1
|
Nakagami A, Mao Q, Horitani M, Kodera M, Kitagishi H. Detoxification of hydrogen sulfide by synthetic heme model compounds. Sci Rep 2024; 14:29371. [PMID: 39658563 PMCID: PMC11632086 DOI: 10.1038/s41598-024-80511-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 11/19/2024] [Indexed: 12/12/2024] Open
Abstract
Hydrogen sulfide is a lethal toxic gas that disrupts cellular respiration in the mitochondrial system. Currently, no antidote is available for the clinical treatment of hydrogen sulfide poisoning. In this study, we investigated the function of iron(III)porphyrin complexes as hydrogen sulfide scavengers in water and evaluated their potential use as therapeutic agents for hydrogen sulfide poisoning. The compounds, named met-hemoCD-P and met-hemoCD-I, are composed of iron(III)porphyrin complexed with per-methylated β-cyclodextrin dimers that contain a pyridine (met-hemoCD-P) or imidazole axial fifth ligand that is coordinated to Fe(III) (met-hemoCD-I). These compounds formed stable HS-Fe(III) complexes under physiological conditions, with binding constants of 1.2 × 105 and 2.5 × 106 M-1 for met-hemoCD-P and met-hemoCD-I, respectively. The binding constant of met-hemoCD-I was 10-times higher than that reported for native human met-hemoglobin at pH 7.4 and 25oC. Electron paramagnetic resonance (EPR) spectroscopy and H2S quantification assays revealed that after SH- was coordinated to met-hemoCD-I, it was efficiently converted to nontoxic sulfite and sulfate ions via homolytic cleavage of the HS-Fe(III) bond followed by aerobic oxidation. Mouse animal experiments revealed that the survival rate was significantly improved when NaSH-treated mice were injected with met-hemoCD-I. After the injection, mitochondrial CcO function in brain and heart tissues recovered, and met-hemoCD-I injected was excreted in the urine without chemical decomposition.
Collapse
Affiliation(s)
- Atsuki Nakagami
- Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe-city, Kyoto, 610-0321, Japan
| | - Qiyue Mao
- Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe-city, Kyoto, 610-0321, Japan
| | - Masaki Horitani
- Department of Applied Biochemistry and Food Science, Faculty of Agriculture, Saga University, 1 Honjo-machi, Saga, 840-8502, Japan
- The United Graduate School of Agricultural Science, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan
| | - Masahito Kodera
- Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe-city, Kyoto, 610-0321, Japan
| | - Hiroaki Kitagishi
- Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe-city, Kyoto, 610-0321, Japan.
| |
Collapse
|
2
|
Strianese M, Pappalardo D, Mazzeo M, Lamberti M, Pellecchia C. The contribution of metalloporphyrin complexes in molecular sensing and in sustainable polymerization processes: a new and unique perspective. Dalton Trans 2021; 50:7898-7916. [PMID: 33999066 DOI: 10.1039/d1dt00841b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review highlights the recent developments in the field of metalloporphyrins as optical probes for biologically relevant molecules, such as nitric oxide (NO) and hydrogen sulfide (H2S), and as catalysts for the preparation of sustainable polymers such as polyesters, by the ring-opening polymerization (ROP) of cyclic esters and the ring-opening co-polymerization (ROCOP) of epoxides and anhydrides, and polycarbonates by the chemical fixation of carbon dioxide (CO2). The great potential of porphyrins is mainly due to the possibility of making various synthetic modifications to the porphyrin ring, such as modifying the coordinated metal, peripheral substituents, or even the molecular skeleton. Due to the strict structure-property relationships, one can use porphyrinoids in several different applications such as, for instance, activation of molecular oxygen or catalysis of photosynthetic processes. These possibilities broaden the application of porphyrins in several different fields of research, further mimicking what nature does. In this context, here, we want to provide evidence for the great flexibility of metalloporphyrins by presenting an overview of results obtained by us and others in the research fields we are currently involved in. More specifically, we report a survey of our most significant achievements regarding their use as optical probes in the context of the results reported in the literature from other research groups, and of the use of porphyrin metal(iii) complexes as catalysts for sustainable polymerization processes. As for the optical probe section, in addition to the metalloporphyrins synthesized ad hoc in the laboratory, the present work also covers the natural proteins containing a porphyrin core.
