1
|
Zheng A, Zhou Q, Ding B, Li D, Zhang T, Hou Z. Reduced Amino Acid Schiff Base‐Iron(III) Complexes Catalyzing Oxidation of Cyclohexane with Hydrogen Peroxide. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Anna Zheng
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Qingqing Zhou
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Bingjie Ding
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Difan Li
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Tong Zhang
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Zhenshan Hou
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes East China Normal University School of Chemistry and Molecular Engineering Shanghai 200062 China
| |
Collapse
|
2
|
Martin T, Galeotti M, Salamone M, Liu F, Yu Y, Duan M, Houk KN, Bietti M. Deciphering Reactivity and Selectivity Patterns in Aliphatic C-H Bond Oxygenation of Cyclopentane and Cyclohexane Derivatives. J Org Chem 2021; 86:9925-9937. [PMID: 34115516 DOI: 10.1021/acs.joc.1c00902] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A kinetic, product, and computational study on the reactions of the cumyloxyl radical with monosubstituted cyclopentanes and cyclohexanes has been carried out. HAT rates, site-selectivities for C-H bond oxidation, and DFT computations provide quantitative information and theoretical models to explain the observed patterns. Cyclopentanes functionalize predominantly at C-1, and tertiary C-H bond activation barriers decrease on going from methyl- and tert-butylcyclopentane to phenylcyclopentane, in line with the computed C-H BDEs. With cyclohexanes, the relative importance of HAT from C-1 decreases on going from methyl- and phenylcyclohexane to ethyl-, isopropyl-, and tert-butylcyclohexane. Deactivation is also observed at C-2 with site-selectivity that progressively shifts to C-3 and C-4 with increasing substituent steric bulk. The site-selectivities observed in the corresponding oxidations promoted by ethyl(trifluoromethyl)dioxirane support this mechanistic picture. Comparison of these results with those obtained previously for C-H bond azidation and functionalizations promoted by the PINO radical of phenyl and tert-butylcyclohexane, together with new calculations, provides a mechanistic framework for understanding C-H bond functionalization of cycloalkanes. The nature of the HAT reagent, C-H bond strengths, and torsional effects are important determinants of site-selectivity, with the latter effects that play a major role in the reactions of oxygen-centered HAT reagents with monosubstituted cyclohexanes.
Collapse
Affiliation(s)
- Teo Martin
- Dipartimento di Scienze e Tecnologie Chimiche, Università "Tor Vergata", Via della Ricerca Scientifica, 1, I-00133 Rome, Italy
| | - Marco Galeotti
- Dipartimento di Scienze e Tecnologie Chimiche, Università "Tor Vergata", Via della Ricerca Scientifica, 1, I-00133 Rome, Italy
| | - Michela Salamone
- Dipartimento di Scienze e Tecnologie Chimiche, Università "Tor Vergata", Via della Ricerca Scientifica, 1, I-00133 Rome, Italy
| | - Fengjiao Liu
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.,Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Yanmin Yu
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Environmental Chemical Engineering, Beijing University of Technology, Beijing 100124, China.,Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Meng Duan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - K N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Massimo Bietti
- Dipartimento di Scienze e Tecnologie Chimiche, Università "Tor Vergata", Via della Ricerca Scientifica, 1, I-00133 Rome, Italy
| |
Collapse
|
3
|
Shteinman AA, Mitra M. Nonheme mono- and dinuclear iron complexes in bio-inspired C H and C C bond hydroxylation reactions: Mechanistic insight. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120388] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
4
|
