1
|
He X, Zou C, Zhang L, Wu P, Yao Y, Dong K, Ren Y, Hu WW, Li Y, Luo H, Ying B, Luo F, Sun X. Advances in Electrochemical Nitrite Reduction toward Nitric Oxide Synthesis for Biomedical Applications. Adv Healthc Mater 2025; 14:e2403468. [PMID: 39865954 DOI: 10.1002/adhm.202403468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/03/2024] [Indexed: 01/28/2025]
Abstract
Nitric oxide (NO) is an essential molecule in biomedicine, recognized for its antibacterial properties, neuronal modulation, and use in inhalation therapies. The effectiveness of NO-based treatments relies on precise control of NO concentrations tailored to specific therapeutic needs. Electrochemical generation of NO (E-NOgen) via nitrite (NO2 -) reduction offers a scalable and efficient route for controlled NO production, while also addressing environmental concerns by reducing NO2 - pollution and maintaining nitrogen cycle balance. Recent developments in catalysts and E-NOgen devices have propelled NO2 - conversion, enabling on-demand NO production. This review provides an overview of NO2 - reduction pathways, with a focus on cutting-edge Fe/Cu-based E-NOgen catalysts, and explores the development of E-NOgen devices for biomedical use. Challenges and future directions for advancing E-NOgen technologies are also discussed.
Collapse
Affiliation(s)
- Xun He
- Center for High Altitude Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Chang Zou
- Center for High Altitude Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Limei Zhang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Peilin Wu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yongchao Yao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Kai Dong
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Sichuan, 250014, China
| | - Yuchun Ren
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Wenchuang Walter Hu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yi Li
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Han Luo
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Binwu Ying
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Fengming Luo
- Center for High Altitude Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xuping Sun
- Center for High Altitude Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Sichuan, 250014, China
| |
Collapse
|
2
|
Martirosyan GG, Hovhannisyan AA, Iretskii AV, Ford PC. Reduction of iron porphyrin nitrate to the iron nitrosyl by H 2S/thiol. studies in sublimed layers. Chem Commun (Camb) 2025; 61:1419-1422. [PMID: 39711427 DOI: 10.1039/d4cc06229a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Hemes play key roles in enzymatic production of the mammalian gasotransmitter NO by nitric oxide synthase as well as in conversion from inorganic nitrite. In the present study, we report a hitherto unknown pathway of nitrosyl formation via thiol reduction of a iron porphyrin nitrate complex in the solid state.
Collapse
Affiliation(s)
- Garik G Martirosyan
- The Scientific Technological Centre of Organic and Pharmaceutical Chemistry NAS RA, 26 Azatutyan Av., Yerevan, 0014, Armenia.
| | - Astghik A Hovhannisyan
- The Scientific Technological Centre of Organic and Pharmaceutical Chemistry NAS RA, 26 Azatutyan Av., Yerevan, 0014, Armenia.
| | - Alexei V Iretskii
- Lake Superior State University, Department of Chemistry, 650 W. Easterday Ave., Sault Ste. Marie, MI 49783, USA
| | - Peter C Ford
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA
| |
Collapse
|
3
|
Martirosyan GG, Hovhannisyan AA, Harutyunyan LS, Aleksanyan AG, Iretskii AV, Ford PC. Nitrite Reduction with H 2S/Thiol Mediated by Cobalt and Manganese Porphyrins in the Solid State. Inorg Chem 2025; 64:741-750. [PMID: 39748670 DOI: 10.1021/acs.inorgchem.4c02733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
The endogenous reduction of nitrite to nitrosyl is drawing increasing attention as a protective mechanism against hypoxic injury in mammalian physiology and as an alternative source of NO, which is involved in a wide variety of biological activities. Thus, chemical mechanisms for this transformation, which are mediated by metallo proteins, are of considerable interest. The study described here examines the reactions of the biomimetic models Co(TTP)(NO2) (TTP = meso-tetratolylporphyrinato dianion) and Mn(TPP)(ONO) (TPP = meso-tetraphenyl-porphyrinato dianion) in sublimated solid films with hydrogen sulfide (H2S) and with ethanethiol (EtSH) at various temperatures from 77 K to room temperature using in situ infrared and optical spectroscopy. In both cases, the coordinated nitrite complex is eventually converted to the respective nitrosyl Co(TTP)(NO) and Mn(TPP)(NO); however, reaction at low temperature first gave a novel six-coordinate complex M(Por)(RSH)(nitrite). Warming these films in the presence of excess thiol resulted in the formation of the two nitrosyl complexes. Mass spectrometric analysis of volatile products and DFT computations of possible intermediates are reported, and potential mechanisms for reduction of the coordinated nitrite ions are discussed.