Collapse
Affiliation(s)
- Maria Strianese
- Dipartimento di Chimica e Biologia "Adolfo Zambelli", Università degli Studi di Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy.
| | - Daniela Pappalardo
- Università del Sannio, Dipartimento di Scienze e Tecnologie, via de Sanctis, 82100, Benevento, Italy
| | - Mina Mazzeo
- Dipartimento di Chimica e Biologia "Adolfo Zambelli", Università degli Studi di Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy.
| | - Marina Lamberti
- Dipartimento di Chimica e Biologia "Adolfo Zambelli", Università degli Studi di Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy.
| | - Claudio Pellecchia
- Dipartimento di Chimica e Biologia "Adolfo Zambelli", Università degli Studi di Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy.
| |
Collapse
|
3
|
Pladzyk A, Kowalkowska-Zedler D, Ciborska A, Schnepf A, Dołęga A. Complexes of silanethiolate ligands: Synthesis, structure, properties and application. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
4
|
Strianese M, Lamberti M, Persico A, Pellecchia C. Reactivity of monohydrogensulfide with a suite of pyridoxal-based complexes: A combined NMR, ESI-MS, UV–visible and fluorescence study. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2019.119235] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
5
|
Hunt AP, Lehnert N. The Thiolate Trans Effect in Heme {FeNO}6 Complexes and Beyond: Insight into the Nature of the Push Effect. Inorg Chem 2019; 58:11317-11332. [DOI: 10.1021/acs.inorgchem.9b00091] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Andrew P. Hunt
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Nicolai Lehnert
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
6
|
Strianese M, Palm GJ, Kohlhause D, Ndamba LA, Tabares LC, Pellecchia C. Azurin and HS-
: Towards Implementation of a Sensor for HS-
Detection. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201801399] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Maria Strianese
- Dipartimento di Chimica e Biologia “Adolfo Zambelli”; Università di Salerno; Via Giovanni Paolo II, 132 84084 Fisciano (SA) Italy
| | - Gottfried J. Palm
- Institute for Biochemistry; University of Greifswald; Felix-Hausdorff-Str. 4 17489 Greifswald Germany
| | - David Kohlhause
- Institute for Biochemistry; University of Greifswald; Felix-Hausdorff-Str. 4 17489 Greifswald Germany
| | - Lionel A. Ndamba
- Leiden; Leiden University; P.O. Box 9504 2300 RA Leiden Netherlands
| | - Leandro C. Tabares
- Institute for Integrative Biology of the Cell (I2BC); Department of Biochemistry, Biophysics and Structural Biology; Université Paris-Saclay, CEA, CNRS UMR 9198; 91198 Gif-sur-Yvette France
| | - Claudio Pellecchia
- Dipartimento di Chimica e Biologia “Adolfo Zambelli”; Università di Salerno; Via Giovanni Paolo II, 132 84084 Fisciano (SA) Italy
| |
Collapse
|
7
|
Weak coordination of H2S to the solid-state ferrous porphyrin complexes with diatomic molecules. Characterization of 6-coordinate adducts at low temperature. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2018.07.044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
8
|
Wang H, Wei X, Li J. Synthesis and characterization of six-coordinate iron(II/III) 5,10,15,20-tetrakis(pentafluorophenyl) porphyrinato complexes with non-hindered imidazole ligands. J PORPHYR PHTHALOCYA 2018. [DOI: 10.1142/s1088424618500530] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Four bis-imidazole iron(II/III) 5,10,15,20-tetrakis(pentafluorophenyl)porphyrinato (TFPP) complexes, [Fe(TFPP)(1-MeIm)[Formula: see text]], [Fe(TFPP)(1-VinylIm)[Formula: see text]], [Fe(TFPP)(4-MeHIm)[Formula: see text]]Cl and [Fe(TFPP)(1-EtIm)[Formula: see text]]BF[Formula: see text] (1-MeIm [Formula: see text] 1-methylimidazole, 1-VinylIm [Formula: see text] 1-vinylimidazole, 4-MeHIm [Formula: see text] 4-methylimidazole and 1-EtIm [Formula: see text] 1-ethylimidazole) were synthesized and characterized by single-crystal X-ray and UV-vis spectroscopy. A negative correlation is found between the absolute imidazole orientation ([Formula: see text] and the Fe–N[Formula: see text] distance for the [Fe(II)(Porph)(Im)[Formula: see text]] (Im [Formula: see text] 1-MeIm or 4-MeHIm) complexes where the smaller [Formula: see text] angle corresponds to a longer axial distance. Hydrogen bonding, which might affect the orientations of the axial imidazoles is found for Fe(TFPP)(4-MeHIm)[Formula: see text]]Cl (A and B). The autoreduction of [Fe(III)(TFPP)]Cl to [Fe(II)(TFPP)(1-MeIm)[Formula: see text]] with 1-methylimidazole has been monitored by UV-vis spectroscopic titration.
