1
|
Theodorakopoulos GV, Papageorgiou SK, Katsaros FK, Romanos GE, Beazi-Katsioti M. Investigation of MO Adsorption Kinetics and Photocatalytic Degradation Utilizing Hollow Fibers of Cu-CuO/TiO 2 Nanocomposite. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4663. [PMID: 39336404 PMCID: PMC11434048 DOI: 10.3390/ma17184663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024]
Abstract
This comprehensive study explores the kinetics of adsorption and its photocatalytic degradation of methyl orange (MO) using an advanced copper-decorated photocatalyst in the form of hollow fibers (HFs). Designed to boost both adsorption capacity and photocatalytic activity, the photocatalyst was tested in batch experiments to efficiently remove MO from aqueous solutions. Various isotherm models, including Langmuir, Freundlich, Sips, Temkin, and Dubinin-Radushkevich, along with kinetic models like pseudo-first and pseudo-second order, Elovich, Bangham, and Weber-Morris, were utilized to assess adsorption capacity and kinetics at varying initial concentrations. The results indicated a favorable MO physisorption on the nanocomposite photocatalyst under specific conditions. Further analysis of photocatalytic degradation under UV exposure revealed that the material maintained high degradation efficiency and stability across different MO concentrations. Through the facilitation of reactive oxygen species generation, oxygen played a crucial role in enhancing photocatalytic performance, while the degradation process following the Langmuir-Hinshelwood model. The study also confirmed the robustness and sustained activity of the nanocomposite photocatalyst, which could be regenerated and reused over five successive cycles, maintaining 92% of their initial performance at concentrations up to 15 mg/L. Overall, this effective nanocomposite photocatalyst structured in the form of HF shows great promise for effectively removing organic pollutants through combined adsorption and photocatalysis, offering valuable potential in wastewater treatment and environmental remediation.
Collapse
Affiliation(s)
- George V Theodorakopoulos
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "Demokritos", 15341 Agia Paraskevi, Athens, Greece
- School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 9 Iroon Polytechniou Street, Zografou, 15772 Athens, Greece
| | - Sergios K Papageorgiou
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "Demokritos", 15341 Agia Paraskevi, Athens, Greece
| | - Fotios K Katsaros
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "Demokritos", 15341 Agia Paraskevi, Athens, Greece
| | - George Em Romanos
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "Demokritos", 15341 Agia Paraskevi, Athens, Greece
| | - Margarita Beazi-Katsioti
- School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 9 Iroon Polytechniou Street, Zografou, 15772 Athens, Greece
| |
Collapse
|
2
|
Liu Q, Zhu J, Ouyang W, Ding C, Wu Z, Ostrikov KK. Cold plasma turns mixed-dye-contaminated wastewater bio-safe. ENVIRONMENTAL RESEARCH 2024; 246:118125. [PMID: 38199474 DOI: 10.1016/j.envres.2024.118125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/14/2023] [Accepted: 12/03/2023] [Indexed: 01/12/2024]
Abstract
The excessive and uncontrollable discharge of diverse organic pollutants into the environment has emerged as a significant concern, presenting a substantial risk to human health. Among the advanced oxidation processes used for the purification of wastewater, cold plasma technology is superior in fast and effective decontamination but often fails facing mixed pollutants. To address these issues, here we develop the new conceptual approach, plasma process, and proprietary reactor that ensure, for the first time, that the efficiency of treatment (114.7%) of two mixed organic dyes, methylene blue (MB) and methyl orange (MO), is higher than when the two dyes are treated separately. We further reveal the underlying mechanisms for the energy-efficient complete degradation of the mixed dyes. The contribution of plasma-induced ROS and the distinct degradation characteristics and mechanism of pollutants in mixed treatment are discussed. The electron transfer pathway revealed for the first time suggest that the mixed pollutants reduce the overall redox potentials and facilitate electron transfer during the plasma treatment, promoting synergistic degradation effects. The integrated frameworks including both direct and indirect mechanisms provide new insights into the high-efficiency mixed-contaminant treatment. The degradation products for mixed degradation are revealed based on the identification of intermediate species. The plasma-treated water is proven safe for living creatures in waterways and sustainable fishery applications, using in vivo zebrafish model bio-toxicity assay. Overall, these findings offer a feasible approach and new insights into the mechanisms for the development of highly-effective, energy-efficient technologies for wastewater treatment and reuse in agriculture, industry, and potentially in urban water networks.
