1
|
Trerotola A, Gravina G, Vykhovanets V, Blal N, Guarnieri D, Maranzana A, Lamberti M, Mazzeo M, Strianese M. Fluorescent half-salen phenoxy-imine zinc complexes to reveal exogenous and endogenous H 2S. J Inorg Biochem 2025; 267:112875. [PMID: 40043349 DOI: 10.1016/j.jinorgbio.2025.112875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/16/2025] [Accepted: 02/26/2025] [Indexed: 03/15/2025]
Abstract
In this contribution, the synthesis and the reactivity with HS- of a family of half-salen Zn complexes are reported. We provide evidence that HS- binds the zinc center of all the complexes under investigation. DFT and CCSD(T) calculations were performed to model the reactivity of these complexes with HS-. We successfully applied a homoleptic zinc complex bearing a Schiff-based ligand with pyridine pendant arms as a probe for the monitoring of exogenous and endogenous H2S levels in live cells.
Collapse
Affiliation(s)
- Alessio Trerotola
- Dipartimento di Chimica e Biologia "Adolfo Zambelli" and INSTM Research Unit, Università degli Studi di Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
| | - Giuseppe Gravina
- Dipartimento di Chimica e Biologia "Adolfo Zambelli" and INSTM Research Unit, Università degli Studi di Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
| | - Viktoriia Vykhovanets
- Dipartimento di Chimica e Biologia "Adolfo Zambelli" and INSTM Research Unit, Università degli Studi di Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
| | - Naym Blal
- Dipartimento di Chimica e Biologia "Adolfo Zambelli" and INSTM Research Unit, Università degli Studi di Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
| | - Daniela Guarnieri
- Dipartimento di Chimica e Biologia "Adolfo Zambelli" and INSTM Research Unit, Università degli Studi di Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
| | - Andrea Maranzana
- Dipartimento di Chimica, Università di Torino, via Pietro Giuria 7, I-10125 Torino, TO, Italy
| | - Marina Lamberti
- Dipartimento di Chimica e Biologia "Adolfo Zambelli" and INSTM Research Unit, Università degli Studi di Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
| | - Mina Mazzeo
- Dipartimento di Chimica e Biologia "Adolfo Zambelli" and INSTM Research Unit, Università degli Studi di Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
| | - Maria Strianese
- Dipartimento di Chimica e Biologia "Adolfo Zambelli" and INSTM Research Unit, Università degli Studi di Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy.
| |
Collapse
|
2
|
Tkachenko N, Golovanov V, Penni A, Vesamäki S, Ajayakumar MR, Muranaka A, Kobayashi N, Efimov A. The windmill, the dragon, and the frog: geometry control over the spectral, magnetic, and electrochemical properties of cobalt phthalocyanine regioisomers. Phys Chem Chem Phys 2024; 26:18113-18128. [PMID: 38895861 DOI: 10.1039/d4cp01564a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
For the first time, we have prepared non-aggregating phthalocyanine cobalt complexes as a set of resolved positional isomers. These compounds comprise a unique test bed for the structure-properties studies, as their optical and electrochemical properties are influenced by the planarity of the phthalocyanine macrocycle, which can be controlled by the positional isomerism of the bulky aromatic substituents at the α-phthalo sites. We support our conclusions with molecular modelling studies, which show a perfect match between the calculated and experimentally determined spectral/electrochemical values. We challenge a common perception that the NMR spectra of cobalt phthalocyanines cannot be measured due to the paramagnetic nature of Co(II). We suggest instead that the key factors affecting the NMR spectral resolution are molecular aggregation and π-π stacking. These interactions are suppressed by the bulky peripheral substituents on the cobalt phthalocyanines prepared, making these isomeric compounds an excellent tool for paramagnetic NMR studies.
Collapse
Affiliation(s)
| | - Viacheslav Golovanov
- Tampere University, Korkeakoulunkatu 10, 33720 Tampere, Finland.
- South-Ukrainian National University, Staroportofrankovskaya str. 26, 65020, Odessa, Ukraine
| | - Aleksandr Penni
- Tampere University, Korkeakoulunkatu 10, 33720 Tampere, Finland.
| | - Sami Vesamäki
- Tampere University, Korkeakoulunkatu 10, 33720 Tampere, Finland.
| | - M R Ajayakumar
- Tampere University, Korkeakoulunkatu 10, 33720 Tampere, Finland.
| | - Atsuya Muranaka
- Molecular Structure Characterization Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Nagao Kobayashi
- Faculty of Textile Science and Technology, Shinshu University, Ueda 386-8567, Japan
| | - Alexander Efimov
- Tampere University, Korkeakoulunkatu 10, 33720 Tampere, Finland.
| |
Collapse
|
3
|
Fosnacht KG, Pluth MD. Activity-Based Fluorescent Probes for Hydrogen Sulfide and Related Reactive Sulfur Species. Chem Rev 2024; 124:4124-4257. [PMID: 38512066 PMCID: PMC11141071 DOI: 10.1021/acs.chemrev.3c00683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Hydrogen sulfide (H2S) is not only a well-established toxic gas but also an important small molecule bioregulator in all kingdoms of life. In contemporary biology, H2S is often classified as a "gasotransmitter," meaning that it is an endogenously produced membrane permeable gas that carries out essential cellular processes. Fluorescent probes for H2S and related reactive sulfur species (RSS) detection provide an important cornerstone for investigating the multifaceted roles of these important small molecules in complex biological systems. A now common approach to develop such tools is to develop "activity-based probes" that couple a specific H2S-mediated chemical reaction to a fluorescent output. This Review covers the different types of such probes and also highlights the chemical mechanisms by which each probe type is activated by specific RSS. Common examples include reduction of oxidized nitrogen motifs, disulfide exchange, electrophilic reactions, metal precipitation, and metal coordination. In addition, we also outline complementary activity-based probes for imaging reductant-labile and sulfane sulfur species, including persulfides and polysulfides. For probes highlighted in this Review, we focus on small molecule systems with demonstrated compatibility in cellular systems or related applications. Building from breadth of reported activity-based strategies and application, we also highlight key unmet challenges and future opportunities for advancing activity-based probes for H2S and related RSS.
Collapse
Affiliation(s)
- Kaylin G. Fosnacht
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, and Institute of Molecular Biology, University of Oregon, Eugene, Oregon, 97403-1253, United States
| | - Michael D. Pluth
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, and Institute of Molecular Biology, University of Oregon, Eugene, Oregon, 97403-1253, United States
| |
Collapse
|
4
|
Wang A, Mao Y, Chen X, Lu L, Jiang C, Lu H. A purine-based fluorescent probe for H 2S detection and imaging of cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 308:123674. [PMID: 38042125 DOI: 10.1016/j.saa.2023.123674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/16/2023] [Accepted: 11/20/2023] [Indexed: 12/04/2023]
Abstract
Hydrogen sulfide (H2S) is a gas with a toxic odor that plays an irreplaceable role in physiological activities within the mammalian body. Therefore, it is important to do the distribution and quantitative detection of H2S in mammalian cells. In this paper, a fluorescence probe (EDPH) based on purine scaffold was designed and synthesized with high sensitivity and good selectivity. H2S induced ether bond breakage in EDPH, resulting in a significant redshift of the absorption band (from 370 nm to 500 nm) with a Stokes shift of 130 nm. After the addition of H2S, the fluorescence intensity of EDPH showed a good linear correlation with the concentration of H2S, which enabled the quantitative detection of H2S with a low limit of detection (41 nM). Finally, the EDPH was applied to the cellular Hele, and the probe has good cellularity imaging capability for the detection of H2S in living systems.