Collapse
Affiliation(s)
- Garik G Martirosyan
- The Scientific Technological Centre of Organic and Pharmaceutical Chemistry NAS RA, Molecule Structure Research Centre, 26 Azatutyan Av., Yerevan 0014, Armenia
| | - Astghik A Hovhannisyan
- The Scientific Technological Centre of Organic and Pharmaceutical Chemistry NAS RA, Molecule Structure Research Centre, 26 Azatutyan Av., Yerevan 0014, Armenia
| | - Lusine S Harutyunyan
- The Scientific Technological Centre of Organic and Pharmaceutical Chemistry NAS RA, Molecule Structure Research Centre, 26 Azatutyan Av., Yerevan 0014, Armenia
| | - Ashkharuhi G Aleksanyan
- The Scientific Technological Centre of Organic and Pharmaceutical Chemistry NAS RA, Molecule Structure Research Centre, 26 Azatutyan Av., Yerevan 0014, Armenia
| | - Alexei V Iretskii
- Lake Superior State University, Department of Chemistry, 650 W. Easterday Ave., Sault Ste. Marie, Michigan 49783, United States
| | - Peter C Ford
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
4
|
Biswas J, Kulbir F, Bhardwaj P, Ghosh S, Chandra Sahoo S, Apfel UP, Kumar P. Acid-catalyzed Transformation of Nitrite to Nitric Oxide on Copper(II)-Cobalt(II) Centers in a Bimetallic Complex. Chemistry 2024; 30:e202402295. [PMID: 38985519 DOI: 10.1002/chem.202402295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 07/12/2024]
Abstract
Nitrite (NO2 -) serves as a pool of nitric oxide (NO) in biological systems under hypoxic conditions, and it is transformed to NO by nitrite reductase (NiR) enzyme in the presence of acid (H+ ions). However, NO synthases (NOSs) generate NO via L-arginine oxidation in normoxic conditions. Previously, acid-induced NO2 - reduction chemistry was modeled on mono-metallic 3d-metals, generating metal-nitrosyls or NO(g) with H2O or H2O2 products. Herein, to understand the relative potency of a bimetallic system, we report the acid-induced reductive conversion of η2-bound NO2 - to NO on CuII-CoII centers of a hetero-bimetallic CuII-nitrito-CoII complex, [(LN8H)CuII-NO2 --CoII]3+ (CuII-NO2 --CoII, 2) bearing an octadentate N8-cryptand ligand (LN8H). The CuII-NO2 --CoII generates [CuII(LN8H)CoII]4+ (1) upon reaction with one equiv. acid (HClO4, H+ ions source) with NO(g) via a presumed transient nitrousacid (ONOH) intermediate species. Likewise, this NO2 - reduction was found to form H2O, which is believed to be from the decomposition of H2O2, an intermediate species. In addition, complex 2, in the presence of more than one equiv. H+ ions also showed the formation of NO(g) with H2O. Mechanistic investigations, using 15N-labeled-15NO2 -, 18O-labeled-18O14N16O- and 2H-labeled-DClO4 (D+ source), revealed that the N-atom and O-atom in the 14/15NO and 14N18O gases are derived from NO2 - ligand and H-atom in H2O derived from H+-source, respectively.
Collapse
Affiliation(s)
- Jyotiprokash Biswas
- Ruhr-Universität Bochum, Inorganic Chemistry I Universität Strasse 150, NC 1/71a, 44801, Bochum, Germany
| | - Fnm/ Kulbir
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Tirupati, 517507, India
| | - Prabhakar Bhardwaj
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Tirupati, 517507, India
| | - Somnath Ghosh
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Tirupati, 517507, India
| | | | - Ulf-Peter Apfel
- Ruhr-Universität Bochum, Inorganic Chemistry I Universität Strasse 150, NC 1/71a, 44801, Bochum, Germany
| | - Pankaj Kumar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Tirupati, 517507, India
| |
Collapse
|
5
|
Kulbir, Das S, Devi T, Ghosh S, Chandra Sahoo S, Kumar P. Acid-induced nitrite reduction of nonheme iron(ii)-nitrite: mimicking biological Fe-NiR reactions. Chem Sci 2023; 14:2935-2942. [PMID: 36937601 PMCID: PMC10016336 DOI: 10.1039/d2sc06704h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/14/2023] [Indexed: 02/25/2023] Open
Abstract
Nitrite reductase (NiR) catalyzes nitrite (NO2 -) to nitric oxide (NO) transformation in the presence of an acid (H+ ions/pH) and serves as a critical step in NO biosynthesis. In addition to the NiR enzyme, NO synthases (NOSs) participate in NO production. The chemistry involved in the catalytic reduction of NO2 -, in the presence of H+, generates NO with a H2O molecule utilizing two H+ + one electron from cytochromes and is believed to be affected by the pH. Here, to understand the effect of H+ ions on NO2 - reduction, we report the acid-induced NO2 - reduction chemistry of a nonheme FeII-nitrito complex, [(12TMC)FeII(NO2 -)]+ (FeII-NO2 -, 2), with variable amounts of H+. FeII-NO2 - upon reaction with one-equiv. of acid (H+) generates [(12TMC)Fe(NO)]2+, {FeNO}7 (3) with H2O2 rather than H2O. However, the amount of H2O2 decreases with increasing equivalents of H+ and entirely disappears when H+ reaches ≅ two-equiv. and shows H2O formation. Furthermore, we have spectroscopically characterized and followed the formation of H2O2 (H+ = one-equiv.) and H2O (H+ ≅ two-equiv.) and explained why bio-driven NiR reactions end with NO and H2O. Mechanistic investigations, using 15N-labeled-15NO2 - and 2H-labeled-CF3SO3D (D+ source), revealed that the N atom in the {Fe14/15NO}7 is derived from the NO2 - ligand and the H atom in H2O or H2O2 is derived from the H+ source, respectively.