Collapse
Affiliation(s)
- Qi Liu
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, People's Republic of China
| | - Jiwen Zhu
- Institute of Advanced Technology, University of Science and Technology of China, Hefei, People's Republic of China
| | - Wenchong Ouyang
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, People's Republic of China
| | - Chengbiao Ding
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Zhengwei Wu
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, People's Republic of China; Institute of Advanced Technology, University of Science and Technology of China, Hefei, People's Republic of China.
| | - Kostya Ken Ostrikov
- School of Chemistry and Physics, Queensland University of Technology (QUT), Brisbane, Queensland 4000, Australia; Centre for Materials Science, Centre for Clean Energy Technologies and Practices, and Centre for Waste Free World, Queensland University of Technology (QUT), Brisbane, Queensland 4000, Australia
| |
Collapse
|
3
|
Yadav S, Shakya K, Gupta A, Singh D, Chandran AR, Varayil Aanappalli A, Goyal K, Rani N, Saini K. A review on degradation of organic dyes by using metal oxide semiconductors. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:71912-71932. [PMID: 35595896 DOI: 10.1007/s11356-022-20818-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 05/10/2022] [Indexed: 06/14/2023]
Abstract
The discharge of organic dye pollutants in natural water bodies has put forward a big challenge of providing clean water to a large part of the population. As the population is increasing with time, only underground water is not sufficient to complete the water requirements of everyone everywhere. Purification of wastewater and its reuse is the only way to fulfill the water needs. Nanotechnology has been used very efficiently for wastewater treatment via photocatalytic degradation of dye molecules. In the past few years, a lot of investigations have been done to enhance the photocatalytic activity of metal oxide semiconductors for water purification. In this review, we have discussed the different methods of synthesis of various metal oxide semiconductor nanoparticles, energy band gap, their role as efficient photocatalysts, radiations used for photocatalytic reactions, and their degradation efficiency to degrade the dye pollutants. We have also discussed the nanocomposites of metal oxide with graphene. These nanocomposites have been utilized as the efficient photocatalyst due to unique characteristics of graphene such as extended range of light absorption, separation of charges, and high capacity of adsorption of the dye pollutants.
Collapse
Affiliation(s)
- Sapna Yadav
- Department of Chemistry, Miranda House, University of Delhi, New Delhi-110007, India
| | - Kriti Shakya
- Department of Chemistry, Miranda House, University of Delhi, New Delhi-110007, India
| | - Aarushi Gupta
- Department of Chemistry, Miranda House, University of Delhi, New Delhi-110007, India
| | - Divya Singh
- Department of Chemistry, Miranda House, University of Delhi, New Delhi-110007, India
| | - Anjana R Chandran
- Department of Chemistry, Miranda House, University of Delhi, New Delhi-110007, India
| | | | - Kanika Goyal
- Department of Chemistry, Miranda House, University of Delhi, New Delhi-110007, India
| | - Nutan Rani
- Department of Chemistry, Miranda House, University of Delhi, New Delhi-110007, India
| | - Kalawati Saini
- Department of Chemistry, Miranda House, University of Delhi, New Delhi-110007, India.