Collapse
Affiliation(s)
- Anguan Wang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, 212000 Zhenjiang, China
| | - Yanxia Mao
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, 212000 Zhenjiang, China
| | - Xu Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, 212000 Zhenjiang, China
| | - Linchuan Lu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, 212000 Zhenjiang, China
| | - Chunhui Jiang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, 212000 Zhenjiang, China.
| | - Hongfei Lu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, 212000 Zhenjiang, China.
| |
Collapse
|
5
|
Andrés CMC, Pérez de la Lastra JM, Andrés Juan C, Plou FJ, Pérez-Lebeña E. Chemistry of Hydrogen Sulfide-Pathological and Physiological Functions in Mammalian Cells. Cells 2023; 12:2684. [PMID: 38067112 PMCID: PMC10705518 DOI: 10.3390/cells12232684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/02/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
Hydrogen sulfide (H2S) was recognized as a gaseous signaling molecule, similar to nitric oxide (-NO) and carbon monoxide (CO). The aim of this review is to provide an overview of the formation of hydrogen sulfide (H2S) in the human body. H2S is synthesized by enzymatic processes involving cysteine and several enzymes, including cystathionine-β-synthase (CBS), cystathionine-γ-lyase (CSE), cysteine aminotransferase (CAT), 3-mercaptopyruvate sulfurtransferase (3MST) and D-amino acid oxidase (DAO). The physiological and pathological effects of hydrogen sulfide (H2S) on various systems in the human body have led to extensive research efforts to develop appropriate methods to deliver H2S under conditions that mimic physiological settings and respond to various stimuli. These functions span a wide spectrum, ranging from effects on the endocrine system and cellular lifespan to protection of liver and kidney function. The exact physiological and hazardous thresholds of hydrogen sulfide (H2S) in the human body are currently not well understood and need to be researched in depth. This article provides an overview of the physiological significance of H2S in the human body. It highlights the various sources of H2S production in different situations and examines existing techniques for detecting this gas.
Collapse
Affiliation(s)
| | - José Manuel Pérez de la Lastra
- Institute of Natural Products and Agrobiology, CSIC-Spanish Research Council, Avda. Astrofísico Fco. Sánchez, 3, 38206 La Laguna, Spain
| | - Celia Andrés Juan
- Cinquima Institute and Department of Organic Chemistry, Faculty of Sciences, Valladolid University, Paseo de Belén, 7, 47011 Valladolid, Spain;
| | - Francisco J. Plou
- Institute of Catalysis and Petrochemistry, CSIC-Spanish Research Council, 28049 Madrid, Spain;
| | | |
Collapse
|
6
|
Wang T, Huang X, Yang S, Hu S, Zheng X, Mao G, Li Y, Zhou Y. Monitoring H 2S fluctuation during autophagic fusion of lysosomes and mitochondria using a lysosome-targeting fluorogenic probe. Anal Chim Acta 2023; 1265:341356. [PMID: 37230562 DOI: 10.1016/j.aca.2023.341356] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/27/2023]
Abstract
Hydrogen sulfide (H2S) plays a cytoprotective role during mitophagy by detoxifying superfluous reactive oxygen species (ROS), and its concentration fluctuates in this process. However, no work has been reported to reveal the variation in H2S levels during autophagic fusion of lysosomes and mitochondria. Herein, we present a lysosome-targeted fluorogenic probe, named NA-HS, for real-time monitoring of H2S fluctuation for the first time. The newly synthesized probe exhibits good selectivity and high sensitivity (detection limit of 23.6 nM). Fluorescence imaging results demonstrated that NA-HS could image exogenous and endogenous H2S in living cells. Interestingly, the colocalization results revealed that the level of H2S was upregulated after autophagy began because of the cytoprotective effect, and was finally gradually reduced during subsequent autophagic fusion. This work not only affords a powerful fluorescence tool to monitor the variations in H2S levels during mitophagy, but also offers new insights into targeting small molecules for elaborating the complex cellular signal pathways.
Collapse
Affiliation(s)
- Taoyun Wang
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha, 410114, PR China
| | - Xu Huang
- Department of Cardiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Sheng Yang
- Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, PR China
| | - Shan Hu
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha, 410114, PR China
| | - Xianglan Zheng
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, School of Chemistry and Chemical Engineering, Ministry of Education, Hunan University of Science and Technology, Xiangtan, 411201, PR China
| | - Guojiang Mao
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, PR China
| | - Yi Li
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, School of Chemistry and Chemical Engineering, Ministry of Education, Hunan University of Science and Technology, Xiangtan, 411201, PR China.
| | - Yibo Zhou
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha, 410114, PR China.
| |
Collapse
|
7
|
Strianese M, Ferrara G, Vykhovanets V, Blal N, Guarnieri D, Landi A, Lamberti M, Peluso A, Pellecchia C. Sol-Gel Dipping Devices for H 2S Visualization. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23042023. [PMID: 36850620 PMCID: PMC9965526 DOI: 10.3390/s23042023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/08/2023] [Accepted: 02/08/2023] [Indexed: 05/14/2023]
Abstract
In this contribution we report the synthesis and full characterization, via a combination of different spectroscopies (e.g., 1H NMR, UV-vis, fluorescence, MALDI), of a new family of fluorescent zinc complexes with extended π-conjugated systems, with the final aim of setting up higher performance H2S sensing devices. Immobilization of the systems into a polymeric matrix for use in a solid-state portable device was also explored. The results provided proof-of-principle that the title complexes could be successfully implemented in a fast, simple and cost-effective H2S sensing device.
Collapse
|
8
|
Development of dual-fluorophore and dual-site multifunctional fluorescent probe for detecting HClO and H2S based on rhodamine-coumarin units. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Wang M, Gu X, Chen J, Yang X, Cheng P, Xu K. A novel near-infrared colorimetric-fluorescent probe for hydrogen sulfide and application in bioimaging. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Jothi D, Iyer SK. A highly sensitive naphthalimide based fluorescent “turn-on” sensor for H2S and its bio-imaging applications. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.113802] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
11
|
Paper-Strip-Based Sensors for H 2S Detection: A Proof-of-Principle Study. SENSORS 2022; 22:s22093173. [PMID: 35590862 PMCID: PMC9103406 DOI: 10.3390/s22093173] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/17/2022] [Accepted: 04/19/2022] [Indexed: 12/10/2022]
Abstract
In this work, the authors explored the interaction of a suite of fluorescent zinc complexes with H2S. The authors provide evidence that HS− binds the zinc center of all the complexes under investigation, allowing them to possibly function as sensors by a ‘coordinative-based’ approach. Naked-eye color changes occur when treating the systems with HS−, so the fluorescence responses are modulated by the presence of HS−, which has been related to a change in the energy level and coupling of excited states through a computational study. The results show the potential of the systems to function as HS−/H2S colorimetric and fluorescent sensors. Paper-strip-based sensing experiments foresee the potential of using this family of complexes as chemosensors of HS− in more complex biological fluids.