Mukherjee G, Satpathy JK, Bagha UK, Mubarak MQE, Sastri CV, de Visser SP. Inspiration from Nature: Influence of Engineered Ligand Scaffolds and Auxiliary Factors on the Reactivity of Biomimetic Oxidants. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01993] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Gourab Mukherjee
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India
| | - Jagnyesh K. Satpathy
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India
| | - Umesh K. Bagha
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India
| | - M. Qadri E. Mubarak
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
- Fakulti Sains dan Teknologi, Universiti Sains Islam Malaysia, Bandar Baru Nilai, 71800 Nilai, Negeri Sembilan Malaysia
| | - Chivukula V. Sastri
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India
| | - Sam P. de Visser
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
- Department of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| |
Collapse
|
5
|
Monika, Yadav O, Chauhan H, Ansari A. Electronic structures, bonding, and spin state energetics of biomimetic mononuclear and bridged dinuclear iron complexes: a computational examination. Struct Chem 2021. [DOI: 10.1007/s11224-020-01690-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Wang R, Liu Y, Bi L. Synthesis of tetraruthenium (IV)-substituted tungstogermanate and catalytic oxidation of n-tetradecane under mild solvent-free conditions. J COORD CHEM 2020. [DOI: 10.1080/00958972.2020.1791322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Ruiqiang Wang
- College of Chemistry, Jilin University, Changchun, P. R. China
| | - Yuzhong Liu
- First Hospital, Jilin University, Changchun, P. R. China
| | - Lihua Bi
- College of Chemistry, Jilin University, Changchun, P. R. China
| |
Collapse
|
7
|
Doiuchi D, Nakamura T, Hayashi H, Uchida T. Non‐Heme‐Type Ruthenium Catalyzed Chemo‐ and Site‐Selective C−H Oxidation. Chem Asian J 2020; 15:762-765. [DOI: 10.1002/asia.202000134] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/17/2020] [Indexed: 01/17/2023]
Affiliation(s)
- Daiki Doiuchi
- Department of Chemistry Graduate School of ScienceKyushu University 744, Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - Tatsuya Nakamura
- Department of Chemistry Graduate School of ScienceKyushu University 744, Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - Hiroki Hayashi
- Faculty of Arts and ScienceKyushu University 744, Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - Tatsuya Uchida
- Faculty of Arts and ScienceKyushu University 744, Motooka, Nishi-ku Fukuoka 819-0395 Japan
- International Institute for Carbon-Neutral Energy Research (WPI−I2CNER)Kyushu University 744, Motooka, Nishi-ku Fukuoka 819-0395 Japan
| |
Collapse
|
8
|
Sterckx H, Morel B, Maes BUW. Catalytic Aerobic Oxidation of C(sp 3 )-H Bonds. Angew Chem Int Ed Engl 2019; 58:7946-7970. [PMID: 30052305 DOI: 10.1002/anie.201804946] [Citation(s) in RCA: 157] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Indexed: 01/04/2023]
Abstract
Oxidation reactions are a key technology to transform hydrocarbons from petroleum feedstock into chemicals of a higher oxidation state, allowing further chemical transformations. These bulk-scale oxidation processes usually employ molecular oxygen as the terminal oxidant as at this scale it is typically the only economically viable oxidant. The produced commodity chemicals possess limited functionality and usually show a high degree of symmetry thereby avoiding selectivity issues. In sharp contrast, in the production of fine chemicals preference is still given to classical oxidants. Considering the strive for greener production processes, the use of O2 , the most abundant and greenest oxidant, is a logical choice. Given the rich functionality and complexity of fine chemicals, achieving regio/chemoselectivity is a major challenge. This review presents an overview of the most important catalytic systems recently described for aerobic oxidation, and the current insight in their reaction mechanism.