Collapse
Affiliation(s)
- Haimang Wang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P. R. China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Yanqi Lake, Huairou District, Beijing, 101408, P. R. China
| | - Xuehong Wei
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P. R. China
- Scientific Instrument Center, Shanxi University, Taiyuan, 030006, P. R. China
| | - Jianfeng Li
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Yanqi Lake, Huairou District, Beijing, 101408, P. R. China
| |
Collapse
|
9
|
Strianese M, Lamberti M, Pellecchia C. Interaction of monohydrogensulfide with a family of fluorescent pyridoxal-based Zn(ii) receptors. Dalton Trans 2018; 47:17392-17400. [DOI: 10.1039/c8dt03969k] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We studied the reactivity of HS− with a family of fluorescent zinc complexes. In the case of complexes 1 and 3, we have evidence that the interaction with HS− results in the displacement of the coordinated ligand from the Zn center. For complex 2, our data points to the coordination of HS− to the metal center likely assisted by hydrogen bondings with the OH of the pyridoxal moiety.
Collapse
Affiliation(s)
- Maria Strianese
- Dipartimento di Chimica e Biologia “Adolfo Zambelli”
- Università degli Studi di Salerno
- 84084 Fisciano (SA)
- Italy
| | - Marina Lamberti
- Dipartimento di Chimica e Biologia “Adolfo Zambelli”
- Università degli Studi di Salerno
- 84084 Fisciano (SA)
- Italy
| | - Claudio Pellecchia
- Dipartimento di Chimica e Biologia “Adolfo Zambelli”
- Università degli Studi di Salerno
- 84084 Fisciano (SA)
- Italy
| |
Collapse
|
10
|
Strianese M, Mirra S, Lamberti M, Pellecchia C. Zinc (II) porphyrins as viable scaffolds to stabilize hydrogen sulfide binding at the metal center. Inorganica Chim Acta 2017. [DOI: 10.1016/j.ica.2017.06.069] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
11
|
Hartle MD, Tillotson MR, Prell JS, Pluth MD. Spectroscopic investigation of the reaction of metallo-protoporphyrins with hydrogen sulfide. J Inorg Biochem 2017; 173:152-157. [PMID: 28551529 DOI: 10.1016/j.jinorgbio.2017.04.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 04/10/2017] [Accepted: 04/23/2017] [Indexed: 11/16/2022]
Abstract
Hydrogen sulfide (H2S) is the most recently discovered gasotransmitter molecule joining nitric oxide and carbon monoxide. In addition to being biologically important gases, these gasotransmitters also provide distinct modes of reactivity with biomimetic metal complexes. The majority of previous investigations on the reactivity of H2S with bioinorganic models have focused on Fe-based porphyrin systems, whereas investigations with other metals remains underinvestigated. To address this gap, we report here an examination of the reactions of H2S, HS-, and S8 with MgII, CuII, CoII, ZnII, CrII, SnIV, and MnII/III protoporphyrins.
Collapse
Affiliation(s)
- Matthew D Hartle
- Department of Chemistry & Biochemistry, Materials Science Institute, Institute of Molecular Biology, University of Oregon, Eugene, OR 97403-1253, USA
| | - McKinna R Tillotson
- Department of Chemistry & Biochemistry, Materials Science Institute, Institute of Molecular Biology, University of Oregon, Eugene, OR 97403-1253, USA
| | - James S Prell
- Department of Chemistry & Biochemistry, Materials Science Institute, Institute of Molecular Biology, University of Oregon, Eugene, OR 97403-1253, USA
| | - Michael D Pluth
- Department of Chemistry & Biochemistry, Materials Science Institute, Institute of Molecular Biology, University of Oregon, Eugene, OR 97403-1253, USA.
