1
|
Zhang Y, Zhang L, Zeng J, Xu S, Pan J, Huang W, Sun J, Jiang F. Recycling of waste aluminum scraps to fabricate sulfidated zero-valent iron-aluminum particles for enhanced chromate removal. J Environ Sci (China) 2024; 138:650-659. [PMID: 38135428 DOI: 10.1016/j.jes.2023.04.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/23/2023] [Accepted: 04/23/2023] [Indexed: 12/24/2023]
Abstract
Massive waste aluminum scraps produced from the spent aluminum products have high electron capacity and can be recycled as an attractive alternative to materials based on zero-valent iron (Fe0) for the removal of oxidative contaminants from wastewater. This study thus proposed an approach to fabricate micron-sized sulfidated zero-valent iron-aluminum particles (S-Al0@Fe0) with high reactivity, electron selectivity and capacity using recycled waste aluminum scraps. S-Al0@Fe0 with a three-layer structure contained zero-valent aluminum (Al0) core, Fe0 middle layer and iron sulfide (FeS) shell. The rates of chromate (Cr(VI)) removal by S-Al0@Fe0 at pH 5.0‒9.0 were 1.6‒5.9 times greater than that by sulfidated zero-valent iron (S-Fe0). The Cr(VI) removal capacity of S-Al0@Fe0 was 8.2-, 11.3- and 46.9-fold greater than those of S-Fe0, zero-valent iron-aluminum (Al0-Fe0) and Fe0, respectively. The chemical cost of S-Al0@Fe0 for the equivalent Cr(VI) removal was 78.5% lower than that of S-Fe0. Negligible release of soluble aluminum during the Cr(VI) removal was observed. The significant enhancement in the reactivity and capacity of S-Al0@Fe0 was partially ascribed to the higher reactivity and electron density of the Al0 core than Fe0. More importantly, S-Al0@Fe0 served as an electric cell to harness the persistent and selective electron transfer from the Al0-Fe0 core to Cr(VI) at the surface via coupling Fe0-Fe2+-Fe3+ redox cycles, resulting in a higher electron utilization efficiency. Therefore, S-Al0@Fe0 fabricated using recycled waste aluminum scraps can be a cost-effective and environmentally-friendly alternative to S-Fe0 for the enhanced removal of oxidative contaminants in industrial wastewater.
Collapse
Affiliation(s)
- Yahui Zhang
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Liguo Zhang
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Jiajia Zeng
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Shuqun Xu
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Jianyu Pan
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Wenzhuo Huang
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Jianliang Sun
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, China.
| | - Feng Jiang
- Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology, School of Environmental Science & Engineering, Sun Yat-Sen University, Guangzhou 510275, China.
| |
Collapse
|
2
|
Yuan Y, Zhou Z, Zhang X, Li X, Liu Y, Yang S, Lai B. Efficient reduction of hexavalent chromium with microscale Fe/Cu bimetals: Efficiency and the role of Cu. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
3
|
Kumar S, Kaur P, Brar RS, Babu JN. Nanoscale zerovalent copper (nZVC) catalyzed environmental remediation of organic and inorganic contaminants: A review. Heliyon 2022; 8:e10140. [PMID: 36042719 PMCID: PMC9420493 DOI: 10.1016/j.heliyon.2022.e10140] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 07/09/2022] [Accepted: 07/28/2022] [Indexed: 11/23/2022] Open
Abstract
Over the past decade, the nano zerovalent copper has emerged as an effective nano-catalyst for the environment remediation processes due to its ease of synthesis, low cost, controllable particle size and high reactivity despite its release during the remediation process and related concentration dependent toxicities. However, the improvised techniques involving the use of supports or immobilizer for the synthesis of Cu0 has significantly increased its stability and motivated the researchers to explore the applicability of Cu0 for the environment remediation processes, which is evident from access to numerous reports on nano zerovalent copper mediated remediation of contaminants. Initially, this review allows the understanding of the various resources used to synthesize zerovalent copper nanomaterial and the structure of Cu0 nanoparticles, followed by focus on the reaction mechanism and the species involved in the contaminant remediation process. The studies comprehensively presented the application of nano zerovalent copper for remediation of organic/inorganic contaminants in combination with various oxidizing and reducing agents under oxic and anoxic conditions. Further, it was evaluated that the immobilizers or support combined with various irradiation sources originates a synergistic effect and have a significant effect on the stability and the redox properties of nZVC in the remediation process. Therefore, the review proposed that the future scope of research should include rigorous focus on deriving an exact mechanism for synergistic effect for the removal of contaminants by supported nZVC.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Chemistry, Akal University, Talwandi Sabo, Bathinda, 151302, Punjab, India
| | - Parminder Kaur
- Department of Chemistry, Akal University, Talwandi Sabo, Bathinda, 151302, Punjab, India
