1
|
Stephens LJ, Dallerba E, Kelderman JTA, Levina A, Werrett MV, Lay PA, Massi M, Andrews PC. Synthesis and the photophysical and biological properties of tricarbonyl Re(I) diimine complexes bound to thiotetrazolato ligands. Dalton Trans 2023; 52:4835-4848. [PMID: 36939381 DOI: 10.1039/d2dt03237f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Twelve Re(I) tricarbonyl diimine (2,2'-bipyridine and 1,10-phenanthroline) complexes with thiotetrazolato ligands have been synthesised and fully characterised. Structural characterisation revealed the capacity of the tetrazolato ligand to bind to the Re(I) centre through either the S atom or the N atom with crystallography revealing most complexes being bound to the N atom. However, an example where the Re(I) centre is linked via the S atom has been identified. In solution, the complexes exist as an equilibrating mixture of linkage isomers, as suggested by comparison of their NMR spectra at room temperature and 373 K, as well as 2D exchange spectroscopy. The complexes are photoluminescent in fluid solution at room temperature, with emission either at 625 or 640 nm from the metal-to-ligand charge transfer excited states of triplet multiplicity, which seems to be exclusively dependent on the nature of the diimine ligand. The oxygen-sensitive excited state lifetime decay ranges between 12.5 and 27.5 ns for the complexes bound to 2,2'-bipyrdine, or between 130.6 and 155.2 ns for those bound to 1.10-phenanthroline. Quantum yields were measured within 0.4 and 1.5%. The complexes were incubated with human lung (A549), brain (T98g), and breast (MDA-MB-231) cancer cells, as well as with normal human skin fibroblasts (HFF-1), revealing low to moderate cytotoxicity, which for some compounds exceeded that of a standard anti-cancer drug, cisplatin. Low cytotoxicity combined with significant cellular uptake and photoluminescence properties provides potential for their use as cellular imaging agents. Furthermore, the complexes were assessed in disc diffusion and broth microdilution assays against methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus (VRE), Escherichia coli (E. coli), and Pseudomonas aeruginosa (P. aeruginosa) bacterial strains, which revealed negligible antibacterial activity in the dark or after irradiation.
Collapse
Affiliation(s)
- Liam J Stephens
- School of Chemistry, Monash University, Clayton, Melbourne, VIC 3800, Australia.
| | - Elena Dallerba
- School of Molecular and Life Sciences, Curtin University, Kent Street, 6102 Perth, Australia.
| | - Jenisi T A Kelderman
- School of Chemistry, Monash University, Clayton, Melbourne, VIC 3800, Australia.
| | - Aviva Levina
- School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia
| | - Melissa V Werrett
- School of Chemistry, Monash University, Clayton, Melbourne, VIC 3800, Australia.
| | - Peter A Lay
- School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia
| | - Massimiliano Massi
- School of Molecular and Life Sciences, Curtin University, Kent Street, 6102 Perth, Australia.
| | - Philip C Andrews
- School of Chemistry, Monash University, Clayton, Melbourne, VIC 3800, Australia.
| |
Collapse
|
2
|
Li P, Jia Y, Zhang S, Di J, Zhang N, Chen P. Oligotriarylamine-Extended Organoboranes with Tunable Electron-Donating Strength by Changing the Number of Donor Units. Inorg Chem 2022; 61:3951-3958. [PMID: 35201745 DOI: 10.1021/acs.inorgchem.1c03578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Triarylborane (Ar3B) and triarylamine (Ar3N) have been widely employed to construct electronically different donor-acceptor (D-A) systems. Herein, we describe a series of A-D-A-type luminescent organoboranes L-B2Nn (n = 1, 3, 5) that show an increased number of Ar3N units as electron donors and two terminal Ar3B as acceptors. When the Ar3N moieties were extended from one to five units, their electron-donating strength was gradually enhanced and the highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) energy gaps could also be tuned, which was further reflected in the red-shifted emissions from blue (λem = 458 nm) to orange (λem = 595 nm) with a decrease in Egap(elect) from 3.19 to 2.61 eV. L-B2N5 showed a huge Stokes shift (∼14 057 cm-1) and a considerably bright emission with an enhanced solid-state quantum efficiency (ΦS = 98%) compared with the other members. L-B2N3 and L-B2N5 exhibited aggregation-induced emissions (AIEs), and an apparent solvatochromic shift was also observed in the emission spectra as the solvent was changed from hexane to tetrahydrofuran (THF) (430 → 595 nm). In addition, the donor-acceptor charge-transfer character in these organoboranes caused a thermally responsive emission over a broad range.
