1
|
Shesham V, Kelly AL, Burke W, Crouch A, Drake CA, Varaljay VA, Crookes-Goodson WJ, Barlow DE, Masthay MB, Biffinger JC. Comparison of two diphenyl polyenes as acid-sensitive additives during the biodegradation of a thermoset polyester polyurethane coating. J Appl Microbiol 2021; 132:351-364. [PMID: 34297452 DOI: 10.1111/jam.15228] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/02/2021] [Accepted: 07/19/2021] [Indexed: 11/28/2022]
Abstract
AIMS Biochemical hydrolysis and chemical catalysis are involved in the successful biodegradation of polymers. In order to evaluate the potential separation between biochemical and chemical catalysis during the biodegradation process, we report the use of two diphenylpolyenes (DPPs), all trans-1,4-diphenylbutadiene (DPB) and all trans-1,6-diphenylhexatriene (DPH), as potential acid-sensitive indicators in polymers. METHODS AND RESULTS 1,4-Diphenylbutadiene and DPH (0.1% w/w) were melt-cast successfully with poly(ethylene succinate) hexamethylene (PES-HM) polyurethane (thermoset polyester polyurethane) coatings above 80℃. When these two DPP/PES-HM coatings were exposed to a concentrated supernatant with significant esterase activity resulting from the growth of a recently isolated and identified strain of Tremellomycetes yeast (Naganishia albida 5307AI), the DPB coatings exhibited a measurable and reproducible localized decrease in the blue fluorescence emission in regions below where hydrolytic biodegradation was initiated in contrast with DPH blended coatings. The fluorescence changes observed in the biodegraded DPB coating were similar to exposing them to concentrated acids and not bases. CONCLUSIONS Our experiments resulted in (1) a method to blend DPP additives into thermoset coatings, (2) the first report of the biodegradation of polyester polyurethane coating by N. albida, and (3) demonstration that hydrolytic supernatants from this strain generate acidic region within degrading polyester coatings using DPB as the indicator. SIGNIFICANCE AND IMPACT OF THE STUDY Our experiments confirm that N. albida is an active polyester degrader and that DPB is a promising acid sensitive polymer coating additive.
Collapse
Affiliation(s)
| | - Abigail L Kelly
- Chemistry Department, University of Dayton, Dayton, Ohio, USA
| | - William Burke
- Soft Matter Materials Branch, Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio, USA.,UES, Inc, Dayton, Ohio, USA
| | - Audra Crouch
- Soft Matter Materials Branch, Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio, USA.,UES, Inc, Dayton, Ohio, USA
| | - Carrie A Drake
- Soft Matter Materials Branch, Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio, USA.,UES, Inc, Dayton, Ohio, USA
| | - Vanessa A Varaljay
- Soft Matter Materials Branch, Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio, USA
| | - Wendy J Crookes-Goodson
- Soft Matter Materials Branch, Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio, USA
| | - Daniel E Barlow
- Chemistry Division, US Naval Research Laboratory, Washington, District of Columbia, USA
| | - Mark B Masthay
- Chemistry Department, University of Dayton, Dayton, Ohio, USA
| | | |
Collapse
|
2
|
Affiliation(s)
- Sundus Erbas-Cakmak
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - David A. Leigh
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Charlie T. McTernan
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Alina
L. Nussbaumer
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| |
Collapse
|
3
|
Wagner NL, Greco JA, Ranaghan MJ, Birge RR. Directed evolution of bacteriorhodopsin for applications in bioelectronics. J R Soc Interface 2013; 10:20130197. [PMID: 23676894 DOI: 10.1098/rsif.2013.0197] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
In nature, biological systems gradually evolve through complex, algorithmic processes involving mutation and differential selection. Evolution has optimized biological macromolecules for a variety of functions to provide a comparative advantage. However, nature does not optimize molecules for use in human-made devices, as it would gain no survival advantage in such cooperation. Recent advancements in genetic engineering, most notably directed evolution, have allowed for the stepwise manipulation of the properties of living organisms, promoting the expansion of protein-based devices in nanotechnology. In this review, we highlight the use of directed evolution to optimize photoactive proteins, with an emphasis on bacteriorhodopsin (BR), for device applications. BR, a highly stable light-activated proton pump, has shown great promise in three-dimensional optical memories, real-time holographic processors and artificial retinas.