| | | | - J Nagendra Babu
- Department of Chemistry, School of Basic and Applied Science, Central University of Punjab, Bathinda, 151001, Punjab, India
| |
Collapse
|
4
|
Kuo CS, Kuo DTF, Chang A, Wang K, Chou PH, Shih YH. Rapid debromination of tetrabromobisphenol A by Cu/Fe bimetallic nanoparticles in water, its mechanisms, and genotoxicity after treatments. JOURNAL OF HAZARDOUS MATERIALS 2022; 432:128630. [PMID: 35299103 DOI: 10.1016/j.jhazmat.2022.128630] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/22/2022] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
Tetrabromobisphenol A (TBBPA), a widely used brominated flame retardants, has been detected in various environmental matrices and is known to cause various adverse effects on human bodies. This study examined the feasibility and effectiveness of remediating TBBPA using Cu/Fe bimetallic nanoparticles (Cu/Fe BNPs) at various environmental and operational conditions. In general, TBBPA removal rate and debromination efficiency increased with higher Cu doping, higher Cu/Fe BNPs loading, higher temperature, and lower pH. At optimal conditions, TBBPA was completed removed at a rate constant > 0.2 min-1 where over 90% TBBPA was transformed to BPA within 30 min. The activation energy was found to be 35.6 kJ/mol, indicating that TBBPA was predominantly removed via surface-controlled reactions. Under pH 3-7 and ≥ 25 °C, debromination was the dominant removal mechanism compared to adsorption. The complete debromination pathway and the time-evolution of intermediates byproducts at different pHs were also presented. Cu/Fe BNPs can be reused for more than 6 times with performance constancy. Genotoxic tests showed that the treated solution did not find a significant hazardous potential. The byproducts can be further degraded by additional H2O2 through Fenton reaction. These results demonstrated the efficacy of Cu/Fe BNPs for treating TBBPA and its potential for degrading other halogenated organic compounds.
Collapse
Affiliation(s)
- Chin-Shun Kuo
- Department of Agricultural Chemistry, National Taiwan University, Taipei, Taiwan
| | - Dave Ta Fu Kuo
- Civil and Architectural Engineering, City University of Hong Kong, Hong Kong, China; Kuo Research & Consulting, Toronto, Canada
| | - Andy Chang
- Air Permit Division, Texas Commission on Environmental Quality, United States
| | - Kai Wang
- Department of Agricultural Chemistry, National Taiwan University, Taipei, Taiwan
| | - Pei-Hsin Chou
- Department of Environmental Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Yang-Hsin Shih
- Department of Agricultural Chemistry, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
5
|
Shen H, Sun P, Meng X, Wang J, Liu H, Xu L. Nanoscale Fe 0/Cu 0 bimetallic catalysts for Fenton-like oxidation of the mixture of nuclear-grade cationic and anionic exchange resins. CHEMOSPHERE 2021; 269:128763. [PMID: 33168287 DOI: 10.1016/j.chemosphere.2020.128763] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/25/2020] [Accepted: 10/26/2020] [Indexed: 06/11/2023]
Abstract
Spent resins generated from the nuclear industrial processes are still difficult to be treated and disposed. Fenton-like processes have great application potential in the treatment of spent resins, but the Fenton reaction mechanisms and resin degradation pathways remain challenging. In this study, nanoscale Fe0/Cu0 bimetallic catalysts were prepared and characterized for the Fenton-like degradation of the mixture of cationic and anionic resins. High catalytic property of Fe0/Cu0 bimetallic nanoparticles activated by H2O2 was evaluated, according to the effects of various nanoparticles, temperature, catalyst amount, H2O2 concentration and the mixing ratio of cationic and anionic resins. Combined the shape and color changes of mixed resins with the experimental and calculated characterization results, different degradation difficulty of cationic and anionic resins and their degradation mechanisms were studied. According to the density functional theory calculations of the optimized resin molecules with the Fe0/Cu0 catalyst, the mechanisms of Fenton-like reactions and the degradation of mixed resins through the synergistic effect of Fe and Cu species were proposed. The comprehensive Fenton-like reactions and degradation mechanisms provide new insights to advance the treatment of spent resins and organic polymers by Fenton-like processes.
Collapse
Affiliation(s)
- Huiyi Shen
- Department of Nuclear Engineering and Technology, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Peijie Sun
- Department of Nuclear Engineering and Technology, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Xiang Meng
- Department of Nuclear Engineering and Technology, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Jianlong Wang
- Institute of Nuclear and New Energy Technology, Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Tsinghua University, Beijing, 100084, PR China; Beijing Key Laboratory of Radioactive Wastes Treatment, Tsinghua University, Beijing, 100084, PR China
| | - Haiyang Liu
- Datang Environment Industry Group Co., Ltd., Beijing, 100097, PR China
| | - Lejin Xu
- Department of Nuclear Engineering and Technology, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China.