Collapse
Affiliation(s)
- Pengfei Li
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing 102488, China
| | - Yawei Jia
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing 102488, China
| | - Songhe Zhang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing 102488, China
| | - Jiaqi Di
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing 102488, China
| | - Niu Zhang
- Analysis & Testing Center, Beijing Institute of Technology of China, Beijing 102488, China
| | - Pangkuan Chen
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing 102488, China
| |
Collapse
|
3
|
Buchwald–Hartwig reaction: an update. MONATSHEFTE FUR CHEMIE 2021. [DOI: 10.1007/s00706-021-02834-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
4
|
Abstract
New donor building blocks, i.e., triarylamino derivatives, are of great interest for the production of organic photovoltaic materials. In this communication, bis(4′-(hexyloxy)-[1,1′-biphenyl]-4-yl)amine was synthesized in a two-step process via hydrolysis of its tert-butyl carbamate derivative. tert-Butyl bis(4′-(hexyloxy)-[1,1′-biphenyl]-4-yl)carbamate was obtained by Suzuki cross-coupling reaction of tert-butyl bis(4-bromophenyl)carbamate and (4-(hexyloxy)phenyl)boronic acid in the presence of tetrakis(triphenylphosphine)palladium(0). The structure of newly synthesized compounds was established by means of elemental analysis, high resolution mass-spectrometry, 1H, 13C-NMR, IR and UV spectroscopy and mass-spectrometry.
Collapse
|
5
|
Merillas B, Cuéllar E, Diez-Varga A, Torroba T, García-Herbosa G, Fernández S, Lloret-Fillol J, Martín-Alvarez JM, Miguel D, Villafañe F. Luminescent Rhenium(I)tricarbonyl Complexes Containing Different Pyrazoles and Their Successive Deprotonation Products: CO 2 Reduction Electrocatalysts. Inorg Chem 2020; 59:11152-11165. [PMID: 32705866 DOI: 10.1021/acs.inorgchem.0c01654] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cationic fac-[Re(CO)3(pz*H)(pypzH)]OTf (pz*H = pyrazole, pzH; 3,5-dimethylpyrazole, dmpzH; indazole, indzH; 3-(2-pyridyl)pyrazole, pypzH) were obtained from fac-[ReBr(CO)3(pypzH)] by halide abstraction with AgOTf and subsequent addition of the corresponding pyrazole. Successive deprotonation with Na2CO3 and NaOH gave neutral fac-[Re(CO)3(pz*H)(pypz)] and anionic Na{fac-[Re(CO)3(pz*)(pypz)]} complexes, respectively. Cationic fac-[Re(CO)3(pz*H)(pypzH)]OTf, neutral complexes fac-[Re(CO)3(pz*H)(pypz)], and fac-[Re(CO)3(pypz)2Na] were subjected to photophysical and electrochemical studies. They exhibit phosphorescent decays from a prevalently 3MLCT excited state with quantum yields (Φ) in the range between 0.03 and 0.58 and long lifetimes (τ from 220 to 869 ns). The electrochemical behavior in Ar atmosphere of cationic and neutral complexes indicates that the oxidation processes assigned to ReI → ReII occurs at lower potentials for the neutral complex compared to cationic complex. The reduction processes occur at the ligands and do not depend on the charge of the complexes. The electrochemical behavior in CO2 saturated media is consistent with CO2 electrocatalyzed reduction, where the values of the catalytic activity [icat(CO2)/icat(Ar)] ranged from 2.7 to 11.5 (compared to 8.1 for fac-[Re(CO)3Cl(bipy)] studied as a reference). Controlled potential electrolysis for the pyrazole cationic (3a) and neutral (4a) complexes after 1 h affords CO in faraday yields of 61 and 89%, respectively. These values are higher for indazole complexes and may be related to the acidity of the coordinated pyrazole.