Collapse
Affiliation(s)
- Hans Sterckx
- Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, B-2020, Antwerp, Belgium
| | - Bénédicte Morel
- Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, B-2020, Antwerp, Belgium
| | - Bert U W Maes
- Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, B-2020, Antwerp, Belgium
| |
Collapse
|
9
|
Sterckx H, Morel B, Maes BUW. Katalytische, aerobe Oxidation von C(sp
3
)‐H‐Bindungen. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201804946] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Hans Sterckx
- Department of Chemistry University of Antwerp Groenenborgerlaan 171 B-2020 Antwerpen Belgien
| | - Bénédicte Morel
- Department of Chemistry University of Antwerp Groenenborgerlaan 171 B-2020 Antwerpen Belgien
| | - Bert U. W. Maes
- Department of Chemistry University of Antwerp Groenenborgerlaan 171 B-2020 Antwerpen Belgien
| |
Collapse
|
10
|
Recent Advances in Homogeneous Metal-Catalyzed Aerobic C–H Oxidation of Benzylic Compounds. Catalysts 2018. [DOI: 10.3390/catal8120640] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Csp3–H oxidation of benzylic methylene compounds is an established strategy for the synthesis of aromatic ketones, esters, and amides. The need for more sustainable oxidizers has encouraged researchers to explore the use of molecular oxygen. In particular, homogeneous metal-catalyzed aerobic oxidation of benzylic methylenes has attracted much attention. This account summarizes the development of this oxidative strategy in the last two decades, examining key factors such as reaction yields, substrate:catalyst ratio, substrate scope, selectivity over other oxidation byproducts, and reaction conditions including solvents and temperature. Finally, several mechanistic proposals to explain the observed results will be discussed.
Collapse
|
11
|
A spin-crossover Co(II) complex catalyzes the activation of sp3 C–H bonds by two-electron oxidants. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2018.06.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Ghosh M, Pattanayak S, Dhar BB, Singh KK, Panda C, Sen Gupta S. Selective C-H Bond Oxidation Catalyzed by the Fe-bTAML Complex: Mechanistic Implications. Inorg Chem 2017; 56:10852-10860. [PMID: 28841016 DOI: 10.1021/acs.inorgchem.7b00453] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Nonheme iron complexes bearing tetradentate N-atom-donor ligands with cis labile sites show great promise for chemoselective aliphatic C-H hydroxylation. However, several challenges still limit their widespread application. We report a mechanism-guided development of a peroxidase mimicking iron complex based on the bTAML macrocyclic ligand framework (Fe-bTAML: biuret-modified tetraamido macrocyclic ligand) as a catalyst to perform selective oxidation of unactivated 3° bonds with unprecedented regioselectivity (3°:2° of 110:1 for adamantane oxidation), high stereoretention (99%), and turnover numbers (TONs) up to 300 using mCPBA as the oxidant. Ligand decomposition pathways involving acid-induced demetalation were identified, and this led to the development of more robust and efficient Fe-bTAML complexes that catalyzed chemoselective C-H oxidation. Mechanistic studies, which include correlation of the product formed with the FeV(O) reactive intermediates generated during the reaction, indicate that the major pathway involves the cleavage of C-H bonds by FeV(O). When these oxidations were performed in the presence of air, the yield of the oxidized product doubled, but the stereoretention remained unchanged. On the basis of 18O labeling and other mechanistic studies, we propose a mechanism that involves the dual activation of mCPBA and O2 by Fe-bTAML, leading to formation of the FeV(O) intermediate. This high-valent iron oxo remains the active intermediate for most of the reaction, resulting in high regio- and stereoselectivity during product formation.
