1
|
Romano GM, Simonini Steiner YT, Bartoli F, Conti L, Macedi E, Bazzicalupi C, Rossi P, Paoli P, Innocenti M, Bencini A, Savastano M. Selective binding and fluorescence sensing of Zn(II)/Cd(II) using macrocyclic tetra-amines with different fluorophores: insights into the design of selective chemosensors for transition metals. Dalton Trans 2025; 54:1689-1702. [PMID: 39744999 DOI: 10.1039/d4dt02415j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Selective binding and optical sensing of Zn(II) and Cd(II) by L1, HL2, L3, H2L4 and H2L5 receptors were analysed in aqueous solutions by coupling potentiometric, UV-vis absorption and fluorescence emission measurements, with the aim to determine the effect of complex stability on selective signalling of metals with similar electronic configurations. All receptors share the same cyclic tetra-amine binding unit attached to a single quinoline (Q) or 8-hydroxyquinoline (8-OHQ) unit (L1 and HL2, respectively), two Q or 8-OHQ moieties (L3 and H2L4, respectively), and, finally, two Q and two acetate groups (H2L5). The crystal structures of the Cd(II) and Zn(II) complexes show that L3 and H2L4 feature a cavity in which the larger Cd(II) complex is better fitted than the Zn(II) complex, leading to the formation of more stable Cd(II) complexes. In turn, Zn(II) forms more stable complexes with L1 and HL2, owing to its high tendency to give 5-coordinated complexes. Considering optical selectivity, Zn(II) gives the most emissive complex with L3, while the corresponding Cd(II) complex is basically quenched. The gathered structure of the Zn(II) complex, in which the two Q units are associated with one another-a structural motif not observed in the [CdL3]2+ complex-leads to poor solvation of the Q units, favouring complex emission. Among 8-OHQ-containing receptors, the most emissive complex is formed by Cd(II) with HL2, containing a single 8-OHQ moiety. H2L4 forms non-emissive complexes: the presence of two coordinating 8-OHQ moieties weakens metal interactions with the tetra-amine unit, favouring PET to the excited fluorophore that quench the emission.
Collapse
Affiliation(s)
- Giammarco Maria Romano
- Department of Chemistry "Ugo Schiff", Università di Firenze, Via della Lastruccia 3, Sesto Fiorentino, Firenze, Italy.
| | | | - Francesco Bartoli
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Via Savi 10, 56126, Pisa, Italy
| | - Luca Conti
- Department of Chemistry "Ugo Schiff", Università di Firenze, Via della Lastruccia 3, Sesto Fiorentino, Firenze, Italy.
| | - Eleonora Macedi
- Department of Industrial Engineering, Università di Firenze, Via S. Marta 3, Firenze, Italy
| | - Carla Bazzicalupi
- Department of Chemistry "Ugo Schiff", Università di Firenze, Via della Lastruccia 3, Sesto Fiorentino, Firenze, Italy.
| | - Patrizia Rossi
- Department of Pure and Applied Sciences, University of Urbino "Carlo Bo", Via della Stazione 4, 61029 Urbino, Italy
| | - Paola Paoli
- Department of Pure and Applied Sciences, University of Urbino "Carlo Bo", Via della Stazione 4, 61029 Urbino, Italy
| | - Massimo Innocenti
- Department of Chemistry "Ugo Schiff", Università di Firenze, Via della Lastruccia 3, Sesto Fiorentino, Firenze, Italy.
| | - Andrea Bencini
- Department of Chemistry "Ugo Schiff", Università di Firenze, Via della Lastruccia 3, Sesto Fiorentino, Firenze, Italy.
| | - Matteo Savastano
- Department of Human Sciences for the Promotion of Quality of Life, Università San Raffaele Roma, via di Val Cannuta 247, 00166 Roma, Italy
| |
Collapse
|
2
|
Yao Y, Zeng F, Ma J, Wu L, Xing S, Yang H, Li Y, Du J, Yang Q, Li Y. An innovative near-infrared fluorescent probe with FRET effect for the continuous detection of Zn 2+ and PPi with high sensitivity and selectivity, and its application in bioimaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 309:123837. [PMID: 38184879 DOI: 10.1016/j.saa.2024.123837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/18/2023] [Accepted: 01/01/2024] [Indexed: 01/09/2024]
Abstract
As the second most abundant transition metal element in the human body, zinc ions play an important role in the normal growth and development of the human body. We have successfully synthesized a near-infrared fluorescent probe with FRET effect for the detection of Zn2+. Probe DR6G has good selectivity and anti-interference ability for Zn2+. When Zn2+ is added to the probe DR6G solution, it responds completely within seconds, releasing red fluorescence with a detection limit of 2.02 × 10-8 M. As the main product of ATP hydrolysis, PPi is indispensable in various metabolic activities in cells and the human body. Due to the strong binding ability of Zn2+ and PPi, it is easy to form ZnPPi precipitation, so we added PPi to the solution to complete the Zn2+ detection, and realized the continuous detection of PPi, and the detection limit was 2.06 × 10-8 M. Since Zn2+ and PPi play an important role in vivo, it is of great practical significance to design and synthesize a fluorescent probe that can continuously detect Zn2+ and PPi. Biological experiments have shown that the probe DR6G has low cytotoxicity and can complete the detection of exogenous Zn2+ and PPi in cells and living mice in vitro. Bacterial experiments have shown that the DR6G probe also has certain research value in the field of environmental monitoring and microbiology. Due to the constant variation of the fluorescence signals of Zn2+ and PPi during detection, we designed the logic gate program. In practical applications, the probe DR6G can quantitatively detect Zn2+ in zinc-containing oral liquids and qualitatively detect PPi in toothpaste.