| |
Collapse
|
6
|
Quiton KGN, Lu MC, Huang YH. Synthesis and catalytic utilization of bimetallic systems for wastewater remediation: A review. CHEMOSPHERE 2021; 262:128371. [PMID: 33182123 DOI: 10.1016/j.chemosphere.2020.128371] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/02/2020] [Accepted: 09/15/2020] [Indexed: 06/11/2023]
Abstract
The environment is affected by agricultural, domestic, and industrial activities that lead to drastic problems such as global warming and wastewater generation. Wastewater pollution is of public concern, making the treatment of persistent pollutants in water and wastewater highly imperative. Several conventional treatment technologies (physicochemical processes, biological degradation, and oxidative processes) have been applied to water and wastewater remediation, but each has numerous limitations. To address this issue, treatment using bimetallic systems has been extensively studied. This study reviews existing research on various synthesis methods for the preparation of bimetallic catalysts and their catalytic application to the treatment of organic (dyes, phenol and its derivatives, and chlorinated organic compounds) and inorganic pollutants (nitrate and hexavalent chromium) from water and wastewater. The reaction mechanisms, removal efficiencies, operating conditions, and research progress are also presented. The results reveal that Fe-based bimetallic catalysts are one of the most efficient heterogeneous catalysts for the treatment of organic and inorganic contamination. Furthermore, the roles and performances of bimetallic catalysts in the removal of these environmental contaminants are different.
Collapse
Affiliation(s)
- Khyle Glainmer N Quiton
- Department of Chemical Engineering, Sustainable Environment Research Center, National Cheng Kung University, Tainan, 701, Taiwan
| | - Ming-Chun Lu
- Department of Environmental Resources Management, Chia Nan University of Pharmacy and Science, Tainan, 71710, Taiwan.
| | - Yao-Hui Huang
- Department of Chemical Engineering, Sustainable Environment Research Center, National Cheng Kung University, Tainan, 701, Taiwan.
| |
Collapse
|
7
|
Wang J, Liu C, Feng J, Cheng D, Zhang C, Yao Y, Gu Z, Hu W, Wan J, Yu C. MOFs derived Co/Cu bimetallic nanoparticles embedded in graphitized carbon nanocubes as efficient Fenton catalysts. JOURNAL OF HAZARDOUS MATERIALS 2020; 394:122567. [PMID: 32229387 DOI: 10.1016/j.jhazmat.2020.122567] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/11/2020] [Accepted: 03/18/2020] [Indexed: 06/10/2023]
Abstract
In this work, Cu-Co bimetallic nanoparticles embedded carbon nanocubes (CuxCo10-x/CNC) are synthesized by direct carbonization of Cu-Co bimetal ZIF. The ratio of Cu and Co nanoparticles in CuxCo10-x/CNC as well as morphology, pore structure and graphitization degree of carbon substrates can be tuned by adjusting the molar ratio of Cu/Co (0:10, 1:9, 2:8, 3:7, 4:6 and 5:5) in ZIF precursors. The Fenton catalytic performances of CuxCo10-x/CNC are further studied by degrading a typical azo dye, Acid Orange II (AOII). The results show the CuxCo10-x/CNC with a Cu/Co ratio of 4/6 display the highest catalytic activity with faster dye degradation rate than other catalysts, which may be ascribed to the synergetic effects of optimized ratio of Cu/Co bimetals, high surface area and graphitized carbon framework. The stability and reusability of the catalyst has been investigated, showing a good performance after five consecutive runs. The catalysts prepared in this study can be used as an attractive alternative in heterogeneous Fenton chemistry and wastewater treatment.
Collapse
Affiliation(s)
- Jing Wang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, PR China
| | - Chao Liu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, PR China
| | - Jiayou Feng
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, PR China
| | - Dan Cheng
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Chaoqi Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, PR China
| | - Yining Yao
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, PR China
| | - Zhengying Gu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Wenli Hu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, PR China
| | - Jingjing Wan
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, PR China
| | - Chengzhong Yu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, PR China; Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, 4072, Australia.
| |
Collapse
|
8
|
Liu L, Yang C, Tan W, Wang Y. Degradation of Acid Red 73 by Activated Persulfate in a Heat/Fe 3O 4@AC System with Ultrasound Intensification. ACS OMEGA 2020; 5:13739-13750. [PMID: 32566839 PMCID: PMC7301586 DOI: 10.1021/acsomega.0c00903] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/22/2020] [Indexed: 06/11/2023]
Abstract
This work aimed to investigate the degradation efficiency of waste water with an azo dye, Acid Red 73 (AR73), by persulfate/heat/Fe3O4@AC/ultrasound (US). The introduction of ultrasound into the persulfate/heat/Fe3O4@AC system greatly enhanced the reaction rate because of the physical and chemical effects induced by cavitation. Various parameters such as temperature, initial pH, sodium persulfate dosage, catalyst dosage, initial concentration of AR73, ultrasonic frequency and power, and free-radical quenching agents were investigated. The optimal conditions were determined to be AR73 50 mg/L, PS 7.5 mmol/L, catalyst dosage 2 g/L, ultrasound frequency 80 kHz, acoustic density 5.4 W/L, temperature 50 °C, and pH not adjusted. Nearly, 100% decolorization was achieved within 10 min under optimal conditions. Different from some other similar research studies, the reaction did not follow a radical-dominating way but rather had 1O2 as the main reactive species. The recycling and reusability test confirmed the superiority of the prepared Fe3O4@AC catalyst. The research achieved a rapid decolorization method not only using waste heat of textile water as a persulfate activator but also applicable to a complex environment where common radical scavengers such as ethanol exist.
