistry, University of North Carolina at Chapel Hill , Murray Hall 2202B, Chapel Hill, North Carolina 27599-3290, United States
| | - Ke Hu
- Department of Chemistry, University of North Carolina at Chapel Hill , Murray Hall 2202B, Chapel Hill, North Carolina 27599-3290, United States
| | - Gerald J Meyer
- Department of Chemistry, University of North Carolina at Chapel Hill , Murray Hall 2202B, Chapel Hill, North Carolina 27599-3290, United States
| |
Collapse
|
16
|
Rosokha S. Electron-transfer reactions of halogenated electrophiles: a different look into the nature of halogen bonding. Faraday Discuss 2017; 203:315-332. [DOI: 10.1039/c7fd00074j] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The rates of oxidation of ferrocene derivatives by brominated molecules R-Br (CBr3CN, CBr4, CBr3NO2, CBr3COCBr3, CBr3CONH2, CBr3F, and CBr3H) were consistent with the predictions of the outer-sphere dissociative electron-transfer theory. The similar redox-reactions of the R-Br electrophiles with the typical halogen-bond acceptors tetramethyl-p-phenylenediamine (TMPD) or iodide were much faster than calculated using the same model. The fast redox-processes in these systems were related to the involvement of the transient halogen-bonded [R-Br, TMPD] or [R-Br, I−] complexes in which barriers for electron transfer were lowered by the strong electronic coupling of reactants. The Mulliken–Hush treatment of the spectral and structural characteristics of the [R-Br, TMPD] or [R-Br, I−] complexes corroborated the values of coupling elements, Hab, of 0.2–0.5 eV implied by the kinetic data. The Natural Bond Orbital analysis of these complexes indicated a noticeable donor/acceptor charge transfer, Δq, of 0.03–0.09 ē. The Hab and Δq values in the [R-Br, TMPD] and [R-Br, I−] complexes (which are similar to those in the traditional charge-transfer associates) indicate significant contribution of charge-transfer (weakly-covalent) interaction to halogen bonding. The decrease of the barrier for electron transfer between the halogen-bonded reactants demonstrated in the current work points out that halogen bonding should be taken into account in the mechanistic analysis of the reactions of halogenated species.
Collapse
|
17
|
Mosquera MEG, Gomez-Sal P, Diaz I, Aguirre LM, Ienco A, Manca G, Mealli C. Intriguing I2 Reduction in the Iodide for Chloride Ligand Substitution at a Ru(II) Complex: Role of Mixed Trihalides in the Redox Mechanism. Inorg Chem 2016; 55:283-91. [PMID: 26675208 DOI: 10.1021/acs.inorgchem.5b02307] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The compound [Ru(CN(t)Bu)4(Cl)2], 1, reacts with I2, yielding the halogen-bonded (XB) 1D species {[Ru(CN(t)Bu)4(I)2]·I2}n, (2·I2)n, whose building block contains I(-) ligands in place of Cl(-) ligands, even though no suitable redox agent is present in solution. Some isolated solid-state intermediates, such as {[Ru(CN(t)Bu)4(Cl)2]·2I2}n, (1·2I2)n, and {[Ru(CN(t)Bu)4(Cl)(I)]·3I2}n, (3·3I2)n, indicate the stepwise substitution of the two trans-halide ligands in 1, showing that end-on-coordinated trihalides play a key role in the process. In particular, the formation of ClI2(-) triggers electron transfer, possibly followed by an inverted coordination of the triatomic species through the external iodine atom. This allows I-Cl separation, as corroborated by Raman spectra. The process through XB intermediates corresponds to reduction of one iodine atom combined with the oxidation of one coordinated chloride ligand to give the corresponding zerovalent atom of I-Cl. This redox process, explored by density functional theory calculations (B97D/6-31+G(d,p)/SDD (for I and Ru atoms)), is apparently counterintuitive with respect to the known behavior of the corresponding free halogen systems, which favor iodide oxidation by Cl2. On the other hand, similar energy barriers are found for the metal-assisted process and require a supply of energy to be passed. In this respect, the control of the temperature is fundamental in combination with the favorable crystallizations of the various solid-state products. As an important conclusion, trihalogens, as XB adducts, are not static in nature but are able to undergo dynamic inner electron transfers consistently with implicit redox chemistry.