| |
Collapse
|
4
|
Othman Z, Sinopoli A, Mackey HR, Mahmoud KA. Efficient Photocatalytic Degradation of Organic Dyes by AgNPs/TiO 2/Ti 3C 2T x MXene Composites under UV and Solar Light. ACS OMEGA 2021; 6:33325-33338. [PMID: 34926884 PMCID: PMC8674905 DOI: 10.1021/acsomega.1c03189] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Indexed: 06/14/2023]
Abstract
Due to their broad applications in various industrial activities, and their well-known negative impacts on the aquatic environment, organic dyes have been continuously identified as serious threat to the quality of ecosystems. The photocatalytic degradation process in aqueous solutions has emerged as an efficient and reliable approach for the removal of organic dyes. MXenes, a new class of two-dimensional (2D) nanomaterials, possess unique chemical composition, surface functionalities, and physicochemical properties. Such characteristics enable MXenes to act as efficient catalysts or cocatalysts to photodegrade organic molecules. This work explores the application of Ti3C2T x MXene decorated with silver and palladium nanoparticles, using a simple hydrothermal treatment method, for the photocatalytic degradation of methylene blue (MB) and rhodamine B (RhB). The chemical composition of these photocatalysts, as well as their structural properties and morphology, was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) techniques. The photocatalytic degradation abilities of the pristine MXene and the synthesized MXene composites were investigated under ultraviolet and solar light irradiation. A significant improvement in the photocatalytic performances was observed for all oxidized MXene composites when compared to pristine MXene, with a superior degradation efficiency achieved for AgNPs/TiO2/Ti3C2T x . This work broadens the application range of oxidized MXene composites, providing an alternative material for degrading organics dyes and wastewater treatment applications.
Collapse
Affiliation(s)
- Zakarya Othman
- Qatar
Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University, Qatar Foundation, P.O. Box 34110, Doha, Qatar
- Division
of Sustainable Development, College of Science and Engineering, Hamad bin Khalifa University, Qatar Foundation, P.O. Box 34110, Doha, Qatar
| | - Alessandro Sinopoli
- Qatar
Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University, Qatar Foundation, P.O. Box 34110, Doha, Qatar
| | - Hamish R. Mackey
- Division
of Sustainable Development, College of Science and Engineering, Hamad bin Khalifa University, Qatar Foundation, P.O. Box 34110, Doha, Qatar
| | - Khaled A. Mahmoud
- Qatar
Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University, Qatar Foundation, P.O. Box 34110, Doha, Qatar
| |
Collapse
|
5
|
Hollanda LR, Santos SBF, Faustino JGAA, Dotto GL, Foletto EL, Chiavone-Filho O. Oil field-produced water treatment: characterization, photochemical systems, and combined processes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:52744-52763. [PMID: 34467489 DOI: 10.1007/s11356-021-16222-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
Produced water, a mixture of inorganic and organic components, comprises the largest effluent stream from oil and gas activities. The removal of contaminants from this wastewater is receiving special attention of the researchers since most of them are persistent and difficult to remove with simple techniques. Several technologies from conventional to advanced oxidation processes have been employed to treat produced water. However, the achievement of greater efficiency may be conditioned to a combination of different wastewater treatment techniques. Hereupon, the present paper discusses three important aspects regarding produced water treatment: analytical methods used for characterization, relevant aspects regarding photochemical systems used for advanced oxidation processes, and combined techniques for treating oil field wastewaters. Analytical methods employed for the quantification of the main species contained in produced water are presented for a proper characterization. Photochemical aspects of the reaction systems such as operating conditions, types of irradiation sources, and technical details of reactors are also addressed. Finally, research papers concerning combined treatment techniques are discussed focusing on the essential contributions. Thus, this manuscript aims to assist in the development of novel techniques and the improvement of produced water treatment to obtain a high-quality treated effluent and reduce environmental impacts.