Collapse
Affiliation(s)
- Liyan Liu
- School
of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
| | - Chao Yang
- School
of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
| | - Wei Tan
- School
of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
| | - Yang Wang
- School
of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
- Tianjin
Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300072, PR China
| |
Collapse
|
9
|
Yuan Y, An Z, Zhang Q, Zhang Y, Shi B, Xiong Z, Lai B. The Influence of Cu(II) Existence State on Characteristics, Reactivity, and Recyclability of Microscale Fe/Cu Bimetal. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c00243] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yue Yuan
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Zhengxian An
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Qixian Zhang
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Yunhong Zhang
- Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Biogas Institute of Ministry of Agriculture, Chengdu 610041, China
| | - Bi Shi
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Zhaokun Xiong
- Department of Environmental Science and Engineering, School of Architecture and Environment, Sichuan University, Chengdu 610065, P. R. China
| | - Bo Lai
- Department of Environmental Science and Engineering, School of Architecture and Environment, Sichuan University, Chengdu 610065, P. R. China
| |
Collapse
|
10
|
Scaria J, Nidheesh PV, Kumar MS. Synthesis and applications of various bimetallic nanomaterials in water and wastewater treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 259:110011. [PMID: 32072958 DOI: 10.1016/j.jenvman.2019.110011] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 11/13/2019] [Accepted: 12/16/2019] [Indexed: 05/07/2023]
Abstract
Bimetallic nanoparticles are the complex combination of two different metal constituents in nanoscale. Water and wastewater treatment utilizing bimetallic particles is an emerging research area. When two metals are combined, it can show not only the properties of its constituents but also new and enhanced properties derived by the synergy of the combination. These properties of bimetallic nanoparticles inevitably depend on the size, structure, and morphology of the particles. Thus the adopting synthesis strategy is very crucial to achieve desired results. Here in this review, the various bimetallic synthesis strategies are compared. The bimetallic nanoparticles decontaminate water through adsorption and/or catalysis mechanism. The various degradation pathways, specifically, adsorption, reduction, oxidation, and advanced oxidation processes are discussed in detail in this review.
Collapse
Affiliation(s)
- Jaimy Scaria
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - P V Nidheesh
- Environmental Impact and Sustainability Division, CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra, India.
| | - M Suresh Kumar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; Environmental Impact and Sustainability Division, CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra, India
| |
Collapse
|
11
|
Enhanced dechlorination of 2,6-dichlorophenol by carbon nanotubes supported Fe/Ni nanoparticles: Characterization, influencing factors, and kinetics. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2019.124089] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
12
|
Wang J, Liu C, Qi J, Li J, Sun X, Shen J, Han W, Wang L. Enhanced heterogeneous Fenton-like systems based on highly dispersed Fe 0-Fe 2O 3 nanoparticles embedded ordered mesoporous carbon composite catalyst. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 243:1068-1077. [PMID: 30253297 DOI: 10.1016/j.envpol.2018.09.057] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 08/20/2018] [Accepted: 09/10/2018] [Indexed: 06/08/2023]
Abstract
Acceleration of Fe3+/Fe2+ cycle and simultaneous reduction of particle size with enhanced stability is extremely important for iron-based heterogeneous Fenton catalysts. In this work, Fe0-Fe2O3 composite nanoparticles embedded ordered mesoporous carbon hybrid materials (Fe0-Fe2O3/OMC) were rationally designed as efficient heterogeneous Fenton catalysts. Because of the confinement and reduction of OMC, highly dispersed Fe0-Fe2O3 active species with diameter of ∼8 nm were generated by an optimized carbothermic reduction process. In addition, Fe0-Fe2O3/OMC possesses ordered mesoporous structure with uniform mesopore, high surface area and pore volume. For comparison, two other catalysts, including solely Fe0 nanoparticles supported on ordered mesoporous carbon (Fe0/OMC) and solely Fe2O3 nanoparticles supported on ordered mesoporous carbon (Fe2O3/OMC) were also prepared. The Fenton catalytic performance of synthesized catalysts was evaluated by using H2O2 as oxidizing agent to degrade Acid Orange II (AOII). The results show that almost 98.1% of 100 mg L-1 AOII was removed by Fe0-Fe2O3/OMC in condition of neutral pH and nearly room temperature, which is much higher than those of compared catalysts. The enhanced catalytic activity of Fe0-Fe2O3/OMC for AOII removal is due to the efficient electron transfer between the Fe0 and iron oxide and the accelerated Fe3+/Fe2+ cycle. The stability and reusability of the catalyst was also investigated, which showed a good performance even after five consecutive runs. The as-synthesized catalyst is proved to be an attractive candidate in heterogeneous Fenton chemistry and practical application.