Collapse
Affiliation(s)
- Kulbir
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati 517507 India
| | - Sandip Das
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati 517507 India
| | - Tarali Devi
- Humboldt-Universität zu Berlin, Institut für Chemie Brook-Taylor-Straße 2 D-12489 Berlin Germany
| | - Somnath Ghosh
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati 517507 India
| | | | - Pankaj Kumar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati 517507 India
| |
Collapse
|
6
|
Mondal P, Tolbert GB, Wijeratne GB. Bio-inspired nitrogen oxide (NO x) interconversion reactivities of synthetic heme Compound-I and Compound-II intermediates. J Inorg Biochem 2021; 226:111633. [PMID: 34749065 DOI: 10.1016/j.jinorgbio.2021.111633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 10/06/2021] [Accepted: 10/12/2021] [Indexed: 10/20/2022]
Abstract
Dioxygen activating heme enzymes have long predicted to be powerhouses for nitrogen oxide interconversion, especially for nitric oxide (NO) oxidation which has far-reaching biological and/or environmental impacts. Lending credence, reactivity of NO with high-valent heme‑oxygen intermediates of globin proteins has recently been implicated in the regulation of a variety of pivotal physiological events such as modulating catalytic activities of various heme enzymes, enhancing antioxidant activity to inhibit oxidative damage, controlling inflammatory and infectious properties within the local heme environments, and NO scavenging. To reveal insights into such crucial biological processes, we have investigated low temperature NO reactivities of two classes of synthetic high-valent heme intermediates, Compound-II and Compound-I. In that, Compound-II rapidly reacts with NO yielding the six-coordinate (NO bound) heme ferric nitrite complex, which upon warming to room temperature converts into the five-coordinate heme ferric nitrite species. These ferric nitrite complexes mediate efficient substrate oxidation reactions liberating NO; i.e., shuttling NO2- back to NO. In contrast, Compound-I and NO proceed through an oxygen-atom transfer process generating the strong nitrating agent NO2, along with the corresponding ferric nitrosyl species that converts to the naked heme ferric parent complex upon warmup. All reaction components have been fully characterized by UV-vis, 2H NMR and EPR spectroscopic methods, mass spectrometry, elemental analyses, and semi-quantitative determination of NO2- anions. The clean, efficient, potentially catalytic NOx interconversions driven by high-valent heme species presented herein illustrate the strong prospects of a heme enzyme/O2/NOx dependent unexplored territory that is central to human physiology, pathology, and therapeutics.
Collapse
Affiliation(s)
- Pritam Mondal
- Department of Chemistry and O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35205, United States
| | - Garrett B Tolbert
- Department of Chemistry and O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35205, United States
| | - Gayan B Wijeratne
- Department of Chemistry and O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35205, United States.
| |
Collapse
|
7
|
Kulbir, Das S, Devi T, Goswami M, Yenuganti M, Bhardwaj P, Ghosh S, Chandra Sahoo S, Kumar P. Oxygen atom transfer promoted nitrate to nitric oxide transformation: a step-wise reduction of nitrate → nitrite → nitric oxide. Chem Sci 2021; 12:10605-10612. [PMID: 35003574 PMCID: PMC8666158 DOI: 10.1039/d1sc00803j] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 07/01/2021] [Indexed: 12/22/2022] Open
Abstract
Nitrate reductases (NRs) are molybdoenzymes that reduce nitrate (NO3−) to nitrite (NO2−) in both mammals and plants. In mammals, the salival microbes take part in the generation of the NO2− from NO3−, which further produces nitric oxide (NO) either in acid-induced NO2− reduction or in the presence of nitrite reductases (NiRs). Here, we report a new approach of VCl3 (V3+ ion source) induced step-wise reduction of NO3− in a CoII-nitrato complex, [(12-TMC)CoII(NO3−)]+ (2,{CoII–NO3−}), to a CoIII–nitrosyl complex, [(12-TMC)CoIII(NO)]2+ (4,{CoNO}8), bearing an N-tetramethylated cyclam (TMC) ligand. The VCl3 inspired reduction of NO3− to NO is believed to occur in two consecutive oxygen atom transfer (OAT) reactions, i.e., OAT-1 = NO3− → NO2− (r1) and OAT-2 = NO2− → NO (r2). In these OAT reactions, VCl3 functions as an O-atom abstracting species, and the reaction of 2 with VCl3 produces a CoIII-nitrosyl ({CoNO}8) with VV-Oxo ({VV
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