Collapse
Affiliation(s)
- Luana Rabelo Hollanda
- Department of Chemical Engineering, Federal University of Rio Grande do Norte, Natal, 59078-970, Brazil
| | | | | | - Guilherme Luiz Dotto
- Department of Chemical Engineering, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil.
| | - Edson Luiz Foletto
- Department of Chemical Engineering, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | - Osvaldo Chiavone-Filho
- Department of Chemical Engineering, Federal University of Rio Grande do Norte, Natal, 59078-970, Brazil
| |
Collapse
|
6
|
Jing W, Gao W, Li Z, Peng M, Han F, Wei Z, Yang Z, Jiang Z. Regulation of the Volume Flow Rate of Aqueous Methyl Blue Solution and the Wettability of CuO/ZnO Nanorods to Improve the Photodegradation Performance of Related Microfluidic Reactors. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:7890-7906. [PMID: 34152754 DOI: 10.1021/acs.langmuir.1c00407] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Six CuO/ZnO nanorod (CuO/ZnONR)-based microfluidic reactors were constructed for different UV irradiation durations, with which an aqueous methylene blue (MB) solution was photodegraded at varied volume flow rate Q. Via numerical and experimental routes, the effects of the Q on the kinetic adsorption rate constant Ka and the initial rate constant KA of the CuO/ZnONR-based microfluidic reactors were discussed. Moreover, a reverse contacting angle (CA) trend of CuO/ZnONRs to the reaction constant K curve of corresponding CuO/ZnONR-based microfluidic reactor suggested that the CA of CuO/ZnONRs was another key influencing factor that affected greatly the photodegradation performance of the microfluidic reactors. The Q of the aqueous MB solution and the UV irradiation duration for the photodeposition of CuO/ZnONRs were optimized to be 125 μL/min and 1.0 h, the K of the CuO/ZnONR-based microfluidic reactors reached 4.84 min-1, and the related ΔKA/K was less than 6%. Similarly, these methods and results can be employed not only to enhance the mass transport and adsorption of specific species within other nanostructured matrix material-coated microchannels but also to enlarge the actual contacting surface areas between these microchannels and the related solution, which further improve the performance of other nanostructured catalyst-based microfluidic reactors, rGO microfluidic voltage generation, and a GOx/AuNW enzymatic glucose microfluidic sensor.
Collapse
Affiliation(s)
- Weixuan Jing
- State Key Laboratory for Manufacturing Systems Engineering at Xi'an Jiaotong University, Xi'an 710049, P. R. China
- Chongqing Key Laboratory of Micro-Nano Systems and Smart Transduction at Chongqing Technology and Business University, Chongqing 400067, P. R. China
| | - Weizhuo Gao
- State Key Laboratory for Manufacturing Systems Engineering at Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Zehao Li
- State Key Laboratory for Manufacturing Systems Engineering at Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Mengli Peng
- State Key Laboratory for Manufacturing Systems Engineering at Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Feng Han
- State Key Laboratory for Manufacturing Systems Engineering at Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Zhengying Wei
- State Key Laboratory for Manufacturing Systems Engineering at Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Zhaochu Yang
- Chongqing Key Laboratory of Micro-Nano Systems and Smart Transduction at Chongqing Technology and Business University, Chongqing 400067, P. R. China
| | - Zhuangde Jiang
- State Key Laboratory for Manufacturing Systems Engineering at Xi'an Jiaotong University, Xi'an 710049, P. R. China
| |
Collapse
|
7
|
Methyl Orange Photo-Degradation by TiO2 in a Pilot Unit under Different Chemical, Physical, and Hydraulic Conditions. Processes (Basel) 2021. [DOI: 10.3390/pr9020205] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The photo-catalytic degradation of a textile azo-dye as Methyl Orange was studied in an innovative unit constituted by a channel over which a layer of titanium dioxide (TiO2) catalyst in anatase form was deposited and activated by UVB irradiation. The degradation kinetics were followed after variation of the chemical, physical, and hydraulic/hydrodynamic parameters of the system. For this purpose, the influence of the TiO2 dosage (g/cm3), dye concentration (mg/L), pH of the solution, flow-rate (L/s), hydraulic load (cm), and irradiation power (W) were evaluated on the degradation rates. It was observed that the maximum dosage of TiO2 was 0.79 g/cm3 while for higher dosage a reduction of homogeneity of the cement conglomerate occurred. The Langmuir–Hinshelwood (LH) kinetic model was followed up to a dye concentration around 1 mg/L. It was observed that with the increase of the flow rate, an increase of the degradation kinetics was obtained, while the further increase of the flow-rate associated with the modification of the hydraulic load determined a decrease of the kinetic rates. The results also evidenced an increase of the kinetic rates with the increase of the UVB intensity. A final comparison with other dyes such as Methyl Red and Methylene Blue was carried out in consideration of the pH of the solution, which sensibly affected the removal efficiencies.