Collapse
Affiliation(s)
- Jing Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| | - Chao Liu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| | - Junwen Qi
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| | - Jiansheng Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China.
| | - Xiuyun Sun
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| | - Jinyou Shen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| | - Weiqing Han
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| | - Lianjun Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| |
Collapse
|
13
|
Ourique MF, Sousa PVF, Oliveira AF, Lopes RP. Comparative study of the direct black removal by Fe, Cu, and Fe/Cu nanoparticles. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:28928-28941. [PMID: 30109676 DOI: 10.1007/s11356-018-2842-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 07/23/2018] [Indexed: 06/08/2023]
Abstract
In this study, direct black dye removal was investigated using iron nanoparticles (Fe NPs), copper (Cu NPs), and Fe/Cu (Fe/Cu NPs). NPs were characterized by transmission electron microscopy (TEM) and X-ray diffraction (XRD). Using a dose of 0.25 g L-1 of Fe, Cu, and Fe/Cu NPs, a degradation efficiency of 13, 26, and 43% respectively was obtained. For the 1.00 g L-1 dose, the efficiency increased to 100, 43, and 100%, respectively. Studies in anoxic and oxic conditions presented degradation rates, respectively, of 100 and 30% for Fe NPs, 90 and 50% for Fe/Cu NPs, and 40% in both reactions for Cu NPs, indicating that the mechanism of dye degradation by NPs is predominantly reducing under the conditions studied. The addition of EDTA decreased the dye removal rate for Fe, Cu, and Fe/Cu NPs at 27, 10, and 35%, respectively. In addition to the degradation, the adsorption phenomena of the by-products formed during the reaction were confirmed by the Fourier transform infrared (FTIR) analysis and verified by the desorption tests. Fe and Fe/Cu NPs showed the highest efficiency in direct black dye reductive degradation and adsorption of by-products, removing 100% of the dye at a dose of 1 g L-1 within 10 min of reaction. Graphical abstracts ᅟ.
Collapse
Affiliation(s)
- Mariane F Ourique
- Chemistry Department, Federal University of Viçosa, Viçosa, MG, 36570-000, Brazil
| | - Paloma V F Sousa
- Chemistry Department, Federal University of Viçosa, Viçosa, MG, 36570-000, Brazil
| | - André F Oliveira
- Chemistry Department, Federal University of Viçosa, Viçosa, MG, 36570-000, Brazil
| | - Renata P Lopes
- Chemistry Department, Federal University of Viçosa, Viçosa, MG, 36570-000, Brazil.
| |
Collapse
|
14
|
Xiong Z, Cao J, Lai B, Yang P. Comparative study on degradation of p -nitrophenol in aqueous solution by mFe/Cu/O 3 and mFe 0 /O 3 processes. J IND ENG CHEM 2018. [DOI: 10.1016/j.jiec.2017.10.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Ma K, Wang Q, Rong Q, Zhang D, Cui S, Yang J. Preparation of magnetic carbon/Fe 3O 4 supported zero-valent iron composites and their application in Pb(II) removal from aqueous solutions. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2017; 76:2680-2689. [PMID: 29168708 DOI: 10.2166/wst.2017.384] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Nanoscale zero-valent iron (NZVI) was first assembled on magnetic carbon/Fe3O4 (CM) with a combination of hydrothermal and liquid phase reduction methods. The novel NZVI@CM magnetic nanocomposites have the merits of large surface area, unique magnetic property, low cost and environmental friendliness. They can be used for Pb(II) removal in aqueous solution. The materials were characterized by using transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform-infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), vibrating sample magnetometry (VSM), X-ray photoelectron spectroscopy (XPS) and Brunauer-Emmett-Teller (BET) adsorption. The various parameters, such as reaction time, dosage of catalyst, solution pH and acid ions concentrations were studied. The removal efficiency of Pb(II) can be obviously increased by the combination of appropriate CM and NZVI. The removal efficiency of Pb(II) is 99.7% by using 60 mg of NZVI@CM at pH 7. The kinetics study indicates that the Pb(II) removal accords to pseudo-second-order kinetics model.
Collapse
Affiliation(s)
- Kaixuan Ma
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, College of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China E-mail:
| | - Qiu Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, College of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China E-mail:
| | - Qianyun Rong
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, College of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China E-mail:
| | - Dapeng Zhang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, College of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China E-mail: ; Nanjing Lvshiyuan Environmental Protection Technology Co., Ltd, 108 Ganjiabiandong Road, Nanjing 210033, China
| | - Shihai Cui
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, College of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China E-mail: ; Nanjing Lvshiyuan Environmental Protection Technology Co., Ltd, 108 Ganjiabiandong Road, Nanjing 210033, China
| | - Jing Yang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, College of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China E-mail:
| |
Collapse
|
16
|
Wang Z, Ai L, Huang Y, Zhang J, Li S, Chen J, Yang F. Degradation of azo dye with activated peroxygens: when zero-valent iron meets chloride. RSC Adv 2017. [DOI: 10.1039/c7ra03872k] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Selection of the most appropriate Fe-based peroxygen oxidation technology depends on the dye wastewater constituents and pH.