Collapse
Affiliation(s)
- Yixuan Yao
- College of Chemistry, Jilin University, Changchun 130021, PR China
| | - Fudong Zeng
- China-Japan Union Hospital of Jilin University, Key Laboratory of Lymphatic Surgery Jilin Province, Changchun 130031, PR China
| | - Jinli Ma
- China-Japan Union Hospital of Jilin University, Key Laboratory of Lymphatic Surgery Jilin Province, Changchun 130031, PR China
| | - Liangqiang Wu
- College of Chemistry, Jilin University, Changchun 130021, PR China
| | - Shuo Xing
- College of Chemistry, Jilin University, Changchun 130021, PR China
| | - Haiqin Yang
- College of Chemistry, Jilin University, Changchun 130021, PR China
| | - Yapeng Li
- College of Chemistry, Jilin University, Changchun 130021, PR China
| | - Jianshi Du
- China-Japan Union Hospital of Jilin University, Key Laboratory of Lymphatic Surgery Jilin Province, Changchun 130031, PR China
| | - Qingbiao Yang
- College of Chemistry, Jilin University, Changchun 130021, PR China.
| | - Yaoxian Li
- College of Chemistry, Jilin University, Changchun 130021, PR China
| |
Collapse
|
3
|
O’Hagan M, Duan Z, Huang F, Laps S, Dong J, Xia F, Willner I. Photocleavable Ortho-Nitrobenzyl-Protected DNA Architectures and Their Applications. Chem Rev 2023; 123:6839-6887. [PMID: 37078690 PMCID: PMC10214457 DOI: 10.1021/acs.chemrev.3c00016] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Indexed: 04/21/2023]
Abstract
This review article introduces mechanistic aspects and applications of photochemically deprotected ortho-nitrobenzyl (ONB)-functionalized nucleic acids and their impact on diverse research fields including DNA nanotechnology and materials chemistry, biological chemistry, and systems chemistry. Specific topics addressed include the synthesis of the ONB-modified nucleic acids, the mechanisms involved in the photochemical deprotection of the ONB units, and the photophysical and chemical means to tune the irradiation wavelength required for the photodeprotection process. Principles to activate ONB-caged nanostructures, ONB-protected DNAzymes and aptamer frameworks are introduced. Specifically, the use of ONB-protected nucleic acids for the phototriggered spatiotemporal amplified sensing and imaging of intracellular mRNAs at the single-cell level are addressed, and control over transcription machineries, protein translation and spatiotemporal silencing of gene expression by ONB-deprotected nucleic acids are demonstrated. In addition, photodeprotection of ONB-modified nucleic acids finds important applications in controlling material properties and functions. These are introduced by the phototriggered fusion of ONB nucleic acid functionalized liposomes as models for cell-cell fusion, the light-stimulated fusion of ONB nucleic acid functionalized drug-loaded liposomes with cells for therapeutic applications, and the photolithographic patterning of ONB nucleic acid-modified interfaces. Particularly, the photolithographic control of the stiffness of membrane-like interfaces for the guided patterned growth of cells is realized. Moreover, ONB-functionalized microcapsules act as light-responsive carriers for the controlled release of drugs, and ONB-modified DNA origami frameworks act as mechanical devices or stimuli-responsive containments for the operation of DNA machineries such as the CRISPR-Cas9 system. The future challenges and potential applications of photoprotected DNA structures are discussed.
Collapse
Affiliation(s)
- Michael
P. O’Hagan
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Zhijuan Duan
- State
Key Laboratory of Biogeology and Environmental Geology, Engineering
Research Center of Nano-Geomaterials of Ministry of Education, Faculty
of Materials Science and Chemistry, China
University of Geosciences, Wuhan 430074, China
| | - Fujian Huang
- State
Key Laboratory of Biogeology and Environmental Geology, Engineering
Research Center of Nano-Geomaterials of Ministry of Education, Faculty
of Materials Science and Chemistry, China
University of Geosciences, Wuhan 430074, China
| | - Shay Laps
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Jiantong Dong
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Fan Xia
- State
Key Laboratory of Biogeology and Environmental Geology, Engineering
Research Center of Nano-Geomaterials of Ministry of Education, Faculty
of Materials Science and Chemistry, China
University of Geosciences, Wuhan 430074, China
| | - Itamar Willner
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
4
|
Wu L, Liu Y, Wu X, Li Y, Du J, Qi S, Yang Q, Xu H, Li Y. A novel Near-Infrared fluorescent probe for Zn 2+ and CN - double detection based on dicyanoisfluorone derivatives with highly sensitive and selective, and its application in Bioimaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 267:120621. [PMID: 34802936 DOI: 10.1016/j.saa.2021.120621] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 11/03/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
We have successfully synthesized NIRF as a near-infrared fluorescence probe for relay recognition of zinc and cyanide ions. The probe possesses well selectivity and anti-interference ability over common ions towards Zn2+ and CN-. The results showed that Zn2+ and the probe formed [NIRF-Zn2+] complex after added Zn2+ into the probe NIRF solution, which emited red fluorescence. The probe can be used for quantitative detection of Zn2+ with a detection limit of 4.61 × 10-8 M. It was determined that the binding stoichiometry between the NIRF and Zn2+ was 1:1 according to the job,s curve. Subsequently, CN- was added to the NIRF-Zn2+ solution, CN- combined with Zn2+ to generate [Zn(CN-)x]1-x due to the stronger binding ability between zinc ion and cyanogen, which lead to the red fluorescence disappeared. The quantitative detection of CN- was realized with a detection limit of 7.9 × 10*7 M. In addition, the probe has excellent specificity and selectivity for Zn2+ and CN-. And the probe can be stable in a wide range of pH. Through biological experiments, we found that it can complete cell imaging in macrophages and imaging of living mice, which has application prospects in Bioimaging. In addition, the probe NIRF has good applicability for Zn2+ and CN- detection in actual samples.
