1
|
Chen N, Chang B, Shi N, Yan W, Lu F, Liu F. Cross-linked enzyme aggregates immobilization: preparation, characterization, and applications. Crit Rev Biotechnol 2022; 43:369-383. [PMID: 35430938 DOI: 10.1080/07388551.2022.2038073] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Enzymes are commonly used as biocatalysts for various biological and chemical processes. However, some major drawbacks of free enzymes (e.g. poor reusability and instability) significantly restrict their industrial practices. How to overcome these weaknesses remain considerable challenges. Enzyme immobilization is one of the most effective ways to improve the reusability and stability of enzymes. Cross-linked enzyme aggregates (CLEAs) has been known as a novel and versatile carrier-free immobilization method. CLEAs is attractive due to its simplicity and robustness, without purification. It generally shows: high catalytic specificity and selectivity, good operational and storage stabilities, and good reusability. Moreover, co-immobilization of different kinds of enzymes can be acquired. These CLEAs advantages provide opportunities for further industrial applications. Herein, the preparation parameters of CLEAs were first summarized. Next, characterization of structural and catalytic properties, stability and reusability are also proposed. Finally, some important applications of this technique in: environmental protection, industrial chemistry, food industry, and pharmaceutical synthesis and delivery are introduced. Potential challenges and future research directions, such as improving cross-linking efficiency and internal mass transfer efficiency, are also presented. This implies that CLEAs provide an efficient and feasible technique to improve the properties of enzymes for use in the industry.
Collapse
Affiliation(s)
- Ning Chen
- Key Laboratory of Industrial Fermentation Microbiology, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, P. R. China
| | - Baogen Chang
- Key Laboratory of Industrial Fermentation Microbiology, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, P. R. China
| | - Nian Shi
- Key Laboratory of Industrial Fermentation Microbiology, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, P. R. China
| | - Wenxing Yan
- Key Laboratory of Industrial Fermentation Microbiology, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, P. R. China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, P. R. China
| | - Fufeng Liu
- Key Laboratory of Industrial Fermentation Microbiology, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, P. R. China
| |
Collapse
|
2
|
Chauhan V, Kaushal D, Dhiman VK, Kanwar SS, Singh D, Dhiman VK, Pandey H. An Insight in Developing Carrier-Free Immobilized Enzymes. Front Bioeng Biotechnol 2022; 10:794411. [PMID: 35309979 PMCID: PMC8924610 DOI: 10.3389/fbioe.2022.794411] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/21/2022] [Indexed: 11/25/2022] Open
Abstract
Enzymes play vital roles in all organisms. The enzymatic process is progressively at its peak, mainly for producing biochemical products with a higher value. The immobilization of enzymes can sometimes tremendously improve the outcome of biocatalytic processes, making the product(s) relatively pure and economical. Carrier-free immobilized enzymes can increase the yield of the product and the stability of the enzyme in biocatalysis. Immobilized enzymes are easier to purify. Due to these varied advantages, researchers are tempted to explore carrier-free methods used for the immobilization of enzymes. In this review article, we have discussed various aspects of enzyme immobilization, approaches followed to design a process used for immobilization of an enzyme and the advantages and disadvantages of various common processes used for enzyme immobilization.