Collapse
Affiliation(s)
- Munmun Ghosh
- Chemical Engineering Division, CSIR, National Chemical Laboratory , Pune 411008, India
| | - Santanu Pattanayak
- Chemical Engineering Division, CSIR, National Chemical Laboratory , Pune 411008, India
| | - Basab B Dhar
- Department of Chemistry, Shiv Nadar University , Gautam Buddha Nagar, Uttar Pradesh 201314, India
| | - Kundan K Singh
- Chemical Engineering Division, CSIR, National Chemical Laboratory , Pune 411008, India
| | - Chakadola Panda
- Chemical Engineering Division, CSIR, National Chemical Laboratory , Pune 411008, India
| | - Sayam Sen Gupta
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata , Mohanpur 741246, India
| |
Collapse
|
13
|
Klimochkin YN, Yudashkin AV, Zhilkina EO, Ivleva EA, Moiseev IK, Oshis YF. One-pot synthesis of cage alcohols. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2017. [DOI: 10.1134/s1070428017070028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Zhang Q, Yuan HY, Fukaya N, Yasuda H, Choi JC. A Simple Zinc Catalyst for Carbamate Synthesis Directly from CO 2. CHEMSUSCHEM 2017; 10:1501-1508. [PMID: 28125167 DOI: 10.1002/cssc.201601878] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 01/18/2017] [Indexed: 06/06/2023]
Abstract
Several zinc salts were employed as catalysts for the synthesis of carbamates directly from aromatic amines, CO2 , and silicate esters. Zn(OAc)2 offered the best performance among the salts tested. The addition of an N-donor ligand such as 1,10-phenanthroline increased the yield. The best catalytic performance of Zn(OAc)2 can be explained by carboxylate-assisted proton activation. The interaction between the substrate and the catalyst can be observed by chemical shifts in 1 H and 15 N NMR spectra. Isocyanate was a key intermediate, which was generated from amine and CO2 . Silicate ester was finally converted to siloxane, which was determined by 29 Si NMR. The commercially available catalyst system could be reused. The yield of isolated carbamate could reach up to 96 % with various substrates, and the catalytic reaction was amine-selective in the presence of other functional groups.
Collapse
Affiliation(s)
- Qiao Zhang
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Hao-Yu Yuan
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan
| | - Norihisa Fukaya
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Hiroyuki Yasuda
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Jun-Chul Choi
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan
| |
Collapse
|
15
|
Yu M, Ward MB, Franke A, Ambrose SL, Whaley ZL, Bradford TM, Gorden JD, Beyers RJ, Cattley RC, Ivanović-Burmazović I, Schwartz DD, Goldsmith CR. Adding a Second Quinol to a Redox-Responsive MRI Contrast Agent Improves Its Relaxivity Response to H2O2. Inorg Chem 2017; 56:2812-2826. [DOI: 10.1021/acs.inorgchem.6b02964] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Meng Yu
- Department of Chemistry
and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Meghan B. Ward
- Department of Chemistry
and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Alicja Franke
- Department of Chemistry and Pharmacy, University Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Stephen L. Ambrose
- Department of Chemistry
and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Zachary L. Whaley
- Department of Chemistry
and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Thomas Miller Bradford
- Department of Chemistry
and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - John D. Gorden
- Department of Chemistry
and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Ronald J. Beyers
- Auburn University Magnetic Resonance Imaging Research Center, Auburn, Alabama 36849, United States
| | - Russell C. Cattley
- Department
of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, Alabama 36849, United States
| | | | - Dean D. Schwartz
- Department of Anatomy, Physiology, and
Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama 36849, United States
| | - Christian R. Goldsmith
- Department of Chemistry
and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|
16
|
Khosrowabadi Kotyk JF, Ziller JW, Yang JY. Copper tetradentate N 2Py 2 complexes with pendant bases in the secondary coordination sphere: improved ligand synthesis and protonation studies. J COORD CHEM 2016. [DOI: 10.1080/00958972.2015.1130223] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
| | - Joseph W. Ziller
- Department of Chemistry, University of California, Irvine, CA, USA
| | - Jenny Y. Yang
- Department of Chemistry, University of California, Irvine, CA, USA
| |
Collapse
|
17
|
Chen QY, Huang DL, Wang YB, Shao J, Qu LL. Nanosorbcats of methylene blue on novel Fe2O3 nanorods for photocatalytic water oxidation. RSC Adv 2016. [DOI: 10.1039/c6ra16049b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
MB@pfa@Fe2O3 nanorods are efficient recyclable nanosorbcats for LED light driven dioxygen generation using water as oxygen source.