Collapse
Affiliation(s)
- Beatriz Merillas
- GIR MIOMeT-IU Cinquima-Química Inorgánica, Facultad de Ciencias, Campus Miguel Delibes, Universidad de Valladolid, 47011 Valladolid, Spain
| | - Elena Cuéllar
- GIR MIOMeT-IU Cinquima-Química Inorgánica, Facultad de Ciencias, Campus Miguel Delibes, Universidad de Valladolid, 47011 Valladolid, Spain
| | - Alberto Diez-Varga
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, 09001 Burgos, Spain
| | - Tomás Torroba
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, 09001 Burgos, Spain
| | - Gabriel García-Herbosa
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, 09001 Burgos, Spain
| | - Sergio Fernández
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avinguda Països Catalans 16, 43007 Tarragona, Spain
| | - Julio Lloret-Fillol
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avinguda Països Catalans 16, 43007 Tarragona, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluïs Companys, 23, 08010 Barcelona, Spain
| | - Jose M Martín-Alvarez
- GIR MIOMeT-IU Cinquima-Química Inorgánica, Facultad de Ciencias, Campus Miguel Delibes, Universidad de Valladolid, 47011 Valladolid, Spain
| | - Daniel Miguel
- GIR MIOMeT-IU Cinquima-Química Inorgánica, Facultad de Ciencias, Campus Miguel Delibes, Universidad de Valladolid, 47011 Valladolid, Spain
| | - Fernando Villafañe
- GIR MIOMeT-IU Cinquima-Química Inorgánica, Facultad de Ciencias, Campus Miguel Delibes, Universidad de Valladolid, 47011 Valladolid, Spain
| |
Collapse
|
6
|
Aoki Y, Toyoda T, Kawasaki H, Takaya H, Sharma AK, Morokuma K, Nakamura M. Iron‐Catalyzed Chemoselective C−N Coupling Reaction: A Protecting‐Group‐Free Amination of Aryl Halides Bearing Amino or Hydroxy Groups. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900641] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Yuma Aoki
- International Research Center for Elements Science Institute for Chemical Research Kyoto University Uji Kyoto 611-0011 Japan
- Department of Energy and Hydrocarbon Chemistry Graduate School of Engineering Kyoto University Kyoto 615-8510 Japan
- Riken Center for Sustainable Resource Science 2-1 Hirosawa, Wako Saitama 351-0198 Japan
| | - Takahiro Toyoda
- International Research Center for Elements Science Institute for Chemical Research Kyoto University Uji Kyoto 611-0011 Japan
- Department of Energy and Hydrocarbon Chemistry Graduate School of Engineering Kyoto University Kyoto 615-8510 Japan
| | - Hiroto Kawasaki
- International Research Center for Elements Science Institute for Chemical Research Kyoto University Uji Kyoto 611-0011 Japan
- Department of Energy and Hydrocarbon Chemistry Graduate School of Engineering Kyoto University Kyoto 615-8510 Japan
| | - Hikaru Takaya
- International Research Center for Elements Science Institute for Chemical Research Kyoto University Uji Kyoto 611-0011 Japan
- Department of Energy and Hydrocarbon Chemistry Graduate School of Engineering Kyoto University Kyoto 615-8510 Japan
| | - Akhilesh K. Sharma
- International Research Center for Elements Science Institute for Chemical Research Kyoto University Uji Kyoto 611-0011 Japan
| | - Keiji Morokuma
- Fukui Institute for Fundamental Chemistry Kyoto University Kyoto 606-8103 Japan
| | - Masaharu Nakamura
- International Research Center for Elements Science Institute for Chemical Research Kyoto University Uji Kyoto 611-0011 Japan
- Department of Energy and Hydrocarbon Chemistry Graduate School of Engineering Kyoto University Kyoto 615-8510 Japan
| |
Collapse
|
7
|
Yamagishi H, Sato H, Hori A, Sato Y, Matsuda R, Kato K, Aida T. Self-assembly of lattices with high structural complexity from a geometrically simple molecule. Science 2018; 361:1242-1246. [PMID: 30237354 DOI: 10.1126/science.aat6394] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 07/23/2018] [Indexed: 11/02/2022]
Abstract
Here we report an anomalous porous molecular crystal built of C-H···N-bonded double-layered roof-floor components and wall components of a segregatively interdigitated architecture. This complicated porous structure consists of only one type of fully aromatic multijoint molecule carrying three identical dipyridylphenyl wedges. Despite its high symmetry, this molecule accomplishes difficult tasks by using two of its three wedges for roof-floor formation and using its other wedge for wall formation. Although a C-H···N bond is extremely labile, the porous crystal maintains its porosity until thermal breakdown of the C-H···N bonds at 202°C occurs, affording a nonporous polymorph. Though this nonporous crystal survives even at 325°C, it can retrieve the parent porosity under acetonitrile vapor. These findings show how one can translate simplicity into ultrahigh complexity.