Collapse
|
8
|
Suhadolnik L, Pohar A, Novak U, Likozar B, Mihelič A, Čeh M. Continuous photocatalytic, electrocatalytic and photo-electrocatalytic degradation of a reactive textile dye for wastewater-treatment processes: Batch, microreactor and scaled-up operation. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2018.12.017] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Petrella A, Spasiano D, Rizzi V, Cosma P, Race M, De Vietro N. Thermodynamic and kinetic investigation of heavy metals sorption in packed bed columns by recycled lignocellulosic materials from olive oil production. CHEM ENG COMMUN 2019. [DOI: 10.1080/00986445.2019.1574768] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Andrea Petrella
- Dipartimento di Ingegneria Civile, Ambientale, Edile, del Territorio e di Chimica, Politecnico di Bari, Bari, Italy
| | - Danilo Spasiano
- Dipartimento di Ingegneria Civile, Ambientale, Edile, del Territorio e di Chimica, Politecnico di Bari, Bari, Italy
| | - Vito Rizzi
- Dipartimento di Chimica, Università di Bari, Bari, Italy
| | - Pinalysa Cosma
- Dipartimento di Chimica, Università di Bari, Bari, Italy
| | - Marco Race
- Dipartimento di Ingegneria Civile e Meccanica, Università di Cassino e del Lazio Meridionale, Cassino, Italy
| | - Nicoletta De Vietro
- Istituto di Nanotecnologia (Nanotec), Consiglio Nazionale delle Ricerche (CNR), c/o Dipartimento di Chimica, Università degli Studi di Bari “Aldo Moro”, Bari, Italy
| |
Collapse
|
10
|
Petrella A, Spasiano D, Cosma P, Rizzi V, Race M. Evaluation of the hydraulic and hydrodynamic parameters influencing photo-catalytic degradation of bio-persistent pollutants in a pilot plant. CHEM ENG COMMUN 2019. [DOI: 10.1080/00986445.2018.1555534] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Andrea Petrella
- Dipartimento di Ingegneria Civile, Ambientale, Edile, del Territorio e di Chimica, Politecnico di Bari,Bari, Italy
| | - Danilo Spasiano
- Dipartimento di Ingegneria Civile, Ambientale, Edile, del Territorio e di Chimica, Politecnico di Bari,Bari, Italy
| | - Pinalysa Cosma
- Dipartimento di Chimica Università degli Studi di Bari “Aldo Moro,” Bari, Italy
| | - Vito Rizzi
- Dipartimento di Chimica Università degli Studi di Bari “Aldo Moro,” Bari, Italy
| | - Marco Race
- Dipartimento di Ingegneria Civile e Meccanica Università di Cassino e del Lazio Meridionale, Cassino, Italy
| |
Collapse
|
11
|
Sreedharan V, Bhaskara Rao KV. Biodegradation of Textile Azo Dyes. NANOSCIENCE AND BIOTECHNOLOGY FOR ENVIRONMENTAL APPLICATIONS 2019. [DOI: 10.1007/978-3-319-97922-9_5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
12
|
Porous Waste Glass for Lead Removal in Packed Bed Columns and Reuse in Cement Conglomerates. MATERIALS 2018; 12:ma12010094. [PMID: 30597857 PMCID: PMC6337151 DOI: 10.3390/ma12010094] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 12/17/2018] [Accepted: 12/24/2018] [Indexed: 12/23/2022]
Abstract
A porous waste glass (RWPG = recycled waste porous glass) was used in wastewater treatments for the removal of lead ions from single, binary, and ternary metal solutions (with cadmium and nickel ions). Experiments were performed in columns (30 cm3, 10 g) filled with 0.5–1 mm beads till complete glass exhaustion (breakthrough). In the case of single and binary solutions, the columns were percolated at 0.2 Lh−1 (2 mg Me+2 L−1); in the case of ternary solutions, the columns were percolated at 0.15–0.4 Lh−1 (2 mg Me2+ L−1) and with 2–5 mg Me2+ L−1 influent concentration (0.2 Lh−1). Lead ions were removed mainly by ion exchange and also by adsorption. From a kinetic point of view, the rate controlling step of the process was the interdiffusion of the lead ions in the Nernst stationary liquid film around the sorbent. The uptake of the metals and the glass selectivity were confirmed by Energy Dispersive X-ray spectroscopy (EDX) analysis. After lead retention process, glass beads were reused as lightweight aggregates for thermal insulating and environmental safe mortars.