O}3+) species, via a proposed CoII-nitrito (3, {CoII–NO2−}) intermediate species. Further, in a separate experiment, we explored the reaction of isolated complex 3 with VCl3, which showed the generation of 4 with VV-Oxo, validating our proposed reaction sequences of OAT reactions. We ensured and characterized 3 using VCl3 as a limiting reagent, as the second-order rate constant of OAT-2 (k2/) is found to be ∼1420 times faster than that of the OAT-1 (k2) reaction. Binding constant (Kb) calculations also support our proposition of NO3− to NO transformation in two successive OAT reactions, as Kb(CoII–NO2−) is higher than Kb(CoII–NO3−), hence the reaction moves in the forward direction (OAT-1). However, Kb(CoII–NO2−) is comparable to Kb{CoNO}8, and therefore sequenced the second OAT reaction (OAT-2). Mechanistic investigations of these reactions using 15N-labeled-15NO3− and 15NO2− revealed that the N-atom in the {CoNO}8 is derived from NO3− ligand. This work highlights the first-ever report of VCl3 induced step-wise NO3− reduction (NRs activity) followed by the OAT induced NO2− reduction and then the generation of Co-nitrosyl species {CoNO}8. Single metal-induced reduction of NO3− → {NO2−} → NO via oxygen atom transfer reaction.![]()
Collapse
Affiliation(s)
- Kulbir
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati 517507 India
| | - Sandip Das
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati 517507 India
| | - Tarali Devi
- Humboldt-Universität zu Berlin, Institut für Chemie Brook-Taylor-Straße 2 D-12489 Berlin Germany
| | - Mrigaraj Goswami
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati 517507 India
| | - Mahesh Yenuganti
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati 517507 India
| | - Prabhakar Bhardwaj
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati 517507 India
| | - Somnath Ghosh
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati 517507 India
| | | | - Pankaj Kumar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati 517507 India
| |
Collapse
|
8
|
Stauffer M, Sakhaei Z, Greene C, Ghosh P, Bertke JA, Warren TH. Mechanism of O-Atom Transfer from Nitrite: Nitric Oxide Release at Copper(II). Inorg Chem 2021; 60:15968-15974. [PMID: 34184870 DOI: 10.1021/acs.inorgchem.1c00625] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Nitric oxide (NO) is a key signaling molecule in health and disease. While nitrite acts as a reservoir of NO activity, mechanisms for NO release require further understanding. A series of electronically varied β-diketiminatocopper(II) nitrite complexes [CuII](κ2-O2N) react with a range of electronically tuned triarylphosphines PArZ3 that release NO with the formation of O═PArZ3. Second-order rate constants are largest for electron-poor copper(II) nitrite and electron-rich phosphine pairs. Computational analysis reveals a transition-state structure energetically matched with experimentally determined activation barriers. The production of NO follows a pathway that involves nitrite isomerization at CuII from κ2-O2N to κ1-NO2 followed by O-atom transfer (OAT) to form O═PArZ3 and [CuI]-NO that releases NO upon PArZ3 binding at CuI to form [CuI]-PArZ3. These findings illustrate important mechanistic considerations involved in NO formation from nitrite via OAT.
Collapse
Affiliation(s)
- Molly Stauffer
- Department of Chemistry, Georgetown University, Box 571227-1227, Washington, D.C. 20057, United States
| | - Zeinab Sakhaei
- Department of Chemistry, Georgetown University, Box 571227-1227, Washington, D.C. 20057, United States
| | - Christine Greene
- Department of Chemistry, Georgetown University, Box 571227-1227, Washington, D.C. 20057, United States
| | - Pokhraj Ghosh
- Department of Chemistry, Georgetown University, Box 571227-1227, Washington, D.C. 20057, United States
| | - Jeffery A Bertke
- Department of Chemistry, Georgetown University, Box 571227-1227, Washington, D.C. 20057, United States
| | - Timothy H Warren
- Department of Chemistry, Georgetown University, Box 571227-1227, Washington, D.C. 20057, United States
| |
Collapse
|
9
|
Kurtikyan TS, Hayrapetyan VA, Hovhannisyan AA, Martirosyan GG, Hovhannisyan GS, Iretskii AV, Ford PC. Nitric Oxide Dioxygenation by O 2 Adducts of Manganese Porphyrins. Inorg Chem 2020; 59:17224-17233. [PMID: 33180482 DOI: 10.1021/acs.inorgchem.0c02464] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We describe here nitric oxide dioxygenation (NOD) by the dioxygen manganese porphyrin adducts Mn(Por)(η2-O2) (Por2- = the meso-tetra-phenyl or meso-tetra-p-tolylporphyrinato dianions, TPP2- and TTP2-). The Mn(Por)(η2-O2) was assembled by adding O2 to sublimed layers of MnII(Por). When NO was introduced and the temperature was slowly raised from 80 to 120 K, new IR bands with correlated intensities grew concomitant with depletion of the υ(O2) band. Isotope labeling experiments with 18O2, 15NO, and N18O combined with DFT calculations provide the basis for identifying the initial intermediates as the six-coordinate peroxynitrito complexes (ON)Mn(Por)(η1-OONO). Further warming to room temperature led to formation of the nitrato complexes Mn(Por)(η1-ONO2), thereby demonstrating the ability of these metal centers to promote NOD. However, comparable quantities of the nitrito complexes Mn(Por)(η1-ONO) are also formed. In contrast, when the analogous reactions were initiated with the weak σ-donor ligand tetrahydrofuran or dimethyl sulfide present in the layers, formation of Mn(Por)(η1-ONO2) is strongly favored (∼90%). The latter are formed via a 6-coordinate intermediate (L)Mn(Por)(η1-ONO2) (L = THF or DMS) that loses L upon warming. These reaction patterns are compared to those observed previously with analogous iron and cobalt porphyrin complexes.