Collapse
Affiliation(s)
- Zhaohui Wang
- State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry
- College of Environmental Science and Engineering
- Donghua University
- Shanghai
- China
| | - Luoyan Ai
- State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry
- College of Environmental Science and Engineering
- Donghua University
- Shanghai
- China
| | - Ying Huang
- State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry
- College of Environmental Science and Engineering
- Donghua University
- Shanghai
- China
| | - Juekai Zhang
- State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry
- College of Environmental Science and Engineering
- Donghua University
- Shanghai
- China
| | - Sitong Li
- State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry
- College of Environmental Science and Engineering
- Donghua University
- Shanghai
- China
| | - Jiawei Chen
- State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry
- College of Environmental Science and Engineering
- Donghua University
- Shanghai
- China
| | - Fei Yang
- State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry
- College of Environmental Science and Engineering
- Donghua University
- Shanghai
- China
| |
Collapse
|
17
|
Xiong Z, Cao J, Yang D, Lai B, Yang P. Coagulation-flocculation as pre-treatment for micro-scale Fe/Cu/O 3 process (CF-mFe/Cu/O 3) treatment of the coating wastewater from automobile manufacturing. CHEMOSPHERE 2017; 166:343-351. [PMID: 27700998 DOI: 10.1016/j.chemosphere.2016.09.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/09/2016] [Accepted: 09/10/2016] [Indexed: 06/06/2023]
Abstract
A coagulation-flocculation as pre-treatment combined with mFe/Cu/O3 (CF-mFe/Cu/O3) process was developed to degrade the pollutants in automobile coating wastewater (ACW). In coagulation-flocculation (CF) process, high turbidity removal efficiency (97.1%) and low COD removal efficiency (10.5%) were obtained under the optimal conditions using Al2(SO4)3·18H2O and CaO. The effluent of CF process (ECF) was further disposed by mFe/Cu/O3 process, and its key operating parameters were optimized by batch experiments. Optimally, COD removal efficiency of ECF obtained by the mFe/Cu/O3 process (i.e., 87.6% after 30 min treatment) was much higher than those of mFe/Cu alone (8.3%), ozone alone (46.6%), and mFe/Cu/air (6.1%), which confirms the superiority of the mFe/Cu/O3 process. In addition, the analysis results of UV-vis, excitation-emission matrix (EEM) fluorescence spectra and GC/MS further confirm that the phenol pollutants of ECF had been effectively decomposed or transformed after CF-mFe/Cu/O3 process treatment. Meanwhile, B/C ratio of ACW increased from 0.19 to 0.56, which suggests the biodegradability was improved significantly. Finally, the operating cost of CF-mFe/Cu/O3 process was about 1.83 USD t-1 for ACW treatment. Therefore, the combined process is a promising treatment technology for the coating wastewater from automobile manufacturing.
Collapse
Affiliation(s)
- Zhaokun Xiong
- Department of Environmental Science and Engineering, School of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Jinyan Cao
- Department of Environmental Science and Engineering, School of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Dan Yang
- Department of Environmental Science and Engineering, School of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Bo Lai
- Department of Environmental Science and Engineering, School of Architecture and Environment, Sichuan University, Chengdu 610065, China.
| | - Ping Yang
- Department of Environmental Science and Engineering, School of Architecture and Environment, Sichuan University, Chengdu 610065, China
| |
Collapse
|
18
|
Xing X, Qu H, Chen P, Chi B, Xie H. Studies on competitive adsorption of dyes onto carbon (XC-72) and regeneration of adsorbent. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2016; 74:2505-2514. [PMID: 27858807 DOI: 10.2166/wst.2016.413] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Carbon as an adsorbent has been widely studied for wastewater treatment, but the regeneration of adsorbent has been scarcely reported. In this paper, an economical and environmental method was applied to regenerate carbon (XC-72). Results showed that both anhydrous ethanol and deionized water did not obtain optimal effect for the desorption of Acid Orange 7, Ponceau 2R and Rhodamine B, but the desorption effect was dramatically improved when anhydrous ethanol and deionized water were mixed in a certain volume ratio. In addition, the adsorption kinetics of the three dyes were investigated, which showed that the process of adsorption could be well represented by the pseudo-second-order model. For the study of competitive adsorption, this indicated that the interaction between adsorbent and adsorbate had something to do with electrostatic attraction.