Collapse
Affiliation(s)
- Vivek Chauhan
- Department of Biotechnology, Himachal Pradesh University, Shimla, India
| | - Diksha Kaushal
- Department of Biotechnology, Himachal Pradesh University, Shimla, India
| | | | - Shamsher Singh Kanwar
- Department of Biotechnology, Himachal Pradesh University, Shimla, India
- *Correspondence: Shamsher Singh Kanwar,
| | - Devendra Singh
- B.N. College of Engineering and Technology, Lucknow, India
| | - Vinay Kumar Dhiman
- Dr. Y. S. Parmar University of Horticulture and Forestry Nauni, Solan, India
| | - Himanshu Pandey
- Dr. Y. S. Parmar University of Horticulture and Forestry Nauni, Solan, India
| |
Collapse
|
3
|
A lipase/poly (ionic liquid)-styrene microspheres/PVA composite hydrogel for esterification application. Enzyme Microb Technol 2021; 152:109935. [PMID: 34749020 DOI: 10.1016/j.enzmictec.2021.109935] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/08/2021] [Accepted: 10/17/2021] [Indexed: 01/01/2023]
Abstract
Enzymes are particularly attractive as biocatalysts for the green synthesis of chemicals and pharmaceuticals. However, the traditional enzyme purification and separation process is complex and inefficient, which limits the wide application of enzyme catalysis. In this paper, an efficient strategy for enzyme purification and immobilization in one step is proposed. A novel poly (ionic liquid)-styrene microsphere is prepared by molecular design and synthesis for adsorbing and purifying high activity lipase from fermentation broth directly. By optimizing the surface morphologies and charge of the microspheres, the enzyme loading is significantly improved. In order to further stabilize the catalytic environment of lipase, the resulting lipase/poly (ionic liquid)-styrene microspheres are immobilized in physical crosslinking hydrogel to obtain a complex lipase catalytic system, which can be prepared into various shapes according to the requirements of catalytic environment. In the actual catalytic reaction process, this complex lipase catalytic system exhibits excellent catalytic activity (6314.69 ± 21.27 U mg-1) and good harsh environment tolerance compared with the lipase fermentation broth (1672.87 ± 36.68 U mg-1). Under the condition of cyclic catalysis, the complex lipase catalytic system shows the outstanding reusability (After 8 cycles the enzymatic activity is still higher than that of the lipase fermentation broth) and is easily separated from the products.
Collapse
|
4
|
Li Y, Luan P, Zhou L, Xue S, Liu Y, Liu Y, Jiang Y, Gao J. Purification and immobilization of His-tagged organophosphohydrolase on yolk−shell Co/C@SiO2@Ni/C nanoparticles for cascade degradation and detection of organophosphates. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2020.107895] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
5
|
Cheng Z, Xia Y, Zhou Z. Recent Advances and Promises in Nitrile Hydratase: From Mechanism to Industrial Applications. Front Bioeng Biotechnol 2020; 8:352. [PMID: 32391348 PMCID: PMC7193024 DOI: 10.3389/fbioe.2020.00352] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 03/30/2020] [Indexed: 12/21/2022] Open
Abstract
Nitrile hydratase (NHase, EC 4.2.1.84) is one type of metalloenzyme participating in the biotransformation of nitriles into amides. Given its catalytic specificity in amide production and eco-friendliness, NHase has overwhelmed its chemical counterpart during the past few decades. However, unclear catalytic mechanism, low thermostablity, and narrow substrate specificity limit the further application of NHase. During the past few years, numerous studies on the theoretical and industrial aspects of NHase have advanced the development of this green catalyst. This review critically focuses on NHase research from recent years, including the natural distribution, gene types, posttranslational modifications, expression, proposed catalytic mechanism, biochemical properties, and potential applications of NHase. The developments of NHase described here are not only useful for further application of NHase, but also beneficial for the development of the fields of biocatalysis and biotransformation.