| |
Collapse
|
12
|
Meininger DJ, Arman HD, Tonzetich ZJ. Synthesis, characterization, and binding affinity of hydrosulfide complexes of synthetic iron(II) porphyrinates. J Inorg Biochem 2017; 167:142-149. [DOI: 10.1016/j.jinorgbio.2016.08.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 08/23/2016] [Accepted: 08/25/2016] [Indexed: 01/23/2023]
|
13
|
Hu B, He M, Yao Z, Schulz CE, Li J. Unique Axial Imidazole Geometries of Fully Halogenated Iron(II) Porphyrin Complexes: Crystal Structures and Mössbauer Spectroscopic Studies. Inorg Chem 2016; 55:9632-9643. [DOI: 10.1021/acs.inorgchem.6b01364] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Bin Hu
- College
of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Yanqi Lake, Huairou District, Beijing 101408, China
| | - Mingrui He
- College
of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Yanqi Lake, Huairou District, Beijing 101408, China
| | - Zhen Yao
- College
of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Yanqi Lake, Huairou District, Beijing 101408, China
| | - Charles E. Schulz
- Department
of Physics, Knox College, Galesburg, Illinois 61401, United States
| | - Jianfeng Li
- College
of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Yanqi Lake, Huairou District, Beijing 101408, China
| |
Collapse
|
14
|
Meininger DJ, Kasrawi Z, Arman HD, Tonzetich ZJ. Synthesis of tetraphenylporphyrinate manganese(III) siloxides by silyl group transfer from silanethiols. J COORD CHEM 2016. [DOI: 10.1080/00958972.2016.1187727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Daniel J. Meininger
- Department of Chemistry, University of Texas at San Antonio, San Antonio, TX, USA
| | - Zieph Kasrawi
- Department of Chemistry, University of Texas at San Antonio, San Antonio, TX, USA
| | - Hadi D. Arman
- Department of Chemistry, University of Texas at San Antonio, San Antonio, TX, USA
| | - Zachary J. Tonzetich
- Department of Chemistry, University of Texas at San Antonio, San Antonio, TX, USA
| |
Collapse
|
15
|
Meininger DJ, Chee-Garza M, Arman HD, Tonzetich ZJ. Gallium(III) Tetraphenylporphyrinates Containing Hydrosulfide and Thiolate Ligands: Structural Models for Sulfur-Bound Iron(III) Hemes. Inorg Chem 2016; 55:2421-6. [DOI: 10.1021/acs.inorgchem.5b02822] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Daniel J. Meininger
- Department of Chemistry, University of Texas at San Antonio (UTSA), San Antonio Texas 78249, United States
| | - Max Chee-Garza
- Department of Chemistry, University of Texas at San Antonio (UTSA), San Antonio Texas 78249, United States
| | - Hadi D. Arman
- Department of Chemistry, University of Texas at San Antonio (UTSA), San Antonio Texas 78249, United States
| | - Zachary J. Tonzetich
- Department of Chemistry, University of Texas at San Antonio (UTSA), San Antonio Texas 78249, United States
| |
Collapse
|
16
|
Hartle MD, Prell JS, Pluth MD. Spectroscopic investigations into the binding of hydrogen sulfide to synthetic picket-fence porphyrins. Dalton Trans 2016; 45:4843-53. [DOI: 10.1039/c5dt04563k] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The picket-fence porphyrin system is used a model for a sterically-constrained, protected binding environment to study H2S and HS−ligation.
Collapse
Affiliation(s)
- Matthew D. Hartle
- Department of Chemistry and Biochemistry
- Materials Science Institute
- Institute of Molecular Biology
- University of Oregon
- Eugene
| | - James S. Prell
- Department of Chemistry and Biochemistry
- Materials Science Institute
- Institute of Molecular Biology
- University of Oregon
- Eugene
| | - Michael D. Pluth
- Department of Chemistry and Biochemistry
- Materials Science Institute
- Institute of Molecular Biology
- University of Oregon
- Eugene
| |
Collapse
|
17
|
Lamar AA, Liebeskind LS. Carboxyl activation via silylthioesterification: one-pot, two-step amidation of carboxylic acids catalyzed by non-metal ammonium salts. Tetrahedron Lett 2015; 56:6034-6037. [PMID: 37982035 PMCID: PMC10655838 DOI: 10.1016/j.tetlet.2015.09.050] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The first organo-catalyzed silylthioesterification of a carboxylic acid and a commercially available mercaptoorganosilane results in the in situ production of an O-silylthionoester. Subsequent amine addition forms amides in an operationally simple one-pot procedure without removal of water. The scope and efficiency of these reactions with respect to the catalyst, carboxylic acid, amine, [Si─S] moiety, and solvent are investigated. A number of functionalities are tolerated in the two-step amidation including alkene, alkyne, alkyl and aryl halides, benzylic ethers, and heterocycles with free coordinating sites.