Collapse
Affiliation(s)
- Marta E G Mosquera
- Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá , Campus Universitario, E-28871 Alcalá de Henares, Spain
| | - Pilar Gomez-Sal
- Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá , Campus Universitario, E-28871 Alcalá de Henares, Spain
| | - Isabel Diaz
- Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá , Campus Universitario, E-28871 Alcalá de Henares, Spain
| | - Lina M Aguirre
- Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá , Campus Universitario, E-28871 Alcalá de Henares, Spain
| | - A Ienco
- Istituto di Chimica dei Composti Organometallici, Consiglio Nazionale delle Ricerche (ICCOM-CNR) , Via Madonna del Piano 10, 50019 Sesto Fiorentino, Florence, Italy
| | - Gabriele Manca
- Istituto di Chimica dei Composti Organometallici, Consiglio Nazionale delle Ricerche (ICCOM-CNR) , Via Madonna del Piano 10, 50019 Sesto Fiorentino, Florence, Italy
| | - Carlo Mealli
- Istituto di Chimica dei Composti Organometallici, Consiglio Nazionale delle Ricerche (ICCOM-CNR) , Via Madonna del Piano 10, 50019 Sesto Fiorentino, Florence, Italy
| |
Collapse
|
18
|
Rosokha SV, Traversa A. From charge transfer to electron transfer in halogen-bonded complexes of electrophilic bromocarbons with halide anions. Phys Chem Chem Phys 2015; 17:4989-99. [PMID: 25591991 DOI: 10.1039/c4cp05220j] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Experimental and computational studies of the halogen-bonded complexes, [R-Br, X(-)], of bromosubstituted electrophiles, R-Br, and halide anions, X(-), revealed that decrease of a gap between the frontier orbitals of interacting species led to reduction of the energy of the optical charge-transfer transition and to increase in the ground-state charge transfer (X(-) → R-Br) in their associates. These variations were accompanied by weakening of the intramolecular, C-Br, and strengthening of the intermolecular, BrX(-), bonds. In the limit of the strongest electron donor-acceptor pairs, formation of the halogen-bonded complexes was followed by the oxidation of iodide to triiodide, which took place despite the fact that the I(-) → R-Br electron-transfer step was highly endergonic and the calculated outer-sphere rate constant was negligibly small. However, the calculated barrier for the inner-sphere electron transfer accompanied by the halogen transfer, R-BrI(-) → R˙Br-I(-)˙, was nearly 24 kcal mol(-1) lower as compared to that calculated for the outer-sphere process and the rate constant of such reaction was consistent with the experimental kinetics. A dramatic decrease of the electron-transfer barriers (leading to 18-orders of magnitude increase of the rate constant) was related to the strong electronic coupling of the donor and acceptor within the halogen-bonded precursor complex, as well as to the lower solvent reorganization energy and the successor-complex stabilization.
Collapse
Affiliation(s)
- Sergiy V Rosokha
- Department of Biological, Chemical and Physical Sciences, Roosevelt University, Chicago, IL 60605, USA.
| | | |
Collapse
|
19
|
Rosokha SV, Loboda EA. Interplay of Halogen and π–π Charge-Transfer Bondings in Intermolecular Associates of Bromo- or Iododinitrobenzene with Tetramethyl-p-phenylenediamine. J Phys Chem A 2015; 119:3833-42. [DOI: 10.1021/acs.jpca.5b01600] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Sergiy V. Rosokha
- Department
of Biological,
Chemical and Physical Sciences, Roosevelt University, Chicago, Illinois 60605, United States
| | - Eric A. Loboda
- Department
of Biological,
Chemical and Physical Sciences, Roosevelt University, Chicago, Illinois 60605, United States
| |
Collapse
|
20
|
Abstract
Experimentally known adducts of SO2 with transition metal complexes have distinct geometries. In the present paper, we demonstrate by a bonding analysis that this is a direct consequence of sulfur dioxide acting as an acceptor in one set, square-planar complexes of d(8) and linear two-coordinated complexes of d(10) transition metals, and as a donor with other compounds, well-known paddle-wheel [Rh2(O2CCF3)4] and square-pyramidal [M(CO)5] (M = Cr, W) complexes. Bonding energy computations were augmented by the natural bond orbital (NBO) analysis and energy decomposition analysis (EDA). When the SO2 molecule acts as an acceptor, bonding in the bent coordination mode to the axial position of the d(8) or the d(10) metal center, the dominant contributor to the bonding is LAO(S) (Lewis Acidic Orbital, mainly composed of the px-orbital of the S atom) as an acceptor, while a dz(2) orbital centered on the metal is the corresponding donor. In contrast, the distinct collinear (or linear) coordination of the SO2 bound at the axial position of [Rh2(O2CCF3)4] and/or [M(CO)5] is associated with a dominant donation from a lone pair localized on the sulfur atom, σ*(Rh-Rh) and/or empty LAO(M) (mainly composed of the dz(2) orbital of the metal), respectively, acting as an acceptor orbital. The donor/acceptor capabilities of the SO2 molecule were also checked in adducts with organic Lewis acids (BH3, B(CF3)3) and Lewis bases (NH3, N(CH3)3, N-heterocyclic carbene).
Collapse
Affiliation(s)
- Jingbai Li
- Department of Biological and Chemical Sciences, Illinois Institute of Technology, Chicago, Illinois 60616, USA.
| | | |
Collapse
|
21
|
Rosokha SV, Stern CL, Swartz A, Stewart R. Halogen bonding of electrophilic bromocarbons with pseudohalide anions. Phys Chem Chem Phys 2014; 16:12968-79. [DOI: 10.1039/c4cp00976b] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Spectral, thermodynamic and structural features of the complexes of bromocarbons with polydentate azide, cyanate or thiocyanate anions are presented. They suggest a significant role of the molecular-orbital interactions in formation of these halogen-bonded associates.
Collapse
Affiliation(s)
- Sergiy V. Rosokha
- Department of Biological
- Chemical and Physical Sciences
- Roosevelt University
- Chicago, USA
| | | | - Alan Swartz
- Department of Biological
- Chemical and Physical Sciences
- Roosevelt University
- Chicago, USA
| | - Rory Stewart
- Department of Biological
- Chemical and Physical Sciences
- Roosevelt University
- Chicago, USA
| |
Collapse
|