Collapse
|
12
|
Biradha K, Saha S, Maity K, Roy PK, Mandal M. Comparative Study of Nitro and Azide Functionalized Zn(II) based Coordination Polymers as Fluorescent Turn-on Probes for Rapid and Selective Detection of H2S in Living Cells. Chemistry 2021; 28:e202103830. [PMID: 34936721 DOI: 10.1002/chem.202103830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Indexed: 11/10/2022]
Abstract
Selective Detection of H 2 S in cellular system using fluorescent CPs/MOFs is of great scientific interest due to their outstanding aqueous stability, biocompatibility and real-time detection ability. Fabrication of such materials using complete biologically essential elements and applying them as an efficient biosensors is still quite challenging. In this context, we present two newly synthesized CPs containing biologically essential metal ion (Zn) and nitro/azido functional group on the framework to sense extracellular and intracellular H 2 S by reducing into respective amines. The CP- 1 containing the azide group acted as an efficient fluorencent turn-on probe with lowest detection limit (7.2 µM) and shortest response time (30 sec) among the Zn-based probes reported till date. Moreover, CP-1 exhibited green luminescence in live cells after imaging very low concentration of H 2 S, while the nitro analogue, CP-2, couldn't detect the target analyte due to it's framework disruption.
Collapse
Affiliation(s)
- Kumar Biradha
- Indian Institute of Technology, Chemistry, Department of Chemistry, 721320, Kharagpur, INDIA
| | - Subhajit Saha
- Indian Institute of Technology Kharagpur, Chemistry, INDIA
| | - Kartik Maity
- Indian Institute of Technology Kharagpur, Chemistry, INDIA
| | | | | |
Collapse
|
13
|
Strianese M, Brenna S, Attilio Ardizzoia G, Guarnieri D, Lamberti M, D'Auria I, Pellecchia C. Imidazo-pyridine-based zinc(II) complexes as fluorescent hydrogen sulfide probes. Dalton Trans 2021; 50:17075-17085. [PMID: 34779449 DOI: 10.1039/d1dt02489b] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this work we explore the interaction of HS- with a family of fluorescent zinc complexes. In particular we selected a family of complexes with N,O-bidentate ligands aiming at assessing whether the zinc-chelating ligand plays a role in influencing the reactivity of HS- with the complexes under investigation. Different experiments, performed by diverse spectroscopic techniques, provide evidence that HS- binds the zinc center of all the complexes included in this study. The results highlight the potential of the devised systems to be used as HS-/H2S fluorescent sensors via a coordinative-based approach. To shed light on the species formed in solution when HS-/H2S interacts with the title complexes and aiming to rationalize the photophysical properties of the sensing constructs, we performed a computational analysis based on the time dependent density functional theory (TD-DFT). Preliminary bio-imaging experiments were also performed and the results indicate the potential of this class of compounds as probes for the detection of H2S in living cells.
Collapse
Affiliation(s)
- Maria Strianese
- Dipartimento di Chimica e Biologia "Adolfo Zambelli", Università degli Studi di Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy.
| | - Stefano Brenna
- Dipartimento di Scienza e Alta tecnologia, Università dell'Insubria and CIRCC, via Valleggio, 9, 22100 Como, Italy
| | - G Attilio Ardizzoia
- Dipartimento di Scienza e Alta tecnologia, Università dell'Insubria and CIRCC, via Valleggio, 9, 22100 Como, Italy
| | - Daniela Guarnieri
- Dipartimento di Chimica e Biologia "Adolfo Zambelli", Università degli Studi di Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy.
| | - Marina Lamberti
- Dipartimento di Chimica e Biologia "Adolfo Zambelli", Università degli Studi di Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy.
| | - Ilaria D'Auria
- Dipartimento di Chimica e Biologia "Adolfo Zambelli", Università degli Studi di Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy.
| | - Claudio Pellecchia
- Dipartimento di Chimica e Biologia "Adolfo Zambelli", Università degli Studi di Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy.
| |
Collapse
|
14
|
Patra A, Chakraborty S, Lohar S, Zangrando E, Chattopadhyay P. A phenolato-bridged dinuclear Ni(II) complex for selective fluorescent sensing of oxalate in aqueous medium. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Strianese M, Pappalardo D, Mazzeo M, Lamberti M, Pellecchia C. The contribution of metalloporphyrin complexes in molecular sensing and in sustainable polymerization processes: a new and unique perspective. Dalton Trans 2021; 50:7898-7916. [PMID: 33999066 DOI: 10.1039/d1dt00841b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review highlights the recent developments in the field of metalloporphyrins as optical probes for biologically relevant molecules, such as nitric oxide (NO) and hydrogen sulfide (H2S), and as catalysts for the preparation of sustainable polymers such as polyesters, by the ring-opening polymerization (ROP) of cyclic esters and the ring-opening co-polymerization (ROCOP) of epoxides and anhydrides, and polycarbonates by the chemical fixation of carbon dioxide (CO2). The great potential of porphyrins is mainly due to the possibility of making various synthetic modifications to the porphyrin ring, such as modifying the coordinated metal, peripheral substituents, or even the molecular skeleton. Due to the strict structure-property relationships, one can use porphyrinoids in several different applications such as, for instance, activation of molecular oxygen or catalysis of photosynthetic processes. These possibilities broaden the application of porphyrins in several different fields of research, further mimicking what nature does. In this context, here, we want to provide evidence for the great flexibility of metalloporphyrins by presenting an overview of results obtained by us and others in the research fields we are currently involved in. More specifically, we report a survey of our most significant achievements regarding their use as optical probes in the context of the results reported in the literature from other research groups, and of the use of porphyrin metal(iii) complexes as catalysts for sustainable polymerization processes. As for the optical probe section, in addition to the metalloporphyrins synthesized ad hoc in the laboratory, the present work also covers the natural proteins containing a porphyrin core.
Collapse
Affiliation(s)
- Maria Strianese
- Dipartimento di Chimica e Biologia "Adolfo Zambelli", Università degli Studi di Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy.
| | - Daniela Pappalardo
- Università del Sannio, Dipartimento di Scienze e Tecnologie, via de Sanctis, 82100, Benevento, Italy
| | - Mina Mazzeo
- Dipartimento di Chimica e Biologia "Adolfo Zambelli", Università degli Studi di Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy.
| | - Marina Lamberti
- Dipartimento di Chimica e Biologia "Adolfo Zambelli", Università degli Studi di Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy.
| | - Claudio Pellecchia
- Dipartimento di Chimica e Biologia "Adolfo Zambelli", Università degli Studi di Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy.
| |
Collapse
|
16
|
Man RJ, Wu MK, Yang B, Yang YS. A Novel Fluorescent Probe for Selective Detection of Hydrazine and Its Application in Imaging. BIOSENSORS-BASEL 2021; 11:bios11050130. [PMID: 33922028 PMCID: PMC8143562 DOI: 10.3390/bios11050130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/15/2021] [Accepted: 04/18/2021] [Indexed: 11/17/2022]
Abstract
In this work, a novel fluorescent probe with first-time-selected thiazepine backbone, TZPzine-1, was developed for selective detection of hydrazine in water samples and living cells. Chosen from our recent anti-cancer agents, TZPzine-1 inferred structurally based advantages of the optical adjustability and the hydrazine-trapping approach. It also showed applicable properties including high sensitivity (LOD = 50 nM), wide linear range (0–15 equiv.), high selectivity (especially from competing species), rapid response (within 20 min), and practical steadiness in various pH (6.0–11.0) and temperature (15–50 °C) conditions. To satisfy the interdisciplinary requirements in environmental toxicology, TZPzine-1 was successfully applied in water samples and living cells. We hope that the information in this work, as well as the concept of monitoring the nitrogen cycle, may be referable for future research on systematic management.