Collapse
Affiliation(s)
- Xiang Xing
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China E-mail:
| | - Hongxia Qu
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China E-mail:
| | - Peng Chen
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China E-mail:
| | - Bin Chi
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China E-mail:
| | - Huifang Xie
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
19
|
Zhao H, Qian L, Guan X, Wu D, Zhao G. Continuous Bulk FeCuC Aerogel with Ultradispersed Metal Nanoparticles: An Efficient 3D Heterogeneous Electro-Fenton Cathode over a Wide Range of pH 3-9. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:5225-33. [PMID: 27082750 DOI: 10.1021/acs.est.6b00265] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Novel iron-copper-carbon (FeCuC) aerogel was fabricated through a one-step process from metal-resin precursors and then activated with CO2 and N2 in environmentally friendly way. The activated FeCuC aerogel was applied in a heterogeneous electro-Fenton (EF) process and exhibited higher mineralization efficiency than homogeneous EF technology. High total organic carbon (TOC) removal of organic pollutants with activated FeCuC aerogel was achieved at a wide range of pH values (3-9). The chemical oxygen demand (COD) of real dyeing wastewater was below China's discharge standard after 30 min of treatment, and the specific energy consumption was low (9.2 kW·h·kg(-1)COD(-1)), corresponding to a power consumption of only ∼0.34 kW·h per ton of wastewater. The enhanced mineralization efficiency of FeCuC aerogel was mostly attributable to ultradispersed metallic Fe-Cu nanoparticles embedded in 3D carbon matrix and the CO2-N2 treatment. The CO2 activation enhanced the accessibility of the aerogel's pores, and the secondary N2 activation enlarged the porosity and regenerated the ultradispersed zerovalent iron (Fe(0)) with reductive carbon. Cu(0) acted as a reduction promoter for interfacial electron transfer. Moreover, activated FeCuC aerogel presented low iron leaching (<0.1 ppm) in acidic solution and can be molded into different sizes with high flexibility. Thus, this material could be used as a low-cost cathode and efficient heterogeneous EF technology for actual wastewater treatment.
Collapse
Affiliation(s)
- Hongying Zhao
- Department of Chemistry, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University , Shanghai, 200092, China
| | - Lin Qian
- Department of Chemistry, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University , Shanghai, 200092, China
| | - Xiaohong Guan
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University , Shanghai 200092, China
| | - Deli Wu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University , Shanghai 200092, China
| | - Guohua Zhao
- Department of Chemistry, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University , Shanghai, 200092, China
| |
Collapse
|
20
|
Qi C, Liu X, Ma J, Lin C, Li X, Zhang H. Activation of peroxymonosulfate by base: Implications for the degradation of organic pollutants. CHEMOSPHERE 2016; 151:280-8. [PMID: 26946115 DOI: 10.1016/j.chemosphere.2016.02.089] [Citation(s) in RCA: 450] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 02/15/2016] [Accepted: 02/21/2016] [Indexed: 05/28/2023]
Abstract
Increasing attention has been paid to environmentally friendly activation methods of peroxymonosulfate (PMS) in advanced oxidation processes (AOPs) for organic pollutant elimination. This work demonstrates that Base can be applied as a novel activator for PMS. The Base/PMS system, at ambient temperature, was able to degrade a variety of organic pollutants, including acid orange 7 (AO7), phenol and bisphenol A. In subsequent experiments with AO7, the decolorization rates for AO7 followed pseudo-first-order kinetics, with rate constant values ranging from 0.0006 to 0.1749 min(-1) depending on the operating parameters (initial PMS, Base, AO7 concentrations and reaction temperature). Furthermore, the mechanism for PMS activation by the Base was elucidated by radical scavenger (tert-butyl alcohol, methanol, sodium azide and p-benzoquinone) and electron spin resonance trapping studies. The results revealed that superoxide anion radical and singlet oxygen other than sulfate radical were the primary reactive oxygen species in the Base/PMS system. The findings of this study present a new pathway for PMS activation and provide useful information for the treatment of wastewater.
Collapse
Affiliation(s)
- Chengdu Qi
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Xitao Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Jun Ma
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Chunye Lin
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Xiaowan Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Huijuan Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
21
|
Cao J, Xiong Z, Yuan Y, Lai B, Yang P. Treatment of wastewater derived from dinitrodiazophenol (DDNP) manufacturing by the Fe/Cu/O3 process. RSC Adv 2016. [DOI: 10.1039/c6ra19095b] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this paper, the Fe/Cu bimetallic particles and ozone were combined to decompose or transform the toxic and refractory pollutants in dinitrodiazophenol (DDNP) wastewater.
Collapse
Affiliation(s)
- Jinyan Cao
- Department of Environmental Science and Engineering
- School of Architecture and Environment
- Sichuan University
- Chengdu 610065
- China
| | - Zhaokun Xiong
- Department of Environmental Science and Engineering
- School of Architecture and Environment
- Sichuan University
- Chengdu 610065
- China
| | - Yue Yuan
- Department of Environmental Science and Engineering
- School of Architecture and Environment
- Sichuan University
- Chengdu 610065
- China
| | - Bo Lai
- Department of Environmental Science and Engineering
- School of Architecture and Environment
- Sichuan University
- Chengdu 610065
- China
| | - Ping Yang
- Department of Environmental Science and Engineering
- School of Architecture and Environment
- Sichuan University
- Chengdu 610065
- China
| |
Collapse
|
22
|
Wang J, Liu C, Hussain I, Li C, Li J, Sun X, Shen J, Han W, Wang L. Iron–copper bimetallic nanoparticles supported on hollow mesoporous silica spheres: the effect of Fe/Cu ratio on heterogeneous Fenton degradation of a dye. RSC Adv 2016. [DOI: 10.1039/c6ra08501f] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A series of iron–copper bimetallic nanoparticles supported on hollow mesoporous silica spheres with different Fe/Cu ratios were prepared using a simple post-impregnation and sodium borohydride reduction strategy.