Collapse
Affiliation(s)
- Angus A. Lamar
- Department of Chemistry and Biochemistry, The University of Tulsa, 800 South Tucker Drive, Tulsa, OK 74104, USA
| | - Lanny S. Liebeskind
- Sanford S. Atwood Chemistry Center, Emory University, 1515 Dickey Drive, Atlanta, GA 30322, USA
| |
Collapse
|
18
|
Ciborska A, Conterosito E, Milanesio M, Kazimierczuk K, Rzymowska K, Brzozowski K, Dołęga A. The Syntheses and Crystal Structures of the First Disiloxane-1,3-dithiol and Its Cadmium Complex. Eur J Inorg Chem 2015. [DOI: 10.1002/ejic.201500457] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
19
|
Strianese M, Mirra S, Bertolasi V, Milione S, Pellecchia C. Organometallic sulfur complexes: reactivity of the hydrogen sulfide anion with cobaloximes. NEW J CHEM 2015. [DOI: 10.1039/c5nj00206k] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The hydrogen sulfide anion selectively and reversibly displaces pyridine in cobaloxime. A rare trisulfido-bridged dinuclear complex was isolated and characterized.
Collapse
Affiliation(s)
- Maria Strianese
- Dipartimento di Chimica
- Università di Salerno
- 132 I-84084 Fisciano
- Italy
| | - Silvia Mirra
- Dipartimento di Chimica
- Università di Salerno
- 132 I-84084 Fisciano
- Italy
| | - Valerio Bertolasi
- Università di Ferrara
- Dipartimento di Scienze Chimiche e Farmaceutiche
- Centro di Strutturistica Diffrattometrica
- I-44100 Ferrara
- Italy
| | - Stefano Milione
- Dipartimento di Chimica
- Università di Salerno
- 132 I-84084 Fisciano
- Italy
| | | |
Collapse
|
20
|
Meininger DJ, Muzquiz N, Arman HD, Tonzetich ZJ. Synthesis, characterization, and atropisomerism of iron complexes containing the tetrakis(2-chloro-6-fluorophenyl)porphyrinate ligand. Dalton Trans 2015; 44:9486-95. [DOI: 10.1039/c5dt01122a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of iron complexes containing the 5,10,15,20-tetrakis(2-chloro-6-fluorophenyl)porphyrin ligand is presented and the factors surrounding the observed atropisomerism are investigated.
Collapse
Affiliation(s)
- Daniel J. Meininger
- Department of Chemistry
- University of Texas at San Antonio (UTSA)
- San Antonio
- USA
| | - Nicanor Muzquiz
- Department of Chemistry
- University of Texas at San Antonio (UTSA)
- San Antonio
- USA
| | - Hadi D. Arman
- Department of Chemistry
- University of Texas at San Antonio (UTSA)
- San Antonio
- USA
| | | |
Collapse
|
21
|
Hartle MD, Meininger DJ, Zakharov LN, Tonzetich ZJ, Pluth MD. NBu4SH provides a convenient source of HS− soluble in organic solution for H2S and anion-binding research. Dalton Trans 2015; 44:19782-5. [DOI: 10.1039/c5dt03355a] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report here a simple method to prepare and characterize analytically-pure NBu4SH, which provides access to an organic-soluble source of HS−.