Collapse
Affiliation(s)
- Ruo-Jun Man
- Guangxi Biological Polysaccharide Separation, Purification and Modification Research Platform, Guangxi University for Nationalities, Nanning 530006, China;
- Correspondence: (R.-J.M.); (B.Y.); (Y.-S.Y.); Tel.: +86-258-968-2572 (Y.-S.Y.)
| | - Meng-Ke Wu
- Guangxi Biological Polysaccharide Separation, Purification and Modification Research Platform, Guangxi University for Nationalities, Nanning 530006, China;
| | - Bing Yang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
- Correspondence: (R.-J.M.); (B.Y.); (Y.-S.Y.); Tel.: +86-258-968-2572 (Y.-S.Y.)
| | - Yu-Shun Yang
- Research Centre of Sensors and Functional Materials, Hi-Techjig Co. Ltd., Zhenjiang 212415, China
- Correspondence: (R.-J.M.); (B.Y.); (Y.-S.Y.); Tel.: +86-258-968-2572 (Y.-S.Y.)
| |
Collapse
|
17
|
Hao C, Guo X, Lai Q, Li Y, Fan B, Zeng G, He Z, Wu J. Peptide-based fluorescent chemical sensors for the specific detection of Cu2+ and S2−. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119943] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
18
|
Strianese M, Guarnieri D, Lamberti M, Landi A, Peluso A, Pellecchia C. Fluorescent salen-type Zn(II) Complexes As Probes for Detecting Hydrogen Sulfide and Its Anion: Bioimaging Applications. Inorg Chem 2020; 59:15977-15986. [PMID: 33047602 PMCID: PMC8015222 DOI: 10.1021/acs.inorgchem.0c02499] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Indexed: 12/11/2022]
Abstract
In this work, we investigate the mode of interaction of a family of fluorescent zinc complexes with HS- and H2S. Different experiments, performed by diverse spectroscopic techniques, provide evidence that HS- binds the zinc center of all the complexes under investigation. Treatment with neutral H2S exhibits a markedly different reactivity which indicates selectivity for HS- over H2S of the systems under investigation. Striking color changes, visible to the naked eye, occur when treating the systems with HS- or by an H2S flow. Accordingly, also the fluorescence is modulated by the presence of HS-, with the possible formation of multiple adducts. The results highlight the potential of the devised systems to be implemented as HS-/H2S colorimetric and fluorescent sensors. Bioimaging experiments indicate the potential of using this class of compounds as probes for the detection of H2S in living cells.
Collapse
Affiliation(s)
- Maria Strianese
- Dipartimento di Chimica e
Biologia “Adolfo Zambelli”, Università degli Studi di Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy
| | - Daniela Guarnieri
- Dipartimento di Chimica e
Biologia “Adolfo Zambelli”, Università degli Studi di Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy
| | - Marina Lamberti
- Dipartimento di Chimica e
Biologia “Adolfo Zambelli”, Università degli Studi di Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy
| | - Alessandro Landi
- Dipartimento di Chimica e
Biologia “Adolfo Zambelli”, Università degli Studi di Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy
| | - Andrea Peluso
- Dipartimento di Chimica e
Biologia “Adolfo Zambelli”, Università degli Studi di Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy
| | - Claudio Pellecchia
- Dipartimento di Chimica e
Biologia “Adolfo Zambelli”, Università degli Studi di Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy
| |
Collapse
|
19
|
Ghosh T, Mishra S. A natural cyanobacterial protein C-phycoerythrin as an HS - selective optical probe in aqueous systems. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 239:118469. [PMID: 32450537 DOI: 10.1016/j.saa.2020.118469] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/07/2020] [Accepted: 05/09/2020] [Indexed: 06/11/2023]
Abstract
A naturally fluorescent cyanobacterial protein C-phycoerythrin (CPE) was investigated as a fluorescent probe for biologically and environmentally important hydrosulphide (HS-) ion. It was selective for HS amongst a large anion screen and the optical response was rapid. Sequential UV-visible titration showed considerable peak shift and attenuation with increasing [HS-] while fluorescence titration proved that HS- quenched CPE fluorescence in a concentration dependent manner. The linear response range was 0-2 mM HS- while the Stern Volmer curve was non-linear and the limit of detection was 185.12 μM. Except bicarbonate and glycine, no anion or biomolecule interfered with the detection even at 10 times the concentration of HS-. It was also free of influences from other sulphur forms like sulphite, sulphate and thiosulphate. CPE reliably detected HS- in freshwater and effluent samples, though some under- and over - estimation was evident. The % recovery ranged from ~96 to 105% (RSD ~ 0.035-0.188%). FTIR analysis showed significant changes in the amide I and II regions of CPE, along with minor modifications in the amide III region as well, showing that HS- was able to influence the protein secondary structure at higher concentrations.
Collapse
Affiliation(s)
- Tonmoy Ghosh
- Applied Phycology and Biotechnology Division, CSIR - Central Salt and Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar 364002, Gujarat, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Sandhya Mishra
- Applied Phycology and Biotechnology Division, CSIR - Central Salt and Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar 364002, Gujarat, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India.
| |
Collapse
|
20
|
Strianese M, Lamberti M, Persico A, Pellecchia C. Reactivity of monohydrogensulfide with a suite of pyridoxal-based complexes: A combined NMR, ESI-MS, UV–visible and fluorescence study. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2019.119235] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
21
|
A dual-mode fluorescent probe for the separate detection of mercury(II) and hydrogen sulfide. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2019.112209] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
22
|
Pluth MD, Tonzetich ZJ. Hydrosulfide complexes of the transition elements: diverse roles in bioinorganic, cluster, coordination, and organometallic chemistry. Chem Soc Rev 2020; 49:4070-4134. [DOI: 10.1039/c9cs00570f] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Molecules containing transition metal hydrosulfide linkages are diverse, spanning a variety of elements, coordination environments, and redox states, and carrying out multiple roles across several fields of chemistry.
Collapse
Affiliation(s)
- Michael D. Pluth
- Department of Chemistry and Biochemistry
- Materials Science Institute
- Knight Campus for Accelerating Scientific Impact
- Institute of Molecular Biology
- University of Oregon
| | | |
Collapse
|
23
|
Wang X, Zhao H, Chen Z, Luo F, Guo L, Qiu B, Lin Z, Wang J. A homogeneous photoelectrochemical hydrogen sulfide sensor based on the electronic transfer mediated by tetrasulfophthalocyanine. Analyst 2020; 145:3543-3548. [DOI: 10.1039/d0an00302f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A homogeneous photoelectrochemical sensor for H2S detection based on the electronic transfer mediated by [Fe(iii)PcS4]+was developed with an un-modified photoelectrode.