Collapse
Affiliation(s)
- Jing Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse
- School of Environmental and Biological Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
- P. R. China
| | - Chao Liu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse
- School of Environmental and Biological Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
- P. R. China
| | - Ijaz Hussain
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse
- School of Environmental and Biological Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
- P. R. China
| | - Cheng Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse
- School of Environmental and Biological Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
- P. R. China
| | - Jiansheng Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse
- School of Environmental and Biological Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
- P. R. China
| | - Xiuyun Sun
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse
- School of Environmental and Biological Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
- P. R. China
| | - Jinyou Shen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse
- School of Environmental and Biological Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
- P. R. China
| | - Weiqing Han
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse
- School of Environmental and Biological Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
- P. R. China
| | - Lianjun Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse
- School of Environmental and Biological Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
- P. R. China
| |
Collapse
|
23
|
Kong W, Qu H, Chen P, Ma W, Xie H. Property of Cu2O-CuO/ZSM-5 nanocomposite and degradation process of azo dye AO7 without sacrificial agent (H2O2). WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2016; 73:2747-2753. [PMID: 27232412 DOI: 10.2166/wst.2016.138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In this study, Cu2O-CuO/ZSM-5 nanocomposite was synthesized by the impregnation method, and its catalytic performance for the destruction of AO7 in aqueous solutions was investigated. The morphology, structure and surface element valence state of Cu2O-CuO/ZSM-5 were characterized by transmission electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy. The operating conditions on the degradation of AO7 by Cu2O-CuO/ZSM-5, such as initial pH values, concentration of AO7 and catalyst dosage were investigated and optimized. The results showed that the sample had good catalytic activity for destruction of AO7 in the absence of a sacrificial agent (e.g. H2O2): it could degrade 91% AO7 in 140 min at 25 °C and was not restricted by the initial pH of the AO7 aqueous solutions. Cu2O-CuO/ZSM-5 exhibited stable catalytic activity with little loss after three successive runs. The total organic carbon and chemical oxygen demand removal efficiencies increased rapidly to 69.36% and 67.3% after 120 min of treatment by Cu2O-CuO/ZSM-5, respectively.
Collapse
Affiliation(s)
- Wusong Kong
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China E-mail:
| | - Hongxia Qu
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China E-mail:
| | - Peng Chen
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China E-mail:
| | - Weihua Ma
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China E-mail:
| | - Huifang Xie
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
24
|
Dong Y, Fei X, Cao L, Wu R, Jiang Y. Study on the preparation and photocatalytic oxidation properties of TiO2/nano-Fe0 photocatalysts. RSC Adv 2015. [DOI: 10.1039/c5ra16295e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
TiO2/nano-Fe0 composite photocatalysts were prepared via a liquid phase reduction deposition method using anatase nano-TiO2 as a deposition substrate.
Collapse
Affiliation(s)
- Yeshuo Dong
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Xuening Fei
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
- School of Science
| | - Lingyun Cao
- School of Science
- Tianjin Chengjian University
- Tianjin 300384
- China
| | - Rilei Wu
- School of Environmental and Municipal Engineering
- Tianjin Chengjian University
- Tianjin 300384
- China
| | - Yuanguang Jiang
- School of Environmental and Municipal Engineering
- Tianjin Chengjian University
- Tianjin 300384
- China
| |
Collapse
|
25
|
Wang J, Liu C, Tong L, Li J, Luo R, Qi J, Li Y, Wang L. Iron–copper bimetallic nanoparticles supported on hollow mesoporous silica spheres: an effective heterogeneous Fenton catalyst for orange II degradation. RSC Adv 2015. [DOI: 10.1039/c5ra10826h] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Iron–copper bimetallic nanoparticles supported on hollow mesoporous silica spheres as a composite catalyst (FeCu/HMS) was synthesized.
Collapse
Affiliation(s)
- Jing Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse
- School of Environmental and Biological Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
- P.R.China
| | - Chao Liu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse
- School of Environmental and Biological Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
- P.R.China
| | - Lu Tong
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse
- School of Environmental and Biological Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
- P.R.China
| | - Jiansheng Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse
- School of Environmental and Biological Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
- P.R.China
| | - Rui Luo
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse
- School of Environmental and Biological Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
- P.R.China
| | - Junwen Qi
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse
- School of Environmental and Biological Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
- P.R.China
| | - Yang Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse
- School of Environmental and Biological Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
- P.R.China
| | - Lianjun Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse
- School of Environmental and Biological Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
- P.R.China
| |
Collapse
|