Collapse
Affiliation(s)
- Matthew D. Hartle
- Department of Chemistry and Biochemistry
- Materials Science Institute
- Institute of Molecular Biology
- 1253 University of Oregon
- Eugene
| | - Daniel J. Meininger
- Department of Chemistry
- University of Texas at San Antonio (UTSA)
- San Antonio
- USA
| | - Lev N. Zakharov
- Department of Chemistry and Biochemistry
- Materials Science Institute
- Institute of Molecular Biology
- 1253 University of Oregon
- Eugene
| | | | - Michael D. Pluth
- Department of Chemistry and Biochemistry
- Materials Science Institute
- Institute of Molecular Biology
- 1253 University of Oregon
- Eugene
| |
Collapse
|
22
|
Meininger DJ, Muzquiz N, Arman HD, Tonzetich ZJ. A convenient procedure for the synthesis of fluoro-iron(III) complexes of common synthetic porphyrinates. J PORPHYR PHTHALOCYA 2014. [DOI: 10.1142/s108842461450014x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We report here an improved method for the preparation of fluoro-iron(III) porphyrinate complexes. Treatment of [ Fe 2( P )2(μ- O )] (P = tetraphenylporphyrinate {TPP}, tetra-p-tolylporphyrinate {TTP}, or octaethylporphyrinate {OEP}) or [ Fe ( OH )( OH 2)( TMP )] (TMP = tetramesitylporphyrinate) with the commercially available fluorinating agent, Et 3 N ·3 HF , in dichloromethane affords the desired [ FeF ( P )] complexes in a straightforward fashion and in good yield while avoiding the use of aqueous hydrofluoric acid. All fluoro-iron(III) complexes have been completely characterized by a series of different spectroscopic techniques including cyclic voltammetry. Reaction of a representative complex, [ FeF ( OEP )], with various chloride reagents demonstrates that halide exchange with chloride is facile, but only proceeds at an appreciable rate in the presence of proton sources. Unexpectedly, treatment of [ FeF ( OEP )] with NOBF 4 did not to lead formation of an oxidized species, but rather to formation of the { Fe – NO }6 complex, [ Fe ( NO )( OEP )]( BF 4).
Collapse
Affiliation(s)
- Daniel J. Meininger
- Department of Chemistry, University of Texas at San Antonio (UTSA), One UTSA Circle, San Antonio, TX 78249, USA
| | - Nicanor Muzquiz
- Department of Chemistry, University of Texas at San Antonio (UTSA), One UTSA Circle, San Antonio, TX 78249, USA
| | - Hadi D. Arman
- Department of Chemistry, University of Texas at San Antonio (UTSA), One UTSA Circle, San Antonio, TX 78249, USA
| | - Zachary J. Tonzetich
- Department of Chemistry, University of Texas at San Antonio (UTSA), One UTSA Circle, San Antonio, TX 78249, USA
| |
Collapse
|
23
|
Hartle MD, Sommer SK, Dietrich SR, Pluth MD. Chemically reversible reactions of hydrogen sulfide with metal phthalocyanines. Inorg Chem 2014; 53:7800-2. [PMID: 24785654 PMCID: PMC4123935 DOI: 10.1021/ic500664c] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
![]()
Hydrogen sulfide (H2S)
is an important signaling molecule that exerts action on various bioinorganic
targets. Despite this importance, few studies have investigated the
differential reactivity of the physiologically relevant H2S and HS– protonation states with metal complexes.
Here we report the distinct reactivity of H2S and HS– with zinc(II) and cobalt(II) phthalocyanine (Pc) complexes
and highlight the chemical reversibility and cyclability of each metal.
ZnPc reacts with HS–, but not H2S, to
generate [ZnPc-SH]−, which can be converted back
to ZnPc by protonation. CoPc reacts with HS–, but
not H2S, to form [CoIPc]−,
which can be reoxidized to CoPc by air. Taken together, these results
demonstrate the chemically reversible reaction of HS– with metal phthalocyanine complexes and highlight the importance
of H2S protonation state in understanding the reactivity
profile of H2S with biologically relevant metal scaffolds. The protonation state of H2S influences
its reactivity with different metal phthalocyanine (Pc) complexes.
Both ZnPc and CoPc react with H2S in a chemically reversible
manner, with redox-inactive ZnPc binding HS− and
redox-active CoPc undergoing reduction. The [ZnPc-SH]− product can be reverted to ZnPc by protonation, and [CoIPc]− can be redoxidized to CoPc with air.
Collapse
Affiliation(s)
- Matthew D Hartle
- Department of Chemistry and Biochemistry, Materials Science Institute, University of Oregon , Eugene, Oregon 97403-1253, United States
| | | | | | | |
Collapse
|