Collapse
Affiliation(s)
- Xinyang Wang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology
- Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety
- Department of Chemistry
- Fuzhou University
- Fuzhou
| | - Huanan Zhao
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology
- Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety
- Department of Chemistry
- Fuzhou University
- Fuzhou
| | - Zhonghui Chen
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology
- Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety
- Department of Chemistry
- Fuzhou University
- Fuzhou
| | - Fang Luo
- College of Biological Science and Engineering
- Fuzhou University
- Fuzhou
- China
| | - Longhua Guo
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology
- Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety
- Department of Chemistry
- Fuzhou University
- Fuzhou
| | - Bin Qiu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology
- Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety
- Department of Chemistry
- Fuzhou University
- Fuzhou
| | - Zhenyu Lin
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology
- Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety
- Department of Chemistry
- Fuzhou University
- Fuzhou
| | - Jian Wang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology
- Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety
- Department of Chemistry
- Fuzhou University
- Fuzhou
| |
Collapse
|
24
|
Kumar V, Kumar P, Kumar S, Singhal D, Gupta R. Turn-On Fluorescent Sensors for the Selective Detection of Al 3+ (and Ga 3+) and PPi Ions. Inorg Chem 2019; 58:10364-10376. [PMID: 31342750 DOI: 10.1021/acs.inorgchem.9b01550] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Rationally designed multiple hydroxyl-group-based chemosensors L1-L4 containing arene-based fluorophores are presented for the selective detection of Al3+ and Ga3+ ions. Changes in the absorption and emission spectra of L1-L4 in ethanol were easily observable upon the addition of Al3+ and Ga3+ ions. Competitive binding studies, detection limits, and binding constants illustrate significant sensing abilities of these chemosensors with L4, showing the best results. The interaction of Al3+/Ga3+ ions with chemosensor L4 was investigated by fluorescence lifetime measurements, whereas Job's plot, high-resolution mass spectrometry, and 1H NMR spectral titrations substantiated the stoichiometry between L4 and Al3+/Ga3+ ions. The solution-generated [L-M3+] species further detected pyrophosphate ion (PPi) by exhibiting emission enhancement and a visible color change. The binding of Al3+/Ga3+ ions with chemosensor L4 was further supported by density functional theory studies. Reversibility for the detection of Al3+/Ga3+ ions was achieved by utilizing a suitable proton source. The multiionic response, reversibility, and optical visualization of the present chemosensors make them ideal for practical applications for real samples, which have been illustrated by paper-strip as well as polystyrene film-based detection.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Chemistry , University of Delhi , New Delhi 110007 , India
| | - Pramod Kumar
- Department of Chemistry , University of Delhi , New Delhi 110007 , India
| | - Sushil Kumar
- Department of Chemistry , University of Delhi , New Delhi 110007 , India
| | - Divya Singhal
- Department of Chemistry , University of Delhi , New Delhi 110007 , India
| | - Rajeev Gupta
- Department of Chemistry , University of Delhi , New Delhi 110007 , India
| |
Collapse
|
25
|
A dual-function fluorescent probe for discriminative detection of hydrogen sulfide and hydrazine. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2019.03.039] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
26
|
Dance I. How feasible is the reversible S-dissociation mechanism for the activation of FeMo-co, the catalytic site of nitrogenase? Dalton Trans 2019; 48:1251-1262. [PMID: 30607401 DOI: 10.1039/c8dt04531c] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The active site of the enzyme nitrogenase (N2→ NH3) is a Fe7MoS9C cluster that contains three doubly-bridging μ-S atoms around a central belt. A vanadium nitrogenase variant has a slightly different cluster, containing two μ-S atoms. Recent crystal structures have revealed substitution of one μ-S (S2B, bridging Fe2 and Fe6), by CO in Mo-nitrogenase and an uncertain light atom in V-nitrogenase. These systems retained catalytic activity, and were able to recover the lost μ-S atom. Electron density attributed to the dissociated S is displaced by 7 Å in the crystal structure of the non-standard V-protein. The hypothesis arising from these observations is that the chemical mechanism of nitrogenase involves reversible dissociation of S2B, leaving Fe2 and Fe6 seriously under-coordinated and reactive in trapping N2 and binding reaction intermediates. Accumulated experimental evidence points to the Fe2-S2B-Fe6 domain as the centre of catalytic hydrogenation of N2. Using DFT simulations of a large model (>488 atoms) containing all relevant surrounding protein residues, I have investigated the chemical steps that could allow dissociation of S2B. The participation of H atoms is crucial, as is involvement of the nearby side chain of His195 that can function as proton donor to S2B and hydrogen-bonding supporter of displaced S2B. A significant result is that after ingress and binding of N2 at Fe2 the breaking of the Fe2-S2B bond can be strongly exergonic with negligible kinetic barrier. Subsequent extension of the Fe6-S2B bond and dissociation as H2S (or SH-) is endergonic by 20-25 kcal mol-1, partly because the separating H2S is restricted by surrounding amino-acids. I present a number of reaction sequences and energy landscapes, and derive thirteen chemical principles relevant to the postulated S-dissociation mechanism. A key conclusion is that unhooking of S2BH or S2BH2 from Fe2 is favourable, likely, and propitious for subsequent H transfer to bound N2 or reaction intermediates. The space between Fe2 and Fe6 supports two bridging ligands, and another H atom on Fe6 can move without kinetic barrier to occupy the bridging position vacated by S2B.
Collapse
Affiliation(s)
- Ian Dance
- School of Chemistry, UNSW Sydney, Sydney 2000, Australia.
| |
Collapse
|
27
|
Weak coordination of H2S to the solid-state ferrous porphyrin complexes with diatomic molecules. Characterization of 6-coordinate adducts at low temperature. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2018.07.044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
28
|
Strianese M, Lamberti M, Pellecchia C. Chemically reversible binding of H 2S to a zinc porphyrin complex: towards implementation of a reversible sensor via a "coordinative-based approach". Dalton Trans 2018; 46:1872-1877. [PMID: 28102393 DOI: 10.1039/c6dt04753j] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Binding of hydrogen sulfide (H2S) to a zinc porphyrin complex and the stabilization of the related zinc hydrosulfido adduct are explored. High-resolution MALDI Fourier transform ion cyclotron resonance mass spectrometry (HR MALDI-FT-ICR) and 1H NMR experiments provide evidence that HS- coordination occurs at the zinc centre. The coordination of HS- occurs in a reversible manner and modulates fluorescence emission of a tetra(N-methylpyridyl)porphine zinc complex (TMPyPZn). The results highlight the potential of TMPyPZn and related systems for the implementation of fast and simple H2S sensors via a coordinative-based approach.