Collapse
Affiliation(s)
- Liangqiang Wu
- College of Chemistry, Jilin University, Changchun 130021, Jilin, China
| | - Yan Liu
- College of Chemistry, Jilin University, Changchun 130021, Jilin, China
| | - Xiaodong Wu
- College of Chemistry, Jilin University, Changchun 130021, Jilin, China
| | - Yapeng Li
- College of Chemistry, Jilin University, Changchun 130021, Jilin, China
| | - Jianshi Du
- Key Laboratory of Lymphatic Surgery Jilin Province, Engineering Laboratory of Lymphatic Surgery Jilin Province, China-Japan Union Hospital of Jilin University, Changchun 130031, Jilin, China
| | - Shaolong Qi
- Key Laboratory of Lymphatic Surgery Jilin Province, Engineering Laboratory of Lymphatic Surgery Jilin Province, China-Japan Union Hospital of Jilin University, Changchun 130031, Jilin, China
| | - Qingbiao Yang
- College of Chemistry, Jilin University, Changchun 130021, Jilin, China; Key Laboratory of Lymphatic Surgery Jilin Province, Engineering Laboratory of Lymphatic Surgery Jilin Province, China-Japan Union Hospital of Jilin University, Changchun 130031, Jilin, China.
| | - Hai Xu
- College of Chemistry, Jilin University, Changchun 130021, Jilin, China
| | - Yaoxian Li
- College of Chemistry, Jilin University, Changchun 130021, Jilin, China
| |
Collapse
|
5
|
Ueda H, Suzuki M, Kuroda R, Tanaka T, Aoki S. Design, Synthesis, and Biological Evaluation of Boron-Containing Macrocyclic Polyamines and Their Zinc(II) Complexes for Boron Neutron Capture Therapy. J Med Chem 2021; 64:8523-8544. [PMID: 34077212 PMCID: PMC8279495 DOI: 10.1021/acs.jmedchem.1c00445] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Boron neutron capture therapy (BNCT)
is a binary therapeutic method
for cancer treatment based on the use of a combination of a cancer-specific
drug containing boron-10 (10B) and thermal neutron irradiation.
For successful BNCT, 10B-containing molecules need to accumulate
specifically in cancer cells, because destructive effect of the generated
heavy particles is limited basically to boron-containing cells. Herein,
we report on the design and synthesis of boron compounds that are
functionalized with 9-, 12-, and 15-membered macrocyclic polyamines
and their Zn2+ complexes. Their cytotoxicity, intracellular
uptake activity into cancer cells and normal cells, and BNCT effect
are also reported. The experimental data suggest that mono- and/or
diprotonated forms of metal-free [12]aneN4- and [15]aneN5-type ligands are uptaken into cancer cells, and their complexes
with intracellular metals such as Zn2+ would induce cell
death upon thermal neutron irradiation, possibly via interactions
with DNA.
Collapse
Affiliation(s)
- Hiroki Ueda
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Minoru Suzuki
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2-Asashiro-nishi, Kumatori, Osaka 590-0494, Japan
| | - Reiko Kuroda
- Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Tomohiro Tanaka
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Shin Aoki
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.,Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.,Research Institute for Biomedical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| |
Collapse
|
6
|
Liu Y, Wang X, Feng E, Fan C, Pu S. A highly selective sequential recognition probe for Zn 2+ and HSO 4-/H 2PO 4- based on a diarylethene chemosensor. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 246:119052. [PMID: 33075705 DOI: 10.1016/j.saa.2020.119052] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/29/2020] [Accepted: 10/05/2020] [Indexed: 06/11/2023]
Abstract
A novel diarylethene derivative chemosensor DTP-o connected to Schiff base unit for fluorescent detection of Zn2+ and relay-detection of HSO4-/H2PO4- was designed and synthesized successfully. DTP-o displayed excellent photochromism and fluorometric sensing toward Zn2+ to form DTP-o-Zn2+ complex in acetonitrile with the detection limit of 5.62 × 10-7 M. And the form of DTP-o combined with Zn2+ could further be verified by Job's plot titrations and mass spectrometry analysis. Furthermore, the complex of DTP-o-Zn2+ showed an excellent characteristic of fluorescent relay-response toward HSO4- and H2PO4- with high sensitivity and selectivity. The detection limits for HSO4- and H2PO4- were as low as 3.04 × 10-8 M and 3.41 × 10-8 M, respectively. Moreover, the sensor DTP-o could also be applied to detect Zn2+ on practical samples and test strips with high accuracy.