Collapse
Affiliation(s)
- Hiroshi Yamagishi
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Hiroshi Sato
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Akihiro Hori
- Department of Applied Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Yohei Sato
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Ryotaro Matsuda
- Department of Applied Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Kenichi Kato
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Takuzo Aida
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan. .,RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
8
|
Triarylamines with branched multi-pyridine groups: modulation of emission properties by structural variation, solvents, and tris(pentafluorophenyl)borane. Sci China Chem 2018. [DOI: 10.1007/s11426-017-9202-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
9
|
Heinz LG, Wenger OS. Photoinduced electron transfer in a triarylamine-organoboron-Ru(2,2′-bipyridine) 3 2+ compound. CR CHIM 2017. [DOI: 10.1016/j.crci.2015.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
10
|
Skaisgirski M, Guo X, Wenger OS. Electron Accumulation on Naphthalene Diimide Photosensitized by [Ru(2,2′-Bipyridine)3]2+. Inorg Chem 2017; 56:2432-2439. [DOI: 10.1021/acs.inorgchem.6b02446] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Michael Skaisgirski
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Xingwei Guo
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Oliver S. Wenger
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| |
Collapse
|
11
|
Kuss-Petermann M, Wenger OS. Pump-Pump-Probe Spectroscopy of a Molecular Triad Monitoring Detrimental Processes for Photoinduced Charge Accumulation. Helv Chim Acta 2016. [DOI: 10.1002/hlca.201600283] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Oliver S. Wenger
- Department of Chemistry; University of Basel; St. Johanns-Ring 19 CH-4056 Basel
| |
Collapse
|
12
|
Shen JJ, Shao JY, Gong ZL, Zhong YW. Cyclometalated Osmium-Amine Electronic Communication through the p-Oligophenylene Wire. Inorg Chem 2015; 54:10776-84. [PMID: 26567859 DOI: 10.1021/acs.inorgchem.5b01828] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A series of bis-tridentate cyclometalated osmium complexes with a redox-active triarylamine substituent have been prepared, where the amine substituent is separated from the osmium ion by a p-oligophenylene wire of various lengths. X-ray crystallographic data of complexes 3(PF6) and 4(PF6) with three or four repeating phenyl units between the osmium ion and the amine substituent are presented. These complexes show two consecutive anodic redox couples between +0.1 and +0.9 V vs Ag/AgCl, with the potential splitting in the range of 300-390 mV. A combined experimental and theoretical study suggests that, in the one-electron-oxidized state, the odd electron is delocalized for short congeners and localized on the osmium component for long congeners. The electronic coupling parameter (Vab) was estimated by the Marcus-Hush analysis. The distance dependence plot of ln(Vab) versus the osmium-amine geometrical distance (Rab) gives a negative linear relationship with a decay slope of -0.19 Å(-1), which is slightly steeper with respect to the previously reported ruthenium-amine series with the same molecular wire. DFT calculations with the long-range-corrected UCAM-B3LYP functional gave more reasonable results for the osmium complexes with respect to those with UB3LYP.
Collapse
Affiliation(s)
- Jun-Jian Shen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
| | - Jiang-Yang Shao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
| | - Zhong-Liang Gong
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
| | - Yu-Wu Zhong
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
| |
Collapse
|
13
|
Bonn AG, Wenger OS. Photoinduced charge accumulation by metal ion-coupled electron transfer. Phys Chem Chem Phys 2015; 17:24001-10. [PMID: 26312416 DOI: 10.1039/c5cp04718h] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An oligotriarylamine (OTA) unit, a Ru(bpy)3(2+) photosensitizer moiety (Ru), and an anthraquinone (AQ) entity were combined to a molecular dyad (Ru-OTA) and a molecular triad (AQ-Ru-OTA). Pulsed laser excitation at 532 nm led to the formation of charge-separated states of the type Ru(-)-OTA(+) and AQ(-)-Ru-OTA(+) with lifetimes of ≤10 ns and 2.4 μs, respectively, in de-aerated CH3CN at 25 °C. Upon addition of Sc(OTf)3, very long-lived photoproducts were observed. Under steady-state irradiation conditions using a flux of (6.74 ± 0.21) × 10(15) photons per second at 450 nm, the formation of twofold oxidized oligotriarylamine (OTA(2+)) was detected in aerated CH3CN containing 0.02 M Sc(3+), as demonstrated unambiguously by comparison with UV-Vis absorption spectra obtained in the course of chemical oxidation with Cu(2+). Photodriven charge accumulation on the OTA unit of Ru-OTA and AQ-Ru-OTA is possible due to the lowering of the O2 reduction potential caused by the interaction of superoxide with the strong Lewis acid Sc(3+). The presence of the anthraquinone unit in AQ-Ru-OTA accelerates the rate-determining reaction step for charge accumulation by a factor of 10 compared to the Ru-OTA dyad. This is attributed to the formation of Sc(3+)-stabilized anthraquinone radical anion intermediates in the triad. Possible mechanistic pathways leading to charge accumulation are discussed. Photodriven charge accumulation is of key importance for solar fuels because their production will have to rely on multi-electron chemistry rather than single-electron reaction steps. Our study is the first to demonstrate that metal ion-coupled electron transfer (MCET) can be exploited to accumulate charges on a given molecular unit using visible light as an energy input. The approach of using a combination of intra- and intermolecular electron transfer reactions which are enabled by MCET is conceptually novel, and the fundamental insights gained from our study are relevant in the greater context of solar energy conversion.