Collapse
Affiliation(s)
- Tigran S Kurtikyan
- Molecule Structure Research Centre (MSRC) of the Scientific and Technological Centre of Organic and Pharmaceutical Chemistry NAS, 0014, Yerevan, Armenia
| | - Vardan A Hayrapetyan
- Molecule Structure Research Centre (MSRC) of the Scientific and Technological Centre of Organic and Pharmaceutical Chemistry NAS, 0014, Yerevan, Armenia
| | - Astghik A Hovhannisyan
- Molecule Structure Research Centre (MSRC) of the Scientific and Technological Centre of Organic and Pharmaceutical Chemistry NAS, 0014, Yerevan, Armenia
| | - Garik G Martirosyan
- Molecule Structure Research Centre (MSRC) of the Scientific and Technological Centre of Organic and Pharmaceutical Chemistry NAS, 0014, Yerevan, Armenia
| | - Gohar Sh Hovhannisyan
- Molecule Structure Research Centre (MSRC) of the Scientific and Technological Centre of Organic and Pharmaceutical Chemistry NAS, 0014, Yerevan, Armenia
| | - Alexei V Iretskii
- Department of Chemistry, Lake Superior State University, Sault Sainte Marie, Michigan 49783, United States
| | - Peter C Ford
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106-9510, United States
| |
Collapse
|
10
|
Pan HR, Wu ZH, Kuo CT, Ou HJ, Lee GH, Hsu HF. The dual roles of a V(III) centre for substrate binding and oxygen atom abstraction; nitrite reduction mediated by a V(III) complex. Dalton Trans 2020; 49:14393-14396. [PMID: 33057505 DOI: 10.1039/d0dt03274c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A V(iii) complex bearing a tris(thiolato)phoshine derivative mediates the reduction of nitrite without the assistance of external protons or oxophilic substrates. The metal site plays dual roles for nitrite binding and deoxygenation. The reaction is monitored by spectroscopy combined with isotopic labeling experiments. The formed product, a {VNO}4 species, is isolated and characterized.
Collapse
Affiliation(s)
- Hung-Ruei Pan
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan.
| | - Zong-Han Wu
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan.
| | - Chin-Ting Kuo
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan.
| | - Han-Jang Ou
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan.
| | - Gene-Hsiang Lee
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Hua-Fen Hsu
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan.
| |
Collapse
|
11
|
Dissanayake DMMM, Petel BE, Brennessel WW, Bren KL, Matson EM. Hydrogen bonding promotes diversity in nitrite coordination modes at a single iron(II) center. J COORD CHEM 2020. [DOI: 10.1080/00958972.2020.1821373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
| | - Brittney E. Petel
- Department of Chemistry, University of Rochester, Rochester, NY, USA
| | | | - Kara L. Bren
- Department of Chemistry, University of Rochester, Rochester, NY, USA
| | - Ellen M. Matson
- Department of Chemistry, University of Rochester, Rochester, NY, USA
| |
Collapse
|
12
|
Petel BE, Matson EM. Conversion of NOx1− (x = 2, 3) to NO using an oxygen-deficient polyoxovanadate–alkoxide cluster. Chem Commun (Camb) 2020; 56:555-558. [DOI: 10.1039/c9cc08230a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We report the activation of nitrogen-containing oxyanions using an oxygen-deficient polyoxovanadate–alkoxide cluster.
Collapse
|
13
|
Puthiyaveetil Yoosaf MA, Ghosh S, Narayan Y, Yadav M, Sahoo SC, Kumar P. Finding a new pathway for acid-induced nitrite reduction reaction: formation of nitric oxide with hydrogen peroxide. Dalton Trans 2019; 48:13916-13920. [PMID: 31498351 DOI: 10.1039/c9dt02834j] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Here, we report a new pathway for nitrite reduction chemistry, formation of cobalt-nitrosyl ({CoII-NO}8) with H2O2 in the reaction of a CoII-nitrito complex with a one-fold acid (H+) via the formation of a CoII-nitrous acid intermediate ({CoII-ONOH}). Mechanistic investigations using 15N-labeled-15NO2- revealed that the N-atom in the {CoII-NO}8 complex is derived from the nitrito ligand, and H2O2 came from the homolysis of the ON-OH moiety. Spectral evidence supporting the formation of the CoII-ONOH intermediate and the generation of H2O2 is also presented.
Collapse
Affiliation(s)
| | - Somnath Ghosh
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Tirupati 517507, India.
| | - Yatheesh Narayan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Tirupati 517507, India.
| | - Munendra Yadav
- Department of Chemistry, Punjab University, Punjab, Chandigarh, India
| | - Subash Chandra Sahoo
- Department of Chemistry, University of Texas at El Paso, El Paso, Texas 79968, USA
| | - Pankaj Kumar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Tirupati 517507, India.
| |
Collapse
|
14
|
Grzhegorzhevskii KV, Tonkushina MO, Fokin AV, Belova KG, Ostroushko AA. Coordinative interaction between nitrogen oxides and iron–molybdenum POM Mo72Fe30. Dalton Trans 2019; 48:6984-6996. [DOI: 10.1039/c8dt05125a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The process of adsorption of nitrogen monoxide and dioxide by the giant Keplerate nanocluster Mo72Fe30 was studied in detail under ambient conditions and air/argon atmosphere.