Collapse
|
13
|
Pirsaheb M, Asadi A, Sillanpää M, Farhadian N. Application of carbon quantum dots to increase the activity of conventional photocatalysts: A systematic review. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.09.064] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
14
|
Lead Ion Sorption by Perlite and Reuse of the Exhausted Material in the Construction Field. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8101882] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This paper deals with the possibility of using perlite as a lead ion sorbent from industrial wastewater. Dynamic (laboratory column) operations were carried-out using beads, which were percolated by metals in a 2–10 mg·L−1 concentration range. To this purpose, lead ion solutions were eluted in columns loaded with different amounts of sorbent (2–4 g) within a 1–2 mm bead size range, at 0.15–0.4 L·h−1 flow-rates. Tests were performed to complete sorbent exhaustion (column breakthrough). The highest retention was obtained at 0.3 L·h−1, with 4 g of perlite and 10 mg·L−1 of influent, lead ion concentration. Film diffusion control was the kinetic step of the process in the Nerst stationary film at the solid/liquid interface. At the end of the sorption, perlite beads were used as lightweight aggregates in the construction field (i.e., for the preparation of cement mortars). Specifically, conglomerates showing different weights and consequently different thermal insulating and mechanical properties were obtained, with potential applications in plaster or panels.
Collapse
|
15
|
Kapridaki C, Verganelaki A, Dimitriadou P, Maravelaki-Kalaitzaki P. Conservation of Monuments by a Three-Layered Compatible Treatment of TEOS-Nano-Calcium Oxalate Consolidant and TEOS-PDMS-TiO₂ Hydrophobic/Photoactive Hybrid Nanomaterials. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E684. [PMID: 29702571 PMCID: PMC5978061 DOI: 10.3390/ma11050684] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/16/2018] [Accepted: 04/25/2018] [Indexed: 11/29/2022]
Abstract
In the conservation of monuments, research on innovative nanocomposites with strengthening, hydrophobic and self-cleaning properties have attracted the interest of the scientific community and promising results have been obtained as a result. In this study, stemming from the need for the compatibility of treatments in terms of nanocomposite/substrate, a three-layered compatible treatment providing strengthening, hydrophobic, and self-cleaning properties is proposed. This conservation approach was implemented treating lithotypes and mortars of different porosity and petrographic characteristics with a three-layered treatment comprising: (a) a consolidant, tetraethoxysilane (TEOS)-nano-Calcium Oxalate; (b) a hydrophobic layer of TEOS-polydimethylsiloxane (PDMS); and (c) a self-cleaning layer of TiO₂ nanoparticles from titanium tetra-isopropoxide with oxalic acid as hole-scavenger. After the three-layered treatment, the surface hydrophobicity was improved due to PDMS and nano-TiO₂ in the interface substrate/atmosphere, as proven by the homogeneity and the Si⁻O⁻Ti hetero-linkages of the blend protective/self-cleaning layers observed by Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM) and Fourier-Transform Infrared Spectroscopy (FTIR). The aesthetic, microstructural, mechanical and permeabile compatibility of the majority of treated substrates ranged within acceptability limits. The improved photocatalytic activity, as proven by the total discoloration of methylene blue in the majority of cases, was attributed to the anchorage of TiO₂, through the Si⁻O⁻Ti bonds to SiO₂, in the interface with the atmosphere, thus enhancing photoactivation.