Collapse
Affiliation(s)
- Qiu-Yun Chen
- School of Chemistry and Chemical Engineering
- Zhenjiang
- P. R. China
| | - Dong-liang Huang
- School of Chemistry and Chemical Engineering
- Zhenjiang
- P. R. China
| | - Yin-Bing Wang
- School of Chemistry and Chemical Engineering
- Zhenjiang
- P. R. China
| | - Jian Shao
- School of Chemistry and Chemical Engineering
- Zhenjiang
- P. R. China
| | - Ling-Ling Qu
- School of Chemistry and Chemical Engineering
- Zhenjiang
- P. R. China
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
| |
Collapse
|
18
|
Landaeta VR, Rodríguez-Lugo RE. Catalytic oxygenation of organic substrates: Toward greener ways for incorporating oxygen. Inorganica Chim Acta 2015. [DOI: 10.1016/j.ica.2015.01.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
19
|
Neu HM, Jung J, Baglia RA, Siegler MA, Ohkubo K, Fukuzumi S, Goldberg DP. Light-driven, proton-controlled, catalytic aerobic C-H oxidation mediated by a Mn(III) porphyrinoid complex. J Am Chem Soc 2015; 137:4614-7. [PMID: 25839905 DOI: 10.1021/jacs.5b00816] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The visible light-driven, catalytic aerobic oxidation of benzylic C-H bonds was mediated by a Mn(III) corrolazine complex. To achieve catalytic turnovers, a strict selective requirement for the addition of protons was established. The resting state of the catalyst was unambiguously characterized by X-ray diffraction as [Mn(III)(H2O)(TBP8Cz(H))](+), in which a single, remote site on the ligand is protonated. If two remote sites are protonated, however, reactivity with O2 is shut down. Spectroscopic methods revealed that the related Mn(V)(O) complex is also protonated at the same remote site at -60 °C, but undergoes valence tautomerization upon warming.
Collapse
Affiliation(s)
- Heather M Neu
- †Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Jieun Jung
- ‡Department of Material and Life Science, Graduate School of Engineering, Osaka University, ALCA, Japan Science and Technology Agency, Suita, Osaka 565-0871, Japan
| | - Regina A Baglia
- †Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Maxime A Siegler
- †Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Kei Ohkubo
- ‡Department of Material and Life Science, Graduate School of Engineering, Osaka University, ALCA, Japan Science and Technology Agency, Suita, Osaka 565-0871, Japan
| | - Shunichi Fukuzumi
- ‡Department of Material and Life Science, Graduate School of Engineering, Osaka University, ALCA, Japan Science and Technology Agency, Suita, Osaka 565-0871, Japan.,§Department of Bioinspired Science, Ewha Womans University, Seoul 120-750, Korea
| | - David P Goldberg
- †Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
20
|
Lindhorst AC, Haslinger S, Kühn FE. Molecular iron complexes as catalysts for selective C–H bond oxygenation reactions. Chem Commun (Camb) 2015; 51:17193-212. [DOI: 10.1039/c5cc07146a] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This feature article summarises recent developments in homogeneous C–H bond oxygenation catalysed by molecular iron complexes.
Collapse
Affiliation(s)
- A. C. Lindhorst
- Chair of Inorganic Chemistry/Molecular Catalysis
- Technische Universität München (TUM)
- Department of Chemistry/Catalysis Research Center
- D-85747 Garching bei München
- Germany
| | - S. Haslinger
- Chair of Inorganic Chemistry/Molecular Catalysis
- Technische Universität München (TUM)
- Department of Chemistry/Catalysis Research Center
- D-85747 Garching bei München
- Germany
| | - Fritz E. Kühn
- Chair of Inorganic Chemistry/Molecular Catalysis
- Technische Universität München (TUM)
- Department of Chemistry/Catalysis Research Center
- D-85747 Garching bei München
- Germany
| |
Collapse
|
21
|
Urgoitia G, Maiztegi A, SanMartin R, Herrero MT, Domínguez E. Aerobic oxidation at benzylic positions catalyzed by a simple Pd(OAc)2/bis-triazole system. RSC Adv 2015. [DOI: 10.1039/c5ra22251f] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
An extremely active palladium catalyst system for the aerobic oxidation of benzyl alcohols and benzylic C–H oxidation is described.