Collapse
Affiliation(s)
| | | | - Zhemin Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
6
|
Zhang S, Deng Q, Shangguan H, Zheng C, Shi J, Huang F, Tang B. Design and Preparation of Carbon Nitride-Based Amphiphilic Janus N-Doped Carbon/MoS 2 Nanosheets for Interfacial Enzyme Nanoreactor. ACS APPLIED MATERIALS & INTERFACES 2020; 12:12227-12237. [PMID: 32053348 DOI: 10.1021/acsami.9b18735] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Janus amphiphilic particles have gained much attention for their important application value in areas as diverse as interfacial modification, sensors, drug delivery, optics, and actuators. In this work, we prepared Janus amphiphilic nanosheets composed of nitrogen-doped stratiform meso-macroporous carbons (NMC) and molybdenum sulfide (MoS2) for hydrophilic and hydrophobic sides, respectively. The dicyandiamide and glucose were used as precursors for synthesizing two-dimensional nitrogen-doped meso-macroporous carbons, and the molybdate could be anchored by the functional groups on the surface of carbon layers and then transform into uniformly MoS2 to form the Janus amphiphilic layer by layer NMC/MoS2 support. Transmission electron microscopy, scanning electron microscopy, X-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy are used to demonstrate the successful preparation of Janus materials. As the typical interfacial enzyme, Candida rugosa lipase (CRL) immobilized on the Janus amphiphilic NMC/MoS2 support brought forth to improvement of its performance because the Janus nanosheets can be easily attached on the oil-aqueous interface for better catalytic activity (interfacial activation of lipases). The obtained immobilized lipase (NMC/MoS2@CRL) exhibited satisfactory lipase loading (193.1 mg protein per g), specific hydrolytic activity (95.76 U g-1), thermostability (at 55 °C, 84% of the initial activity remained after 210 min), pH flexibility, and recyclability (60% of the initial activity remained after nine runs). In terms of its application, the esterification rate of using NMC/MoS2@CRL (75%) is higher than those of NMC@CRL (20%) and MoS2@CRL (11.8%) in the "oil-water" biphase and CRL as well as NMC/MoS2@CRL in the one-phase. Comparing with the free CRL, NMC@CRL, and MoS2@CRL, the Janus amphiphilic NMC/MoS2 served as a carrier that exhibited more optimal performance and practicability.
Collapse
Affiliation(s)
- Shan Zhang
- Hubei Key Laboratory of Lipid Chemistry and Nutrition, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Qianchun Deng
- Hubei Key Laboratory of Lipid Chemistry and Nutrition, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Huijuan Shangguan
- Hubei Key Laboratory of Lipid Chemistry and Nutrition, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Chang Zheng
- Hubei Key Laboratory of Lipid Chemistry and Nutrition, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Jie Shi
- Hubei Key Laboratory of Lipid Chemistry and Nutrition, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China
| | - Fenghong Huang
- Hubei Key Laboratory of Lipid Chemistry and Nutrition, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
7
|
Jin W, Xu Y, Yu XW. Formation lipase cross-linked enzyme aggregates on octyl-modified mesocellular foams with oxidized sodium alginate. Colloids Surf B Biointerfaces 2019; 184:110501. [DOI: 10.1016/j.colsurfb.2019.110501] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/25/2019] [Accepted: 09/11/2019] [Indexed: 12/27/2022]
|
8
|
Abdul Wahab MKH, El-Enshasy HA, Bakar FDA, Murad AMA, Jahim JM, Illias RM. Improvement of cross-linking and stability on cross-linked enzyme aggregate (CLEA)-xylanase by protein surface engineering. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.07.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
9
|
Virus-like organosilica nanoparticles for lipase immobilization: Characterization and biocatalytic applications. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.01.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
10
|
Cao G, Gao J, Zhou L, Huang Z, He Y, Zhu M, Jiang Y. Fabrication of Ni 2+ -nitrilotriacetic acid functionalized magnetic mesoporous silica nanoflowers for one pot purification and immobilization of His-tagged ω-transaminase. Biochem Eng J 2017. [DOI: 10.1016/j.bej.2017.09.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
11
|
Biomimetic-Functionalized, Tannic Acid-Templated Mesoporous Silica as a New Support for Immobilization of NHase. Molecules 2017; 22:molecules22101597. [PMID: 28946697 PMCID: PMC6151425 DOI: 10.3390/molecules22101597] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 09/18/2017] [Accepted: 09/19/2017] [Indexed: 12/21/2022] Open
Abstract
Tannic acid-templated mesoporous silica (TAMS) was synthesized using a simple nonsurfactant template method and dopamine-functionalized TAMS (Dop-TAMS), which was prepared via a biomimetic coating, was developed as a new support for immobilization of NHase (NHase@Dop-TAMS). The Dop-TAMS was thoroughly characterized by the transmission electron microscopy (TEM), scanning electron microscopy (SEM), Brunauer–Emmett–Teller (BET), and Fourier transform infrared (FT-IR) and the results showed that the Dop-TAMS possessed sufficiently large pore size and volume for the accommodation of NHase. Studying the thermal stability, storage, shaking stability, and pH stability of the free and immobilized NHase indicated that the catalytic properties of NHase@Dop-TAMS were significantly enhanced. Moreover, the NHase@Dop-TAMS exhibited good reusability. All the results demonstrated that Dop-TAMS could be used as an excellent matrix for the immobilization of NHase.