Collapse
Affiliation(s)
- Maria Strianese
- Dipartimento di Chimica e Biologia "Adolfo Zambelli", Università degli Studi di Salerno Via Giovanni Paolo II, 132 84084 Fisciano (SA), Italy.
| | - Marina Lamberti
- Dipartimento di Fisica "E. Caianiello", Università degli Studi di Salerno Via Giovanni Paolo II, 132 84084 Fisciano (SA), Italy
| | - Claudio Pellecchia
- Dipartimento di Chimica e Biologia "Adolfo Zambelli", Università degli Studi di Salerno Via Giovanni Paolo II, 132 84084 Fisciano (SA), Italy.
| |
Collapse
|
29
|
Strianese M, Lamberti M, Pellecchia C. Interaction of monohydrogensulfide with a family of fluorescent pyridoxal-based Zn(ii) receptors. Dalton Trans 2018; 47:17392-17400. [DOI: 10.1039/c8dt03969k] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We studied the reactivity of HS− with a family of fluorescent zinc complexes. In the case of complexes 1 and 3, we have evidence that the interaction with HS− results in the displacement of the coordinated ligand from the Zn center. For complex 2, our data points to the coordination of HS− to the metal center likely assisted by hydrogen bondings with the OH of the pyridoxal moiety.
Collapse
Affiliation(s)
- Maria Strianese
- Dipartimento di Chimica e Biologia “Adolfo Zambelli”
- Università degli Studi di Salerno
- 84084 Fisciano (SA)
- Italy
| | - Marina Lamberti
- Dipartimento di Chimica e Biologia “Adolfo Zambelli”
- Università degli Studi di Salerno
- 84084 Fisciano (SA)
- Italy
| | - Claudio Pellecchia
- Dipartimento di Chimica e Biologia “Adolfo Zambelli”
- Università degli Studi di Salerno
- 84084 Fisciano (SA)
- Italy
| |
Collapse
|
30
|
Kumar P, Kumar V, Pandey S, Gupta R. Detection of sulfide ion and gaseous H2S using a series of pyridine-2,6-dicarboxamide based scaffolds. Dalton Trans 2018; 47:9536-9545. [DOI: 10.1039/c8dt01351a] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This work presents a series of pyridine-2,6-dicarboxamide based scaffolds with different appendages and their roles as chemosensors for the selective detection of S2− ion, as well as gaseous H2S, in primarily aqueous media.
Collapse
Affiliation(s)
- Pramod Kumar
- Department of Chemistry
- University of Delhi
- Delhi 110 007
- India
| | - Vijay Kumar
- Department of Chemistry
- University of Delhi
- Delhi 110 007
- India
| | - Saurabh Pandey
- Department of Chemistry
- University of Delhi
- Delhi 110 007
- India
| | - Rajeev Gupta
- Department of Chemistry
- University of Delhi
- Delhi 110 007
- India
| |
Collapse
|
31
|
Mirra S, Strianese M, Pellecchia C. A Cyclam-Based Fluorescent Ligand as a Molecular Beacon for Cu2+
and H2
S Detection. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201700623] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Silvia Mirra
- Dipartimento di Chimica e Biologia “Adolfo Zambelli”; Università degli Studi di Salerno; Via Giovanni Paolo II, 132 84084 Fisciano SA Italy
| | - Maria Strianese
- Dipartimento di Chimica e Biologia “Adolfo Zambelli”; Università degli Studi di Salerno; Via Giovanni Paolo II, 132 84084 Fisciano SA Italy
| | - Claudio Pellecchia
- Dipartimento di Chimica e Biologia “Adolfo Zambelli”; Università degli Studi di Salerno; Via Giovanni Paolo II, 132 84084 Fisciano SA Italy
| |
Collapse
|
32
|
Yang XF, Zhu HB, Liu M. Transition-metal-based (Zn2+ and Cd2+) metal-organic frameworks as fluorescence “turn-off” sensors for highly sensitive and selective detection of hydrogen sulfide. Inorganica Chim Acta 2017. [DOI: 10.1016/j.ica.2017.06.067] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
33
|
Strianese M, Mirra S, Lamberti M, Pellecchia C. Zinc (II) porphyrins as viable scaffolds to stabilize hydrogen sulfide binding at the metal center. Inorganica Chim Acta 2017. [DOI: 10.1016/j.ica.2017.06.069] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
34
|
|
35
|
Hartle MD, Tillotson MR, Prell JS, Pluth MD. Spectroscopic investigation of the reaction of metallo-protoporphyrins with hydrogen sulfide. J Inorg Biochem 2017; 173:152-157. [PMID: 28551529 DOI: 10.1016/j.jinorgbio.2017.04.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 04/10/2017] [Accepted: 04/23/2017] [Indexed: 11/16/2022]
Abstract
Hydrogen sulfide (H2S) is the most recently discovered gasotransmitter molecule joining nitric oxide and carbon monoxide. In addition to being biologically important gases, these gasotransmitters also provide distinct modes of reactivity with biomimetic metal complexes. The majority of previous investigations on the reactivity of H2S with bioinorganic models have focused on Fe-based porphyrin systems, whereas investigations with other metals remains underinvestigated. To address this gap, we report here an examination of the reactions of H2S, HS-, and S8 with MgII, CuII, CoII, ZnII, CrII, SnIV, and MnII/III protoporphyrins.
Collapse
Affiliation(s)
- Matthew D Hartle
- Department of Chemistry & Biochemistry, Materials Science Institute, Institute of Molecular Biology, University of Oregon, Eugene, OR 97403-1253, USA
| | - McKinna R Tillotson
- Department of Chemistry & Biochemistry, Materials Science Institute, Institute of Molecular Biology, University of Oregon, Eugene, OR 97403-1253, USA
| | - James S Prell
- Department of Chemistry & Biochemistry, Materials Science Institute, Institute of Molecular Biology, University of Oregon, Eugene, OR 97403-1253, USA
| | - Michael D Pluth
- Department of Chemistry & Biochemistry, Materials Science Institute, Institute of Molecular Biology, University of Oregon, Eugene, OR 97403-1253, USA.
| |
Collapse
|
36
|
Hartle MD, Delgado M, Gilbertson JD, Pluth MD. Stabilization of a Zn(ii) hydrosulfido complex utilizing a hydrogen-bond accepting ligand. Chem Commun (Camb) 2016; 52:7680-2. [DOI: 10.1039/c6cc01373b] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Inclusion of a hydrogen bond accepting motif in the secondary coordination sphere of a pyridinediimine ligand enables formation of a stable Zn–SH adduct. We report here reversible coordination of HS− to Zn(didpa)Cl2 to form [Zn(didpa)Cl2SH]−, which is stabilized by an intramolecular hydrogen bond.
Collapse
Affiliation(s)
- Matthew D. Hartle
- Department of Chemistry and Biochemistry
- Materials Science Institute
- Institute of Molecular Biology
- University of Oregon
- Eugene
| | - Mayra Delgado
- Department of Chemistry
- Western Washington University
- Bellingham
- USA
| | | | - Michael D. Pluth
- Department of Chemistry and Biochemistry
- Materials Science Institute
- Institute of Molecular Biology
- University of Oregon
- Eugene
| |
Collapse
|
37
|
Hartle MD, Prell JS, Pluth MD. Spectroscopic investigations into the binding of hydrogen sulfide to synthetic picket-fence porphyrins. Dalton Trans 2016; 45:4843-53. [DOI: 10.1039/c5dt04563k] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The picket-fence porphyrin system is used a model for a sterically-constrained, protected binding environment to study H2S and HS−ligation.