Collapse
Affiliation(s)
- Kirill V. Grzhegorzhevskii
- Institute of Natural Sciences and Mathematics
- Ural Federal University named after the B.N. Yeltsin
- Ekaterinburg
- Russia
| | - Margarita O. Tonkushina
- Institute of Natural Sciences and Mathematics
- Ural Federal University named after the B.N. Yeltsin
- Ekaterinburg
- Russia
| | - Andrei V. Fokin
- Institute of Natural Sciences and Mathematics
- Ural Federal University named after the B.N. Yeltsin
- Ekaterinburg
- Russia
| | - Ksenia G. Belova
- Institute of Natural Sciences and Mathematics
- Ural Federal University named after the B.N. Yeltsin
- Ekaterinburg
- Russia
- Institute of High Temperature Electrochemistry
| | - Alexander A. Ostroushko
- Institute of Natural Sciences and Mathematics
- Ural Federal University named after the B.N. Yeltsin
- Ekaterinburg
- Russia
| |
Collapse
|
15
|
Sakhaei Z, Kundu S, Donnelly JM, Bertke JA, Kim WY, Warren TH. Nitric oxide release via oxygen atom transfer from nitrite at copper(ii). Chem Commun (Camb) 2017; 53:549-552. [PMID: 27973637 DOI: 10.1039/c6cc08745k] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nitric oxide is a vital signaling molecule that controls blood flow and oxygenation and nitrite serves as an important reservoir for nitric oxide in biology. While copper containing enzymes are known to reduce nitrite to nitric oxide, herein we report a new pathway to release nitric oxide via oxygen atom transfer from nitrite at a copper(ii) site.
Collapse
Affiliation(s)
- Zeinab Sakhaei
- Department of Chemistry, Georgetown University, Washington, DC, USA.
| | - Subrata Kundu
- Department of Chemistry, Georgetown University, Washington, DC, USA.
| | - Jane M Donnelly
- Department of Chemistry, Georgetown University, Washington, DC, USA.
| | - Jeffery A Bertke
- Department of Chemistry, Georgetown University, Washington, DC, USA.
| | - William Y Kim
- Department of Chemistry, Georgetown University, Washington, DC, USA.
| | - Timothy H Warren
- Department of Chemistry, Georgetown University, Washington, DC, USA.
| |
Collapse
|
16
|
Zhang TT, Liu YD, Zhong RG. Iron(II) porphyrins induced conversion of nitrite into nitric oxide: A computational study. J Inorg Biochem 2015; 150:126-32. [DOI: 10.1016/j.jinorgbio.2015.06.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 05/27/2015] [Accepted: 06/02/2015] [Indexed: 01/26/2023]
|
17
|
He C, Howes BD, Smulevich G, Rumpel S, Reijerse EJ, Lubitz W, Cox N, Knipp M. Nitrite Dismutase Reaction Mechanism: Kinetic and Spectroscopic Investigation of the Interaction between Nitrophorin and Nitrite. J Am Chem Soc 2015; 137:4141-50. [DOI: 10.1021/ja512938u] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Chunmao He
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Barry D. Howes
- Department
of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3-13, I-50019 Sesto Fiorentino(Fi), Italy
| | - Giulietta Smulevich
- Department
of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3-13, I-50019 Sesto Fiorentino(Fi), Italy
| | - Sigrun Rumpel
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Edward J. Reijerse
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Wolfgang Lubitz
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Nicholas Cox
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Markus Knipp
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
- Faculty
of Chemistry and Biochemistry, Ruhr University, Universitätsstrasse 150, D-44780 Bochum, Germany
| |
Collapse
|
18
|
|
19
|
Kurtikyan TS, Hayrapetyan VA, Mehrabyan MM, Ford PC. Six-coordinate nitrito and nitrato complexes of manganese porphyrin. Inorg Chem 2014; 53:11948-59. [PMID: 25369232 DOI: 10.1021/ic5014329] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Reaction of small increments of NO2 gas with sublimed amorphous layers of Mn(II)(TPP) (TPP = meso-tetra-phenylporphyrinato dianion) in a vacuum cryostat leads to formation of the 5-coordinate monodentate nitrato complex Mn(III)(TPP)(η(1)-ONO2) (II). This transformation proceeds through the two distinct steps with initial formation of the five coordinate O-nitrito complex Mn(III)(TPP)(η(1)-ONO) (I) as demonstrated by the electronic absorption spectra and by FTIR spectra using differently labeled nitrogen dioxide. A plausible mechanism for the second stage of reaction is offered based on the spectral changes observed upon subsequent interaction of (15)NO2 and NO2 with the layered Mn(TPP). Low-temperature interaction of I and II with the vapors of various ligands L (L = O-, S-, and N-donors) leads to formation of the 6-coordinate O-nitrito Mn(III)(TPP)(L)(η(1)-ONO) and monodentate nitrato Mn(III)(TPP)(L)(η(1)-ONO2) complexes, respectively. Formation of the 6-coordinate O-nitrito complex is accompanied by the shifts of the ν(N═O) band to lower frequency and of the ν(N-O) band to higher frequency. The frequency difference between these bands Δν = ν(N═O) - ν(N-O) is a function of L and is smaller for the stronger bases. Reaction of excess NH3 with I leads to formation of Mn(TPP)(NH3)(η(1)-ONO) and of the cation [Mn(TPP)(NH3)2](+) plus ionic nitrite. The nitrito complexes are relatively unstable, but several of the nitrato species can be observed in the solid state at room temperature. For example, the tetrahydrofuran complex Mn(TPP)(THF)(η(1)-ONO2) is stable in the presence of THF vapors (∼5 mm), but it loses this ligand upon high vacuum pumping at RT. When L = dimethylsulfide (DMS), the nitrato complex is stable only to ∼-30 °C. Reactions of II with the N-donor ligands NH3, pyridine, or 1-methylimidazole are more complex. With these ligands, the nitrato complexes Mn(III)(TPP)(L)(η(1)-ONO2) and the cationic complexes [Mn(TPP)(L)2](+) coexist in the layer at room temperature, the latter formed as a result of NO3(-) displacement when L is in excess.