Collapse
|
12
|
Preparation of cross-linked enzyme aggregates of nitrile hydratase ES-NHT-118 from E. coli by macromolecular cross-linking agent. Chin J Chem Eng 2017. [DOI: 10.1016/j.cjche.2016.08.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Gao J, Jiang Y, Lu J, Han Z, Deng J, Chen Y. Dopamine-functionalized mesoporous onion-like silica as a new matrix for immobilization of lipase Candida sp. 99-125. Sci Rep 2017; 7:40395. [PMID: 28067335 PMCID: PMC5220347 DOI: 10.1038/srep40395] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 12/06/2016] [Indexed: 02/06/2023] Open
Abstract
Dopmine functionalized mesoporous onion-like silica (DPMS) was synthesized via a biomimetic coating, and lipase Candida sp. 99-125 (LCS) was immobilized in DPMS (LCS@DPMS) by physical adsorption in this study. The DPMS was characterized by SEM, TEM, BET and FT-IR, and it was shown that the DPMS had clear multishell structures with large surface area of 419 m2/g. The activity, pH stability, thermal stability, storage stability, and reusability of the LCS@DPMS were investigated in detail. The stabilities of LCS@DPMS were improved significantly compared to the free lipase and LCS@MS (LCS immobilized in unfunctionalized mesoporous onion-like silica by physical adsorption). All the results indicated that the DPMS had high efficiency and improved stability for lipase immobilization.
Collapse
Affiliation(s)
- Junkai Gao
- School of Maritime and Civil Engineering, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Yanjun Jiang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| | - Jinshu Lu
- School of Maritime and Civil Engineering, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Zhi Han
- School of Maritime and Civil Engineering, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Jiajia Deng
- School of Maritime and Civil Engineering, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Yan Chen
- School of Maritime and Civil Engineering, Zhejiang Ocean University, Zhoushan, 316022, China
| |
Collapse
|
14
|
Gao J, Yu H, Zhou L, He Y, Ma L, Jiang Y. Formation of cross-linked nitrile hydratase aggregates in the pores of tannic-acid-templated magnetic mesoporous silica: Characterization and catalytic application. Biochem Eng J 2017. [DOI: 10.1016/j.bej.2016.10.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
15
|
Chen Y, Gao J, Wen X, Wu W. Efficient removal of cadmium using facile functionalized of mesoporous silica via a biomimetic coating. RSC Adv 2016. [DOI: 10.1039/c5ra24735g] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A mesoporous material (DMOS), prepared by grafting polydopamine onto meso-structured silica (MOS), was developed as a sorbent to sequestrate Cd2+.
Collapse
Affiliation(s)
- Yan Chen
- School of Maritime and Civil Engineering
- Zhejiang Ocean University
- Zhoushan 316022
- China
| | - Junkai Gao
- School of Maritime and Civil Engineering
- Zhejiang Ocean University
- Zhoushan 316022
- China
| | - Xiaofei Wen
- School of Maritime and Civil Engineering
- Zhejiang Ocean University
- Zhoushan 316022
- China
| | - Wenfeng Wu
- School of Maritime and Civil Engineering
- Zhejiang Ocean University
- Zhoushan 316022
- China
| |
Collapse
|