Collapse
Affiliation(s)
- Matthew D. Hartle
- Department of Chemistry and Biochemistry
- Materials Science Institute
- Institute of Molecular Biology
- University of Oregon
- Eugene
| | - James S. Prell
- Department of Chemistry and Biochemistry
- Materials Science Institute
- Institute of Molecular Biology
- University of Oregon
- Eugene
| | - Michael D. Pluth
- Department of Chemistry and Biochemistry
- Materials Science Institute
- Institute of Molecular Biology
- University of Oregon
- Eugene
| |
Collapse
|
38
|
Mansfeldova V, Janda P, Tarabkova H. Time-resolved potentiometry on dual interface of two immiscible electrolyte solutions (ITIES): Step towards qualitative potentiometric analysis. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
39
|
Decréau RA, Collman JP. Three toxic gases meet in the mitochondria. Front Physiol 2015; 6:210. [PMID: 26347655 PMCID: PMC4542460 DOI: 10.3389/fphys.2015.00210] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 07/13/2015] [Indexed: 12/14/2022] Open
Abstract
The rationale of the study was two-fold: (i) develop a functional synthetic model of the Cytochrome c oxidase (CcO) active site, (ii) use it as a convenient tool to understand or predict the outcome of the reaction of CcO with ligands (physiologically relevant gases and other ligands). At physiological pH and potential, the model catalyzes the 4-electron reduction of oxygen. This model was immobilized on self-assembled-monolayer (SAM) modified electrode. During catalytic oxygen reduction, electron delivery through SAMs is rate limiting, similar to the situation in CcO. This model contains all three redox-active components in CcO's active site, which are required to minimize the production of partially-reduced-oxygen-species (PROS): Fe-heme (“heme a3”) in a myoglobin-like model fitted with a proximal imidazole ligand, and a distal tris-imidazole Copper (“CuB”) complex, where one imidazole is cross-linked to a phenol (mimicking “Tyr244”). This functional CcO model demonstrates how CcO itself might tolerate the hormone NO (which diffuses through the mitochondria). It is proposed that CuB delivers superoxide to NO bound to Fe-heme forming peroxynitrite, then nitrate that diffuses away. Another toxic gas, H2S, has exceptional biological effects: at ~80 ppm, H2S induces a state similar to hibernation in mice, lowering the animal's temperature and slowing respiration. Using our functional CcO model, we have demonstrated that at the same concentration range H2S can reversibly inhibit catalytic oxygen reduction. Such a reversible catalytic process on the model was also demonstrated with an organic compound, tetrazole (TZ). Following studies showed that TZ reversibly inhibits respiration in isolated mitochondria, and induces deactivation of platelets, a mitochondria-rich key component of blood coagulation. Hence, this program is a rare example illustrating the use of a functional model to understand and predict physiologically important reactions at the active site of CcO.
Collapse
Affiliation(s)
- Richard A Decréau
- Department of Chemistry (ICMUB Institute), University of Burgundy Franche-Comté Dijon, France ; Department of Chemistry, Stanford University Stanford, CA, USA
| | - James P Collman
- Department of Chemistry, Stanford University Stanford, CA, USA
| |
Collapse
|
40
|
Kumar A, Samanta S, Singh A, Roy M, Singh S, Basu S, Chehimi MM, Roy K, Ramgir N, Navaneethan M, Hayakawa Y, Debnath AK, Aswal DK, Gupta SK. Fast Response and High Sensitivity of ZnO Nanowires-Cobalt Phthalocyanine Heterojunction Based H2S Sensor. ACS APPLIED MATERIALS & INTERFACES 2015; 7:17713-17724. [PMID: 26225901 DOI: 10.1021/acsami.5b03652] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The room temperature chemiresistive response of n-type ZnO nanowire (ZnO NWs) films modified with different thicknesses of p-type cobalt phthalocyanine (CoPc) has been studied. With increasing thickness of CoPc (>15 nm), heterojunction films exhibit a transition from n- to p-type conduction due to uniform coating of CoPc on ZnO. The heterojunction films prepared with a 25 nm thick CoPc layer exhibit the highest response (268% at 10 ppm of H2S) and the fastest response (26 s) among all samples. The X-ray photoelectron spectroscopy and work function measurements reveal that electron transfer takes place from ZnO to CoPc, resulting in formation of a p-n junction with a barrier height of 0.4 eV and a depletion layer width of ∼8.9 nm. The detailed XPS analysis suggests that these heterojunction films with 25 nm thick CoPc exhibit the least content of chemisorbed oxygen, enabling the direct interaction of H2S with the CoPc molecule, and therefore exhibit the fastest response. The improved response is attributed to the high susceptibility of the p-n junctions to the H2S gas, which manipulates the depletion layer width and controls the charge transport.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mohmad M Chehimi
- ∥University Paris Diderot, Sorbonne Paris Cité, ITODYS, CNRS, F-75013 Paris, France
| | | | | | - M Navaneethan
- #Research Institute of Electronics, 3-5-1, Johoku, Shizuoka University, Hamamatsu, Japan
| | - Y Hayakawa
- #Research Institute of Electronics, 3-5-1, Johoku, Shizuoka University, Hamamatsu, Japan
| | | | | | | |
Collapse
|
41
|
Lin VS, Chen W, Xian M, Chang CJ. Chemical probes for molecular imaging and detection of hydrogen sulfide and reactive sulfur species in biological systems. Chem Soc Rev 2015; 44:4596-4618. [PMID: 25474627 PMCID: PMC4456340 DOI: 10.1039/c4cs00298a] [Citation(s) in RCA: 740] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Hydrogen sulfide (H2S), a gaseous species produced by both bacteria and higher eukaryotic organisms, including mammalian vertebrates, has attracted attention in recent years for its contributions to human health and disease. H2S has been proposed as a cytoprotectant and gasotransmitter in many tissue types, including mediating vascular tone in blood vessels as well as neuromodulation in the brain. The molecular mechanisms dictating how H2S affects cellular signaling and other physiological events remain insufficiently understood. Furthermore, the involvement of H2S in metal-binding interactions and formation of related RSS such as sulfane sulfur may contribute to other distinct signaling pathways. Owing to its widespread biological roles and unique chemical properties, H2S is an appealing target for chemical biology approaches to elucidate its production, trafficking, and downstream function. In this context, reaction-based fluorescent probes offer a versatile set of screening tools to visualize H2S pools in living systems. Three main strategies used in molecular probe development for H2S detection include azide and nitro group reduction, nucleophilic attack, and CuS precipitation. Each of these approaches exploits the strong nucleophilicity and reducing potency of H2S to achieve selectivity over other biothiols. In addition, a variety of methods have been developed for the detection of other reactive sulfur species (RSS), including sulfite and bisulfite, as well as sulfane sulfur species and related modifications such as S-nitrosothiols. Access to this growing chemical toolbox of new molecular probes for H2S and related RSS sets the stage for applying these developing technologies to probe reactive sulfur biology in living systems.