Collapse
Affiliation(s)
- Yang Liu
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| | - Xiao Wang
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| | - Erting Feng
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| | - Congbin Fan
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China.
| | - Shouzhi Pu
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China; Department of Ecology and Environment, Yuzhang Normal University, Nanchang 330103, PR China.
| |
Collapse
|
7
|
Kumar MMA, Biju VMN. A Quick Responsive Chitosan‐Oxine Based Thin Film to Recognize and Remove Zn
2+
Ions from Potable Water. ChemistrySelect 2020. [DOI: 10.1002/slct.202002302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
8
|
Ju H, Tenma H, Iwase M, Lee E, Ikeda M, Kuwahara S, Habata Y. Inclusion of alkyl nitriles by tetra-armed cyclens with styrylmethyl groups. Dalton Trans 2020; 49:3112-3119. [DOI: 10.1039/d0dt00335b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new technique for the assignment of the absolute configurations of low [α]D alkyl-nitriles using a Ag+ complex with a tetra-armed cyclen is reported.
Collapse
Affiliation(s)
- Huiyeong Ju
- Department of Chemistry
- Toho University
- Chiba 274-8510
- Japan
| | - Honoka Tenma
- Department of Chemistry
- Toho University
- Chiba 274-8510
- Japan
| | - Miki Iwase
- Department of Chemistry
- Toho University
- Chiba 274-8510
- Japan
| | - Eunji Lee
- Department of Chemistry
- Toho University
- Chiba 274-8510
- Japan
| | - Mari Ikeda
- Department of Chemistry
- Education Center
- Faculty of Engineering
- Chiba Institute of Technology
- Chiba 275-0023
| | - Shunsuke Kuwahara
- Department of Chemistry
- Toho University
- Chiba 274-8510
- Japan
- Research Centre for Integrated Properties
| | - Yoichi Habata
- Department of Chemistry
- Toho University
- Chiba 274-8510
- Japan
- Research Centre for Integrated Properties
| |
Collapse
|
9
|
Akhil Kumar MM, Biju VM. A cost-effective chitosan–oxine based thin film for a volatile acid vapour sensing application. NEW J CHEM 2020. [DOI: 10.1039/d0nj01757d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A polymer film based chemosensor was developed through the immobilization of chitosan and oxine, for the detection of TFA vapors.
Collapse
Affiliation(s)
- M. M. Akhil Kumar
- Department of Chemistry
- National Institute of Technology
- Tiruchirappalli 620015
- India
| | - V. M. Biju
- Department of Chemistry
- National Institute of Technology
- Tiruchirappalli 620015
- India
| |
Collapse
|
10
|
Tamura Y, Hisamatsu Y, Kumar S, Itoh T, Sato K, Kuroda R, Aoki S. Efficient Synthesis of Tris-Heteroleptic Iridium(III) Complexes Based on the Zn2+-Promoted Degradation of Tris-Cyclometalated Iridium(III) Complexes and Their Photophysical Properties. Inorg Chem 2016; 56:812-833. [DOI: 10.1021/acs.inorgchem.6b02270] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yuichi Tamura
- Faculty of Pharmaceutical Science and §Division of Medical-Science-Engineering
Cooperation, ∥Imaging Frontier Center, ‡Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Yosuke Hisamatsu
- Faculty of Pharmaceutical Science and §Division of Medical-Science-Engineering
Cooperation, ∥Imaging Frontier Center, ‡Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Sarvendra Kumar
- Faculty of Pharmaceutical Science and §Division of Medical-Science-Engineering
Cooperation, ∥Imaging Frontier Center, ‡Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Taiki Itoh
- Faculty of Pharmaceutical Science and §Division of Medical-Science-Engineering
Cooperation, ∥Imaging Frontier Center, ‡Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Kyouhei Sato
- Faculty of Pharmaceutical Science and §Division of Medical-Science-Engineering
Cooperation, ∥Imaging Frontier Center, ‡Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Reiko Kuroda
- Faculty of Pharmaceutical Science and §Division of Medical-Science-Engineering
Cooperation, ∥Imaging Frontier Center, ‡Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Shin Aoki
- Faculty of Pharmaceutical Science and §Division of Medical-Science-Engineering
Cooperation, ∥Imaging Frontier Center, ‡Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| |
Collapse
|
11
|
Kumar S, Hisamatsu Y, Tamaki Y, Ishitani O, Aoki S. Design and Synthesis of Heteroleptic Cyclometalated Iridium(III) Complexes Containing Quinoline-Type Ligands that Exhibit Dual Phosphorescence. Inorg Chem 2016; 55:3829-43. [DOI: 10.1021/acs.inorgchem.5b02872] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | | | - Yusuke Tamaki