Collapse
Affiliation(s)
- Annabell G Bonn
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland.
| | | |
Collapse
|
14
|
Chen J, Wenger OS. Fluoride binding to an organoboron wire controls photoinduced electron transfer. Chem Sci 2015; 6:3582-3592. [PMID: 29511520 PMCID: PMC5659175 DOI: 10.1039/c5sc00964b] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 04/20/2015] [Indexed: 12/28/2022] Open
Abstract
We demonstrate that the rates for long-range electron transfer can be controlled actively by tight anion binding to a rigid rod-like molecular bridge. Electron transfer from a triarylamine donor to a photoexcited Ru(bpy)32+ acceptor (bpy = 2,2'-bipyridine) across a 2,5-diboryl-1,4-phenylene bridge occurs within less than 10 ns in CH2Cl2 at 22 °C. Fluoride anions bind with high affinity to the organoboron bridge due to strong Lewis base/Lewis acid interactions, and this alters the electronic structure of the bridge drastically. Consequently, a large tunneling barrier is imposed on photoinduced electron transfer from the triarylamine to the Ru(bpy)32+ complex and hence this process occurs more than two orders of magnitude more slowly, despite the fact that its driving force is essentially unaffected by fluoride addition. Electron transfer rates in proteins could potentially be regulated via a similar fundamental principle, because interactions between charged amino acid side chains and counter-ions can modulate electronic couplings between distant redox partners. In artificial donor-bridge-acceptor compounds, external stimuli have been employed frequently to control electron transfer rates, but the approach of exploiting strong Lewis acid/Lewis base interactions to regulate the tunneling barrier height imposed by a rigid rod-like molecular bridge is conceptually novel and broadly applicable, because it is largely independent of the donor and the acceptor, and because the effect is not based on a change of the driving-force for electron transfer. The principle demonstrated here can potentially be used to switch between conducting and insulating states of molecular wires between electrodes.
Collapse
Affiliation(s)
- Jing Chen
- Department of Chemistry , University of Basel , St. Johanns-Ring 19 , CH-4056 Basel , Switzerland .
- Xiamen Institute of Rare Earth Materials , Chinese Academy of Sciences , Xiamen 361021 , People's Republic of China
- Key Laboratory of Design and Assembly of Functional Nanostructures , Fujian Provincial Key Laboratory of Nanomaterials , Fujian Institute of Research on the Structure of Matter , Chinese Academy of Sciences , People's Republic of China
| | - Oliver S Wenger
- Department of Chemistry , University of Basel , St. Johanns-Ring 19 , CH-4056 Basel , Switzerland .
| |
Collapse
|
15
|
Heinz LG, Yushchenko O, Neuburger M, Vauthey E, Wenger OS. Tetramethoxybenzene is a Good Building Block for Molecular Wires: Insights from Photoinduced Electron Transfer. J Phys Chem A 2015; 119:5676-84. [DOI: 10.1021/acs.jpca.5b03649] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Luisa G. Heinz
- Department
of Chemistry, University of Basel, St. Johanns-Ring 19, CH-4056 Basel, Switzerland
| | - Oleksandr Yushchenko
- Department
of Physical Chemistry, University of Geneva, 30 quai Ernest Ansermet, CH-1211 Geneva 4, Switzerland
| | - Markus Neuburger
- Department
of Chemistry, University of Basel, St. Johanns-Ring 19, CH-4056 Basel, Switzerland
| | - Eric Vauthey
- Department
of Physical Chemistry, University of Geneva, 30 quai Ernest Ansermet, CH-1211 Geneva 4, Switzerland
| | - Oliver S. Wenger
- Department
of Chemistry, University of Basel, St. Johanns-Ring 19, CH-4056 Basel, Switzerland
| |
Collapse
|
16
|
Bonn AG, Wenger OS. Charge Transfer Emission in Oligotriarylamine–Triarylborane Compounds. J Org Chem 2015; 80:4097-107. [DOI: 10.1021/acs.joc.5b00416] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Annabell G. Bonn
- Department
of Chemistry, University of Basel, St. Johanns-Ring 19, CH-4056 Basel, Switzerland
| | - Oliver S. Wenger
- Department
of Chemistry, University of Basel, St. Johanns-Ring 19, CH-4056 Basel, Switzerland
| |
Collapse
|