Collapse
Affiliation(s)
- Garazi Urgoitia
- Department of Organic Chemistry II
- Faculty of Science and Technology
- University of the Basque Country (UPV-EHU)
- 48940 Leioa
- Spain
| | - Ainhoa Maiztegi
- Department of Organic Chemistry II
- Faculty of Science and Technology
- University of the Basque Country (UPV-EHU)
- 48940 Leioa
- Spain
| | - Raul SanMartin
- Department of Organic Chemistry II
- Faculty of Science and Technology
- University of the Basque Country (UPV-EHU)
- 48940 Leioa
- Spain
| | - María Teresa Herrero
- Department of Organic Chemistry II
- Faculty of Science and Technology
- University of the Basque Country (UPV-EHU)
- 48940 Leioa
- Spain
| | - Esther Domínguez
- Department of Organic Chemistry II
- Faculty of Science and Technology
- University of the Basque Country (UPV-EHU)
- 48940 Leioa
- Spain
| |
Collapse
|
22
|
Aerobic oxidation of secondary alcohols using NHPI and iron salt as catalysts at room temperature. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.molcata.2014.06.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Doble MV, Ward AC, Deuss PJ, Jarvis AG, Kamer PC. Catalyst design in oxidation chemistry; from KMnO4 to artificial metalloenzymes. Bioorg Med Chem 2014; 22:5657-77. [DOI: 10.1016/j.bmc.2014.07.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Revised: 06/27/2014] [Accepted: 07/01/2014] [Indexed: 01/07/2023]
|
24
|
Olivo G, Arancio G, Mandolini L, Lanzalunga O, Di Stefano S. Hydrocarbon oxidation catalyzed by a cheap nonheme imine-based iron(ii) complex. Catal Sci Technol 2014. [DOI: 10.1039/c4cy00626g] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An imine-based iron complex, prepared in situ from iron(ii), pyridine-2-carbaldehyde and 2-aminomethylpyridine, effectively catalyzes hydrocarbon oxidation at low loadings.
Collapse
Affiliation(s)
- Giorgio Olivo
- Dipartimento di Chimica
- Sapienza Università di Roma and Istituto CNR di Metodologie Chimiche (IMC-CNR)
- Sezione Meccanismi di Reazione
- c/o Dipartimento di Chimica
- Sapienza Università di Roma
| | - Giorgio Arancio
- Dipartimento di Chimica
- Sapienza Università di Roma and Istituto CNR di Metodologie Chimiche (IMC-CNR)
- Sezione Meccanismi di Reazione
- c/o Dipartimento di Chimica
- Sapienza Università di Roma
| | - Luigi Mandolini
- Dipartimento di Chimica
- Sapienza Università di Roma and Istituto CNR di Metodologie Chimiche (IMC-CNR)
- Sezione Meccanismi di Reazione
- c/o Dipartimento di Chimica
- Sapienza Università di Roma
| | - Osvaldo Lanzalunga
- Dipartimento di Chimica
- Sapienza Università di Roma and Istituto CNR di Metodologie Chimiche (IMC-CNR)
- Sezione Meccanismi di Reazione
- c/o Dipartimento di Chimica
- Sapienza Università di Roma
| | - Stefano Di Stefano
- Dipartimento di Chimica
- Sapienza Università di Roma and Istituto CNR di Metodologie Chimiche (IMC-CNR)
- Sezione Meccanismi di Reazione
- c/o Dipartimento di Chimica
- Sapienza Università di Roma
| |
Collapse
|