- Department
of Chemistry, Graduate School of Science and Engineering, Tokyo Institute of Technology, 2-12-1-NE-1 O-okayama, Meguro-Ku, Tokyo 152-8550, Japan
| | - Osamu Ishitani
- Department
of Chemistry, Graduate School of Science and Engineering, Tokyo Institute of Technology, 2-12-1-NE-1 O-okayama, Meguro-Ku, Tokyo 152-8550, Japan
| | | |
Collapse
|
12
|
Tanaka T, Nishiura Y, Araki R, Saido T, Abe R, Aoki S. 11B NMR Probes of Copper(II): Finding and Implications of the Cu2+-Promoted Decomposition ofortho-Carborane Derivatives. Eur J Inorg Chem 2016. [DOI: 10.1002/ejic.201600117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
13
|
Aoki S, Ariyasu S, Hanaya K, Hisamatsu Y, Sugai T. Chemical Reactions of 8-Quinolinol Derivatives and Their Applications to Biochemical Tools and Enzyme Inhibitors. J SYN ORG CHEM JPN 2016. [DOI: 10.5059/yukigoseikyokaishi.74.482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Shin Aoki
- Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Shinya Ariyasu
- School of Physical & Mathematical Sciences, Nanyang Technological University
| | | | | | | |
Collapse
|
14
|
Hanaya K, Yoshioka S, Ariyasu S, Aoki S, Shoji M, Sugai T. Development of a novel sulfonate ester-based prodrug strategy. Bioorg Med Chem Lett 2016; 26:545-550. [DOI: 10.1016/j.bmcl.2015.11.074] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 11/14/2015] [Accepted: 11/20/2015] [Indexed: 11/16/2022]
|
15
|
Terenzi A, Lauria A, Almerico AM, Barone G. Zinc complexes as fluorescent chemosensors for nucleic acids: new perspectives for a "boring" element. Dalton Trans 2015; 44:3527-35. [PMID: 25375997 DOI: 10.1039/c4dt02881c] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Zinc(II) complexes are effective and selective nucleic acid-binders and strongly fluorescent molecules in the low energy range, from the visible to the near infrared. These two properties have often been exploited to quantitatively detect nucleic acids in biological samples, in both in vitro and in vivo models. In particular, the fluorescent emission of several zinc(II) complexes is drastically enhanced or quenched by the binding to nucleic acids and/or upon visible light exposure, in a different fashion in bulk solution and when bound to DNA. The twofold objective of this perspective is (1) to review recent utilisations of zinc(II) complexes as selective fluorescent probes for nucleic acids and (2) to highlight their novel potential applications as diagnostic tools based on their photophysical properties.
Collapse
Affiliation(s)
- Alessio Terenzi
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Viale delle Scienze, Edificio 17, 90128 Palermo, Italy.
| | | | | | | |
Collapse
|
16
|
Novel Twisted Intramolecular Charge Transfer (TICT) Extended Fluorescent Styryl Derivatives Containing Quinoline Electron Releasing Moiety. J Fluoresc 2014; 24:1811-25. [DOI: 10.1007/s10895-014-1470-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 09/29/2014] [Indexed: 12/01/2022]
|
17
|
Mikata Y, Nodomi Y, Kizu A, Konno H. Quinoline-attached triazacyclononane (TACN) derivatives as fluorescent zinc sensors. Dalton Trans 2014; 43:1684-90. [PMID: 24227013 DOI: 10.1039/c3dt52107a] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
TACN (1,4,7-triazacyclononane) derivatives with three 6-methoxy-2-quinolylmethyl or 1-isoquinolylmethyl moieties were examined as fluorescent zinc sensors. Upon the addition of zinc, 6-MeOTQTACN (5) exhibited a 9-fold fluorescence increase at 420 nm (λex = 341 nm, ϕZn = 0.070). Fluorescence enhancement is specific for zinc and cadmium, although cadmium induces smaller increases (ICd/I0 = 3.6 and ICd/IZn = 40%). The isoquinoline analog 1-isoTQTACN (6) exhibits minimal fluorescence enhancement upon zinc binding. TPEN (N,N,N',N'-tetrakis(2-pyridylmethyl)ethylene-diamine) does not extract zinc from the 6-MeOTQTACN-Zn complex (5-Zn). The quantum yield, metal ion selectivity and metal binding affinity differences between TACN and ethylenediamine (EN) skeletons in quinoline-based ligands are discussed based on the X-ray crystallographic analysis of zinc and cadmium complexes, demonstrating the superiority of quinoline-TACN conjugates.
Collapse
Affiliation(s)
- Yuji Mikata
- KYOUSEI Science Center, Nara Women's University, Nara 630-8506, Japan.