Collapse
Affiliation(s)
- Chrysi Kapridaki
- School of Architecture, Technical University of Crete, Polytechnioupolis, Akrotiri, 73100 Chania, Crete, Greece.
| | - Anastasia Verganelaki
- School of Architecture, Technical University of Crete, Polytechnioupolis, Akrotiri, 73100 Chania, Crete, Greece.
| | - Pipina Dimitriadou
- School of Architecture, Technical University of Crete, Polytechnioupolis, Akrotiri, 73100 Chania, Crete, Greece.
| | - Pagona Maravelaki-Kalaitzaki
- School of Architecture, Technical University of Crete, Polytechnioupolis, Akrotiri, 73100 Chania, Crete, Greece.
| |
Collapse
|
16
|
Petrella A, Mascolo G, Murgolo S, Petruzzelli V, Ranieri E, Spasiano D, Petruzzelli D. Photocatalytic Oxidation of Organic Micro-Pollutants: Pilot Plant Investigation and Mechanistic Aspects of the Degradation Reaction. CHEM ENG COMMUN 2016. [DOI: 10.1080/00986445.2016.1188292] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Andrea Petrella
- Dipartimento di Ingegneria Civile, Ambientale, del Territorio, Edile e Chimica, Politecnico di Bari, Bari, Italy
| | - Giuseppe Mascolo
- Laboratorio di Chimica e Tecnologia delle Acque, IRSA, Consiglio Nazionale delle Ricerche, Bari, Italy
| | - Sapia Murgolo
- Laboratorio di Chimica e Tecnologia delle Acque, IRSA, Consiglio Nazionale delle Ricerche, Bari, Italy
| | - Valentina Petruzzelli
- Centro Interdipartimentale di Ricerca Industriale su Edilizia e Costruzioni, Bologna, Italy
| | - Ezio Ranieri
- Dipartimento di Ingegneria Civile, Ambientale, del Territorio, Edile e Chimica, Politecnico di Bari, Bari, Italy
| | - Danilo Spasiano
- Dipartimento di Ingegneria Civile, Ambientale, del Territorio, Edile e Chimica, Politecnico di Bari, Bari, Italy
| | - Domenico Petruzzelli
- Dipartimento di Ingegneria Civile, Ambientale, del Territorio, Edile e Chimica, Politecnico di Bari, Bari, Italy
| |
Collapse
|
17
|
Zhang M, Lee J, Wang L, Duan Q, Zhang J, Qi H. A Novel High-Throughput Screening of Multicomponent Photocatalysts for Decomposition of Organic Pollutants Based on Fluorescence Imaging. ChemCatChem 2015. [DOI: 10.1002/cctc.201500936] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Meijuan Zhang
- Department of Environmental Science; Shaanxi Normal University; 620 west chang ‘an street Xi'an, Shanxi P.R. China
| | - Jianchao Lee
- Department of Environmental Science; Shaanxi Normal University; 620 west chang ‘an street Xi'an, Shanxi P.R. China
| | - Liping Wang
- Department of Environmental Science; Shaanxi Normal University; 620 west chang ‘an street Xi'an, Shanxi P.R. China
| | - Qianlan Duan
- Department of Environmental Science; Shaanxi Normal University; 620 west chang ‘an street Xi'an, Shanxi P.R. China
| | - Jiarui Zhang
- Department of Environmental Science; Shaanxi Normal University; 620 west chang ‘an street Xi'an, Shanxi P.R. China
| | - Hailang Qi
- Department of Environmental Science; Shaanxi Normal University; 620 west chang ‘an street Xi'an, Shanxi P.R. China
| |
Collapse
|