Collapse
Affiliation(s)
- T S Kurtikyan
- Molecule Structure Research Centre (MSRC) of the Scientific and Technological Centre of Organic and Pharmaceutical Chemistry NAS , 375014, Yerevan, Armenia
| | | | | | | |
Collapse
|
20
|
Rubinstein A, Jiménez-Lozanao P, Carbó JJ, Poblet JM, Neumann R. Aerobic Carbon–Carbon Bond Cleavage of Alkenes to Aldehydes Catalyzed by First-Row Transition-Metal-Substituted Polyoxometalates in the Presence of Nitrogen Dioxide. J Am Chem Soc 2014; 136:10941-8. [DOI: 10.1021/ja502846h] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Amir Rubinstein
- Department
of Organic Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Pablo Jiménez-Lozanao
- Departament
de Química Física i Inorgànica, Universitat Rovira i Virgili, Tarragona 43007, Spain
| | - Jorge J. Carbó
- Departament
de Química Física i Inorgànica, Universitat Rovira i Virgili, Tarragona 43007, Spain
| | - Josep M. Poblet
- Departament
de Química Física i Inorgànica, Universitat Rovira i Virgili, Tarragona 43007, Spain
| | - Ronny Neumann
- Department
of Organic Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
21
|
Tsou CC, Yang WL, Liaw WF. Nitrite activation to nitric oxide via one-fold protonation of iron(II)-O,O-nitrito complex: relevance to the nitrite reductase activity of deoxyhemoglobin and deoxyhemerythrin. J Am Chem Soc 2013; 135:18758-61. [PMID: 24289743 DOI: 10.1021/ja4105864] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The reversible transformations [(Bim)3Fe(κ(2)-O2N)][BF4] (3) <-> [(Bim)3Fe(NO)(κ(1)-ONO)][BF4]2 (4) were demonstrated and characterized. Transformation of O,O-nitrito-containing complex 3 into [(Bim)3Fe(μ-O)(μ-OAc)Fe(Bim)3](3+) (5) along with the release of NO and H2O triggered by 1 equiv of AcOH implicates that nitrite-to-nitric oxide conversion occurs, in contrast to two protons needed to trigger nitrite reduction producing NO observed in the protonation of [Fe(II)-nitro] complexes.
Collapse
Affiliation(s)
- Chih-Chin Tsou
- Department of Chemistry and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University , Hsinchu, 30013, Taiwan
| | | | | |
Collapse
|
22
|
Heinecke JL, Khin C, Pereira JCM, Suárez SA, Iretskii AV, Doctorovich F, Ford PC. Nitrite reduction mediated by heme models. Routes to NO and HNO? J Am Chem Soc 2013; 135:4007-17. [PMID: 23421316 DOI: 10.1021/ja312092x] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The water-soluble ferriheme model Fe(III)(TPPS) mediates oxygen atom transfer from inorganic nitrite to a water-soluble phosphine (tppts), dimethyl sulfide, and the biological thiols cysteine (CysSH) and glutathione (GSH). The products with the latter reductant are the respective sulfenic acids CysS(O)H and GS(O)H, although these reactive intermediates are rapidly trapped by reaction with excess thiol. The nitrosyl complex Fe(II)(TPPS)(NO) is the dominant iron species while excess substrate is present. However, in slightly acidic media (pH ≈ 6), the system does not terminate at this very stable ferrous nitrosyl. Instead, it displays a matrix of redox transformations linking spontaneous regeneration of Fe(III)(TPPS) to the formation of both N2O and NO. Electrochemical sensor and trapping experiments demonstrate that HNO (nitroxyl) is formed, at least when tppts is the reductant. HNO is the likely predecessor of the N2O. A key pathway to NO formation is nitrite reduction by Fe(II)(TPPS), and the kinetics of this iron-mediated transformation are described. Given that inorganic nitrite has protective roles during ischemia/reperfusion (I/R) injury to organs, attributed in part to NO formation, and that HNO may also reduce net damage from I/R, the present studies are relevant to potential mechanisms of such nitrite protection.