| | | | | | | |
Collapse
|
18
|
Design and synthesis of 8-hydroxyquinoline-based radioprotective agents. Bioorg Med Chem 2014; 22:3891-905. [DOI: 10.1016/j.bmc.2014.06.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 06/05/2014] [Accepted: 06/06/2014] [Indexed: 11/22/2022]
|
19
|
AS-2, a novel inhibitor of p53-dependent apoptosis, prevents apoptotic mitochondrial dysfunction in a transcription-independent manner and protects mice from a lethal dose of ionizing radiation. Biochem Biophys Res Commun 2014; 450:1498-504. [PMID: 25026551 DOI: 10.1016/j.bbrc.2014.07.037] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 07/05/2014] [Indexed: 11/20/2022]
Abstract
In a previous study, we reported that some tetradentate zinc(II) chelators inhibit p53 through the denaturation of its zinc-requiring structure but a chelator, Bispicen, a potent inhibitor of in vitro apoptosis, failed to show any efficient radioprotective effect against irradiated mice because the toxicity of the chelator to mice. The unsuitability of using tetradentate chelators as radioprotectors prompted us to undertake a more extensive search for p53-inhibiting agents that are weaker zinc(II) chelators and therefore less toxic. Here, we show that an 8-hydroxyquinoline (8HQ) derivative, AS-2, suppresses p53-dependent apoptosis through a transcription-independent mechanism. A mechanistic study using cells with different p53 characteristics revealed that the suppressive effect of AS-2 on apoptosis is specifically mediated through p53. In addition, AS-2 was less effective in preventing p53-mediated transcription-dependent events than pifithrin-μ (PFTμ), an inhibitor of transcription-independent apoptosis by p53. Fluorescence visualization of the extranuclear distribution of AS-2 also supports that it is ineffective on the transcription-dependent pathway. Further investigations revealed that AS-2 suppressed mitochondrial apoptotic events, such as the mitochondrial release of intermembrane proteins and the loss of mitochondrial membrane potential, although AS-2 resulted in an increase in the mitochondrial translocation of p53 as opposed to the decrease of cytosolic p53, and did not affect the apoptotic interaction of p53 with Bcl-2. AS-2 also protected mice that had been exposed to a lethal dose of ionizing radiation. Our findings indicate that some types of bidentate 8HQ chelators could serve as radioprotectors with no substantial toxicity in vivo.
Collapse
|
20
|
Fujioka H, Tsunehiro M, Kawaguchi M, Kuramoto Y, Kurosaki H, Hieda Y, Kinoshita-Kikuta E, Kinoshita E, Koike T. Simple enrichment of thiol-containing biomolecules by using zinc(II)-cyclen-functionalized magnetic beads. J Sep Sci 2014; 37:1601-9. [DOI: 10.1002/jssc.201400135] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 03/11/2014] [Accepted: 04/02/2014] [Indexed: 01/06/2023]
Affiliation(s)
- Haruto Fujioka
- Laboratory of Organic Medicinal Chemistry; Faculty of Pharmacy & Pharmaceutical Sciences; Fukuyama University; Fukuyama Japan
| | - Masaya Tsunehiro
- Department of Functional Molecular Science; Institute of Biomedical & Health Sciences; Hiroshima University; Hiroshima Japan
| | - Maho Kawaguchi
- Department of Functional Molecular Science; Institute of Biomedical & Health Sciences; Hiroshima University; Hiroshima Japan
| | - Yasuhiro Kuramoto
- Department of Functional Molecular Science; Institute of Biomedical & Health Sciences; Hiroshima University; Hiroshima Japan
| | - Hiromasa Kurosaki
- Department of Structure-Function Physical Chemistry; Graduate School of Pharmaceutical Sciences; Kumamoto University; Kumamoto Japan
| | - Yuhzo Hieda
- Laboratory of Organic Medicinal Chemistry; Faculty of Pharmacy & Pharmaceutical Sciences; Fukuyama University; Fukuyama Japan
| | - Emiko Kinoshita-Kikuta
- Department of Functional Molecular Science; Institute of Biomedical & Health Sciences; Hiroshima University; Hiroshima Japan
| | - Eiji Kinoshita
- Department of Functional Molecular Science; Institute of Biomedical & Health Sciences; Hiroshima University; Hiroshima Japan
| | - Tohru Koike
- Department of Functional Molecular Science; Institute of Biomedical & Health Sciences; Hiroshima University; Hiroshima Japan
| |
Collapse
|
21
|
Zhong K, Zhou X, Hou R, Zhou P, Hou S, Bian Y, Zhang G, Tang L, Shang X. A water-soluble highly sensitive and selective fluorescent sensor for Hg2+ based on 2-(2-(8-hydroxyquinolin)-yl)benzimidazole via ligand-to-metal charge transfer (LMCT). RSC Adv 2014. [DOI: 10.1039/c4ra00060a] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
22
|
Itoh S, Tokunaga T, Sonoike S, Kitamura M, Yamano A, Aoki S. Asymmetric Aldol Reactions between Acetone and Benzaldehydes Catalyzed by Chiral Zn2+Complexes of Aminoacyl 1,4,7,10-Tetraazacyclododecane: Fine-Tuning of the Amino-Acid Side Chains and a Revised Reaction Mechanism. Chem Asian J 2013; 8:2125-35. [DOI: 10.1002/asia.201300308] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 04/29/2013] [Indexed: 10/26/2022]