Collapse
Affiliation(s)
- Vivian S Lin
- Department of Chemistry, University of California, Berkeley, California, USA
| | - Wei Chen
- Department of Chemistry, Washington State University, Pullman, Washington, USA
| | - Ming Xian
- Department of Chemistry, Washington State University, Pullman, Washington, USA
| | - Christopher J Chang
- Department of Chemistry, University of California, Berkeley, California, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
- Howard Hughes Medical Institute, University of California, Berkeley, California, USA
| |
Collapse
|
42
|
Mirra S, Milione S, Strianese M, Pellecchia C. A Copper Porphyrin for Sensing H2S in Aqueous Solution via a “Coordinative-Based” Approach. Eur J Inorg Chem 2015. [DOI: 10.1002/ejic.201500070] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
43
|
Strianese M, Mirra S, Bertolasi V, Milione S, Pellecchia C. Organometallic sulfur complexes: reactivity of the hydrogen sulfide anion with cobaloximes. NEW J CHEM 2015. [DOI: 10.1039/c5nj00206k] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The hydrogen sulfide anion selectively and reversibly displaces pyridine in cobaloxime. A rare trisulfido-bridged dinuclear complex was isolated and characterized.
Collapse
Affiliation(s)
- Maria Strianese
- Dipartimento di Chimica
- Università di Salerno
- 132 I-84084 Fisciano
- Italy
| | - Silvia Mirra
- Dipartimento di Chimica
- Università di Salerno
- 132 I-84084 Fisciano
- Italy
| | - Valerio Bertolasi
- Università di Ferrara
- Dipartimento di Scienze Chimiche e Farmaceutiche
- Centro di Strutturistica Diffrattometrica
- I-44100 Ferrara
- Italy
| | - Stefano Milione
- Dipartimento di Chimica
- Università di Salerno
- 132 I-84084 Fisciano
- Italy
| | | |
Collapse
|
44
|
Hartle MD, Meininger DJ, Zakharov LN, Tonzetich ZJ, Pluth MD. NBu4SH provides a convenient source of HS− soluble in organic solution for H2S and anion-binding research. Dalton Trans 2015; 44:19782-5. [DOI: 10.1039/c5dt03355a] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report here a simple method to prepare and characterize analytically-pure NBu4SH, which provides access to an organic-soluble source of HS−.
Collapse
Affiliation(s)
- Matthew D. Hartle
- Department of Chemistry and Biochemistry
- Materials Science Institute
- Institute of Molecular Biology
- 1253 University of Oregon
- Eugene
| | - Daniel J. Meininger
- Department of Chemistry
- University of Texas at San Antonio (UTSA)
- San Antonio
- USA
| | - Lev N. Zakharov
- Department of Chemistry and Biochemistry
- Materials Science Institute
- Institute of Molecular Biology
- 1253 University of Oregon
- Eugene
| | | | - Michael D. Pluth
- Department of Chemistry and Biochemistry
- Materials Science Institute
- Institute of Molecular Biology
- 1253 University of Oregon
- Eugene
| |
Collapse
|
45
|
Watanabe K, Suzuki T, Kitagishi H, Kano K. Reaction between a haemoglobin model compound and hydrosulphide in aqueous solution. Chem Commun (Camb) 2015; 51:4059-61. [DOI: 10.1039/c5cc00057b] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The reaction between hydrosulphide and a haemoglobin model compound, composed of a Fe(iii)-porphyrin and a cyclodextrin dimer possessing a pyridine-linker, was studied.
Collapse
Affiliation(s)
- Kenji Watanabe
- Graduate School of Pharmaceutical Sciences
- Kyushu University
- Fukuoka 812-8582
- Japan
| | - Toshikane Suzuki
- Department of Molecular Chemistry and Biochemistry
- Faculty of Science and Engineering
- Doshisha University
- Kyotanabe
- Japan
| | - Hiroaki Kitagishi
- Department of Molecular Chemistry and Biochemistry
- Faculty of Science and Engineering
- Doshisha University
- Kyotanabe
- Japan
| | - Koji Kano
- Department of Molecular Chemistry and Biochemistry
- Faculty of Science and Engineering
- Doshisha University
- Kyotanabe
- Japan
| |
Collapse
|
46
|
Montoya LA, Shen X, McDermott JJ, Kevil CG, Pluth MD. Mechanistic investigations reveal that dibromobimane extrudes sulfur from biological sulfhydryl sources other than hydrogen sulfide†Electronic supplementary information (ESI) available: Experimental details, pH stability data for BTE, NMR spectra. See DOI: 10.1039/c4sc01875cClick here for additional data file. Chem Sci 2014; 6:294-300. [PMID: 25632344 PMCID: PMC4302847 DOI: 10.1039/c4sc01875c] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 10/10/2014] [Indexed: 01/25/2023] Open
Abstract
Dibromobimane detects sulfide levels as low as 0.6 pM, but reacts in unexpected ways with thiols, as evidenced by mechanistic investigations.
Hydrogen sulfide (H2S) has emerged as an important biological signaling molecule in the last decade. During the growth of this field, significant controversy has arisen centered on the physiological concentrations of H2S. Recently, a monobromobimane (mBB) method has been developed for the quantification of different biologically-relevant sulfide pools. Based on the prevalence of the mBB method for sulfide quantification, we expand on this method to report the use of dibromobimane (dBB) for sulfide quantification. Reaction of H2S with dBB results in formation of highly-fluorescent bimane thioether (BTE), which is readily quantifiable by HPLC. Additionally, the reaction of sulfide with dBB to form BTE is significantly faster than the reaction of sulfide with mBB to form sulfide dibimane. Using the dBB method, BTE levels as low as 0.6 pM can be detected. Upon use of the dBB method in wild-type and CSE–/– mice, however, dBB reports significantly higher sulfide levels than those measured using mBB. Further investigation revealed that dBB is able to extract sulfur from other sulfhydryl sources including thiols. Based on mechanistic studies, we demonstrate that dBB extracts sulfur from thiols with α- or β-hydrogens, thus leading to higher BTE formation than from sulfide alone. Taken together, the dBB method is a highly sensitive method for H2S but is not compatible for use in studies in which other thiols are present.
Collapse
Affiliation(s)
- Leticia A Montoya
- Department of Chemistry and Biochemistry , Institute of Molecular Biology , Materials Science Institute , University of Oregon , Eugene , OR 97403 , USA .
| | - Xinggui Shen
- Department of Pathology , Louisiana State University Health Science Center , Shreveport , LA 71130 , USA .
| | - James J McDermott
- Department of Chemistry and Biochemistry , Institute of Molecular Biology , Materials Science Institute , University of Oregon , Eugene , OR 97403 , USA .
| | - Christopher G Kevil
- Department of Pathology , Louisiana State University Health Science Center , Shreveport , LA 71130 , USA .
| | - Michael D Pluth
- Department of Chemistry and Biochemistry , Institute of Molecular Biology , Materials Science Institute , University of Oregon , Eugene , OR 97403 , USA .
| |
Collapse
|