Collapse
Affiliation(s)
- Julie L Heinecke
- Department of Chemistry and Biochemistry, University of California at Santa Barbara, Santa Barbara, California 93106-9510, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Tsai FT, Lee YC, Chiang MH, Liaw WF. Nitrate-to-Nitrite-to-Nitric Oxide Conversion Modulated by Nitrate-Containing {Fe(NO)2}9 Dinitrosyl Iron Complex (DNIC). Inorg Chem 2012; 52:464-73. [DOI: 10.1021/ic3023437] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Fu-Te Tsai
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yu-Ching Lee
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Ming-Hsi Chiang
- Institute of Chemistry, Academic Sinica, NanKang, Taipei 115, Taiwan
| | - Wen-Feng Liaw
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
24
|
Liang L, Liu Q, Zhang J, Wang F, Yuan Y. Efficient iron-catalyzed Michael addition of indole to nitroolefins under solvent-free conditions. RESEARCH ON CHEMICAL INTERMEDIATES 2012. [DOI: 10.1007/s11164-012-0728-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Hopmann KH, Cardey B, Gladwin MT, Kim-Shapiro DB, Ghosh A. Hemoglobin as a nitrite anhydrase: modeling methemoglobin-mediated N2O3 formation. Chemistry 2011; 17:6348-58. [PMID: 21590821 DOI: 10.1002/chem.201003578] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2010] [Indexed: 11/07/2022]
Abstract
Nitrite has recently been recognized as a storage form of NO in blood and as playing a key role in hypoxic vasodilation. The nitrite ion is readily reduced to NO by hemoglobin in red blood cells, which, as it happens, also presents a conundrum. Given NO's enormous affinity for ferrous heme, a key question concerns how it escapes capture by hemoglobin as it diffuses out of the red cells and to the endothelium, where vasodilation takes place. Dinitrogen trioxide (N(2)O(3)) has been proposed as a vehicle that transports NO to the endothelium, where it dissociates to NO and NO(2). Although N(2)O(3) formation might be readily explained by the reaction Hb-Fe(3+)+NO(2)(-)+NO⇌Hb-Fe(2+)+N(2)O(3), the exact manner in which methemoglobin (Hb-Fe(3+)), nitrite and NO interact with one another is unclear. Both an "Hb-Fe(3+)-NO(2)(-)+NO" pathway and an "Hb-Fe(3+)-NO+NO(2)(-) " pathway have been proposed. Neither pathway has been established experimentally. Nor has there been any attempt until now to theoretically model N(2)O(3) formation, the so-called nitrite anhydrase reaction. Both pathways have been examined here in a detailed density functional theory (DFT, B3LYP/TZP) study and both have been found to be feasible based on energetics criteria. Modeling the "Hb-Fe(3+)-NO(2)(-)+NO" pathway proved complex. Not only are multiple linkage-isomeric (N- and O-coordinated) structures conceivable for methemoglobin-nitrite, multiple isomeric forms are also possible for N(2)O(3) (the lowest-energy state has an N-N-bonded nitronitrosyl structure, O(2)N-NO). We considered multiple spin states of methemoglobin-nitrite as well as ferromagnetic and antiferromagnetic coupling of the Fe(3+) and NO spins. Together, the isomerism and spin variables result in a diabolically complex combinatorial space of reaction pathways. Fortunately, transition states could be successfully calculated for the vast majority of these reaction channels, both M(S)=0 and M(S)=1. For a six-coordinate Fe(3+)-O-nitrito starting geometry, which is plausible for methemoglobin-nitrite, we found that N(2)O(3) formation entails barriers of about 17-20 kcal mol(-1) , which is reasonable for a physiologically relevant reaction. For the "Hb-Fe(3+) -NO+NO(2) (-) " pathway, which was also found to be energetically reasonable, our calculations indicate a two-step mechanism. The first step involves transfer of an electron from NO(2)(-) to the Fe(3+)-heme-NO center ({FeNO}(6)) , resulting in formation of nitrogen dioxide and an Fe(2+)-heme-NO center ({FeNO}(7)). Subsequent formation of N(2)O(3) entails a barrier of only 8.1 kcal mol(-1) . From an energetics point of view, the nitrite anhydrase reaction thus is a reasonable proposition. Although it is tempting to interpret our results as favoring the "{FeNO}(6)+NO(2)(-) " pathway over the "Fe(3+)-nitrite+NO" pathway, both pathways should be considered energetically reasonable for a biological reaction and it seems inadvisable to favor a unique reaction channel based solely on quantum chemical modeling.
Collapse
Affiliation(s)
- Kathrin H Hopmann
- Centre for Theoretical and Computational Chemistry and Department of Chemistry, University of Tromsø, N-9037 Tromsø, Norway
| | | | | | | | | |
Collapse
|
26
|
Kurtikyan TS, Gulyan GM, Dalaloyan AM, Kidd BE, Goodwin JA. Six-Coordinate Nitrosyl and Nitro Complexes of meso-Tetratolylporphyrinatocobalt with Trans Sulfur-Donor Ligands. Inorg Chem 2010; 49:7793-8. [DOI: 10.1021/ic1007846] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tigran S. Kurtikyan
- Molecule Structure Research Center of Scientific and Technological Center of Organic and Pharmaceutical Chemistry NAS, 26 Azatutyan av., 375014 Yerevan, Armenia
| | - Gurgen M. Gulyan
- Molecule Structure Research Center of Scientific and Technological Center of Organic and Pharmaceutical Chemistry NAS, 26 Azatutyan av., 375014 Yerevan, Armenia
| | - Arina M. Dalaloyan
- Molecule Structure Research Center of Scientific and Technological Center of Organic and Pharmaceutical Chemistry NAS, 26 Azatutyan av., 375014 Yerevan, Armenia
| | - Bryce E. Kidd
- Department of Chemistry and Physics, Coastal Carolina University, P.O. Box 261954, Conway, South Carolina 29526-6054
| | - John A. Goodwin
- Department of Chemistry and Physics, Coastal Carolina University, P.O. Box 261954, Conway, South Carolina 29526-6054
| |
Collapse
|
27
|
Affiliation(s)
- Peter C. Ford
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93110-9510
| |
Collapse
|
28
|
Heinecke J, Ford PC. Formation of Cysteine Sulfenic Acid by Oxygen Atom Transfer from Nitrite. J Am Chem Soc 2010; 132:9240-3. [DOI: 10.1021/ja102221e] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Julie Heinecke
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106
| | - Peter C. Ford
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106
| |
Collapse
|