|
23
|
Fang X, Li H, Zhao G, Fang X, Xu J, Yang W. Blue fluorescent protein analogs as chemosensors for Zn2+. Biosens Bioelectron 2013. [DOI: 10.1016/j.bios.2012.09.065] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
24
|
Klán P, Šolomek T, Bochet CG, Blanc A, Givens R, Rubina M, Popik V, Kostikov A, Wirz J. Photoremovable protecting groups in chemistry and biology: reaction mechanisms and efficacy. Chem Rev 2013; 113:119-91. [PMID: 23256727 PMCID: PMC3557858 DOI: 10.1021/cr300177k] [Citation(s) in RCA: 1313] [Impact Index Per Article: 109.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2012] [Indexed: 02/06/2023]
Affiliation(s)
- Petr Klán
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Nouri H, Cadiou C, Lawson-Daku LM, Hauser A, Chevreux S, Déchamps-Olivier I, Lachaud F, Ternane R, Trabelsi-Ayadi M, Chuburu F, Lemercier G. A modified cyclen azaxanthone ligand as a new fluorescent probe for Zn2+. Dalton Trans 2013; 42:12157-64. [DOI: 10.1039/c3dt51216a] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
26
|
Shinoda S. Dynamic cyclen-metal complexes for molecular sensing and chirality signaling. Chem Soc Rev 2012; 42:1825-35. [PMID: 23034678 DOI: 10.1039/c2cs35295h] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Structural dynamism plays important roles in artificial and biological systems, because it controls structures and functions of various molecules and assemblies. In this review, molecular recognition and self-assembling behavior of dynamic armed cyclen-metal complexes are discussed at the molecular and supramolecular levels. These metal complexes provide useful platforms for molecular receptors, supramolecules, and molecular assemblies that can respond rapidly to guest molecules and environments. Since armed cyclens have many structural and geometrical variations, they form a wide variety of metal complexes having specific sensing and signaling functions. The Lewis acidity of the metal cations plays an essential role in anion binding and in hydrolytic catalysis of phosphate esters. Characteristic luminescence and magnetic properties of lanthanides also enable techniques for effective bio-imaging. They also serve as chiral building blocks for self-assembled architectures, which offer chirality integration effective for chirality sensing and signaling at the supramolecular level.
Collapse
Affiliation(s)
- Satoshi Shinoda
- Department of Chemistry, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan.
| |
Collapse
|
27
|
del Mundo IMA, Siters KE, Fountain MA, Morrow JR. Structural basis for bifunctional zinc(II) macrocyclic complex recognition of thymine bulges in DNA. Inorg Chem 2012; 51:5444-57. [PMID: 22507054 DOI: 10.1021/ic3004245] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The zinc(II) complex of 1-(4-quinoylyl)methyl-1,4,7,10-tetraazacyclododecane (cy4q) binds selectively to thymine bulges in DNA and to a uracil bulge in RNA. Binding constants are in the low-micromolar range for thymine bulges in the stems of hairpins, for a thymine bulge in a DNA duplex, and for a uracil bulge in an RNA hairpin. Binding studies of Zn(cy4q) to a series of hairpins containing thymine bulges with different flanking bases showed that the complex had a moderate selectivity for thymine bulges with neighboring purines. The dissociation constants of the most strongly bound Zn(cy4q)-DNA thymine bulge adducts were 100-fold tighter than similar sequences with fully complementary stems or than bulges containing cytosine, guanine, or adenine. In order to probe the role of the pendent group, three additional zinc(II) complexes containing 1,4,7,10-tetraazacyclododecane (cyclen) with aromatic pendent groups were studied for binding to DNA including 1-(2-quinolyl)methyl-1,4,7,10-tetraazacyclododecane (cy2q), 1-(4-biphenyl)methyl-1,4,7,10-tetraazacyclododecane (cybp), and 5-(1,4,7,10-tetraazacyclododecan-1-ylsulfonyl)-N,N-dimethylnaphthalen-1-amine (dsc). The Zn(cybp) complex binds with moderate affinity but little selectivity to DNA hairpins with thymine bulges and to DNA lacking bulges. Similarly, Zn(dsc) binds weakly both to thymine bulges and hairpins with fully complementary stems. The zinc(II) complex of cy2q has the 2-quinolyl moiety bound to the Zn(II) center, as shown by (1)H NMR spectroscopy and pH-potentiometric titrations. As a consequence, only weak (500 μM) binding is observed to DNA with no appreciable selectivity. An NMR structure of a thymine-bulge-containing hairpin shows that the thymine is extrahelical but rotated toward the major groove. NMR data for Zn(cy4q) bound to DNA containing a thymine bulge is consistent with binding of the zinc(II) complex to the thymine N3(-) and stacking of the quinoline on top of the thymine. The thymine-bulge bound zinc(II) complex is pointed into the major groove, and there are interactions with the guanine positioned 5' to the thymine bulge.
Collapse
Affiliation(s)
- Imee Marie A del Mundo
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, USA
| | | | | | | |
Collapse
|
28
|
Hanaya K, Suetsugu M, Saijo S, Yamato I, Aoki S. Potent inhibition of dinuclear zinc(II) peptidase, an aminopeptidase from Aeromonas proteolytica, by 8-quinolinol derivatives: inhibitor design based on Zn2+ fluorophores, kinetic, and X-ray crystallographic study. J Biol Inorg Chem 2012; 17:517-29. [DOI: 10.1007/s00775-012-0873-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Accepted: 12/28/2011] [Indexed: 11/25/2022]
|
29
|
Kitamura M, Suzuki T, Abe R, Ueno T, Aoki S. 11B NMR sensing of d-block metal ions in vitro and in cells based on the carbon-boron bond cleavage of phenylboronic acid-pendant cyclen (cyclen = 1,4,7,10-tetraazacyclododecane). Inorg Chem 2011; 50:11568-80. [PMID: 22010826 DOI: 10.1021/ic201507q] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Noninvasive magnetic resonance imaging (MRI) including the "chemical shift imaging (CSI)" technique based on (1)H NMR signals is a powerful method for the in vivo imaging of intracellular molecules and for monitoring various biological events. However, it has the drawback of low resolution because of background signals from intrinsic water protons. On the other hand, it is assumed that the (11)B NMR signals which can be applied to a CSI technique have certain advantages, since boron is an ultratrace element in animal cells and tissues. In this manuscript, we report on the sensing of biologically indispensable d-block metal cations such as zinc, copper, iron, cobalt, manganese, and nickel based on (11)B NMR signals of simple phenylboronic acid-pendant cyclen (cyclen = 1,4,7,10-tetraazacyclododecane), L(6) and L(7), in aqueous solution at physiological pH. The results indicate that the carbon-boron bond of L(6) is cleaved upon the addition of Zn(2+) and the broad (11)B NMR signal of L(6) at 31 ppm is shifted upfield to 19 ppm, which corresponds to the signal of B(OH)(3). (1)H NMR, X-ray single crystal structure analysis, and UV absorption spectra also provide support for the carbon-boron bond cleavage of ZnL(6). Because the cellular uptake of L(6) was very small, a more cell-membrane permeable ligand containing the boronic acid ester L(7) was synthesized and investigated for the sensing of d-block metal ions using (11)B NMR. Data on (11)B NMR sensing of Zn(2+) in Jurkat T cells using L(7) is also presented.
Collapse
Affiliation(s)
- Masanori Kitamura
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Japan
| | | | | | | | | |
Collapse
|
30
|
|
31
|
Jiang XH, Wang BD, Yang ZY, Liu YC, Li TR, Liu ZC. 8-Hydroxyquinoline-5-carbaldehyde Schiff-base as a highly selective and sensitive Al3+ sensor in weak acid aqueous medium. INORG CHEM COMMUN 2011; 14:1224-1227. [DOI: 10.1016/j.inoche.2011.04.027] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
32
|
|
33
|
Ariyasu S, Hanaya K, Tsunoda M, Kitamura M, Hayase M, Abe R, Aoki S. Photochemical Cleavage Reaction of 8-Quinolinyl Sulfonates That Are Halogenated and Nitrated at the 7-Position. Chem Pharm Bull (Tokyo) 2011; 59:1355-62. [DOI: 10.1248/cpb.59.1355] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Shinya Ariyasu
- Center for Technologies against Cancer, Tokyo University of Science
| | - Kengo Hanaya
- Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Megumi Tsunoda
- Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Masanori Kitamura
- Center for Technologies against Cancer, Tokyo University of Science
- Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Masanori Hayase
- Center for Technologies against Cancer, Tokyo University of Science
- Faculty of Science and Technology, Tokyo University of Science
| | - Ryo Abe
- Center for Technologies against Cancer, Tokyo University of Science
- Faculty of Pharmaceutical Sciences, Tokyo University of Science
- Research Institute for Biological Science, Tokyo University of Science
| | - Shin Aoki
- Center for Technologies against Cancer, Tokyo University of Science
- Faculty of Pharmaceutical Sciences, Tokyo University of Science
| |
Collapse
|
34
|
Jiao L, Meng T, Chen Y, Zhang M, Wang X, Hao E. Triazolyl-linked 8-Hydroxyquinoline Dimer as a Selective Turn-on Fluorosensor for Cd2+. CHEM LETT 2010. [DOI: 10.1246/cl.2010.803] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
35
|
Tamanini E, Flavin K, Motevalli M, Piperno S, Gheber LA, Todd MH, Watkinson M. Cyclam-Based “Clickates”: Homogeneous and Heterogeneous Fluorescent Sensors for Zn(II). Inorg Chem 2010; 49:3789-800. [DOI: 10.1021/ic901939x] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Emiliano Tamanini
- The Joseph Priestly Building, School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, U.K
| | - Kevin Flavin
- The Joseph Priestly Building, School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, U.K
| | - Majid Motevalli
- The Joseph Priestly Building, School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, U.K
| | - Silvia Piperno
- Department of Biotechnological Engineering, Ben Gurion University Negev, IL-84105 Beer Sheva, Israel
| | - Levi A. Gheber
- Department of Biotechnological Engineering, Ben Gurion University Negev, IL-84105 Beer Sheva, Israel
| | - Matthew H. Todd
- School of Chemistry, University of Sydney, NSW 2006, Australia
| | - Michael Watkinson
- The Joseph Priestly Building, School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, U.K
| |
Collapse
|
36
|
Aoki S, Hanaya K, Kageyama Y, Kitamura M. Design and Synthesis of Photocleavable Biotinylated-Dopamine with Polyethyleneoxy Photocleavable Linkers. HETEROCYCLES 2010. [DOI: 10.3987/com-10-s(e)124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
37
|
Jackson RK, Shi Y, Yao X, Burdette SC. FerriNaphth: A fluorescent chemodosimeter for redox active metal ions. Dalton Trans 2010; 39:4155-61. [DOI: 10.1039/c000248h] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|