Collapse
Affiliation(s)
- Nicole L Wagner
- Department of Molecular & Cell Biology, University of Connecticut, Storrs, CT 06269-3125, USA
| | | | | | | |
Collapse
|
4
|
Kraack J, Buckup T, Motzkus M. Resonant Two-Photon Excitation Pathways During Retinal-Isomerization in Bacteriorhodopsin. EPJ WEB OF CONFERENCES 2013. [DOI: 10.1051/epjconf/20134107019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
5
|
Rhinow D, Imhof M, Chizhik I, Baumann RP, Hampp N. Structural Changes in Bacteriorhodopsin Caused by Two-Photon-Induced Photobleaching. J Phys Chem B 2012; 116:7455-62. [DOI: 10.1021/jp2112846] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Daniel Rhinow
- Department of Structural
Biology, Max-Planck-Institute of Biophysics, Max-von-Laue-Str. 3, D-60438 Frankfurt, Germany
| | - Martin Imhof
- Department of Chemistry, Philipps-University of Marburg, Hans-Meerwein-Str. Bldg. H, D-35032 Marburg,
Germany
| | - Ivan Chizhik
- Department of Chemistry, Philipps-University of Marburg, Hans-Meerwein-Str. Bldg. H, D-35032 Marburg,
Germany
| | - Roelf-Peter Baumann
- Department of Chemistry, Philipps-University of Marburg, Hans-Meerwein-Str. Bldg. H, D-35032 Marburg,
Germany
| | - Norbert Hampp
- Department of Chemistry, Philipps-University of Marburg, Hans-Meerwein-Str. Bldg. H, D-35032 Marburg,
Germany
- Material Sciences Center, D-35032 Marburg, Germany
| |
Collapse
|
6
|
Prokhorenko VI, Halpin A, Johnson PJM, Miller RJD, Brown LS. Coherent control of the isomerization of retinal in bacteriorhodopsin in the high intensity regime. J Chem Phys 2011; 134:085105. [DOI: 10.1063/1.3554743] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
7
|
Dioumaev AK, Lanyi JK. Two bathointermediates of the bacteriorhodopsin photocycle, from time-resolved nanosecond spectra in the visible. J Phys Chem B 2009; 113:16643-53. [PMID: 19994879 PMCID: PMC3808455 DOI: 10.1021/jp907393m] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Time-resolved measurements were performed on wild-type bacteriorhodopsin with an optical multichannel analyzer in the spectral range 350-735 nm, from 100 ns to the photocycle completion, at four temperatures in the 5-30 degrees C range. The intent was to examine the possibility of two K-like bathochromic intermediates and to obtain their spectra and kinetics in the visible. The existence of a second K-like intermediate, termed KL, had been postulated (Shichida et al., Biochim. Biophys. Acta 1983, 723, 240-246) to reconcile inconsistencies in data in the pico- and microsecond time domains. However, introduction of KL led to a controversy, since neither its visible spectrum nor its kinetics could be confirmed. Infrared data (Dioumaev and Braiman, J. Phys. Chem. B 1997, 101, 1655-1662) revealed a state which might have been considered a homologue to KL, but it had a kinetic pattern different from that of the earlier proposed KL. Here, we characterize two distinct K-like intermediates, K(E) ("early") and K(L) ("late"), by their spectra and kinetics in the visible as revealed by global kinetic analysis. The K(E)-to-K(L) transition has a time constant of approximately 250 ns at 20 degrees C, and describes a shift from K(E) with lambda(max) at approximately 600 nm and extinction of approximately 56,000 M(-1) x cm(-1) to K(L) with lambda(max) at approximately 590 nm and extinction of approximately 50,000 M(-1) x cm(-1). The temperature dependence of this transition is characterized by an enthalpy of activation of DeltaH(++) approximately 40 kJ/mol and a positive entropy of activation of DeltaS(++)/R approximately 4. The consequences of multiple K-like states for interpreting the spectral evolution in the early stages of the photocycle are discussed.
Collapse
Affiliation(s)
- Andrei K Dioumaev
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, California 92697, USA.
| | | |
Collapse
|
8
|
Affiliation(s)
- Konrad Szaciłowski
- Uniwersytet Jagielloński, Wydział Chemii, ul. Romana Ingardena 3, 30-060 Kraków, Poland
| |
Collapse
|
9
|
Rhinow D, Hampp NA. Sugar-induced blue membrane: release of divalent cations during phase transition of purple membranes observed in sugar-derived glasses. J Phys Chem B 2008; 112:4613-9. [PMID: 18358028 DOI: 10.1021/jp710694s] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The formation of blue membrane from purple membranes (PM) has been observed in glassy films made from PM and various sugars. The phase transition of PM at about 70 degrees C causes the complexation of divalent cations to be weakened. The vicinal diol structures in sugars are capable to complex divalent cations and delocalize them throughout the matrix as long as its glass transition temperature is lower than the phase transition temperature of PM. The loss of divalent cations from bacteriorhodopsin (BR), the only protein in PM, causes the formation of blue membrane (BM), which is accompanied by a loss of beta-sheet structure observable in the infrared spectrum. Glassy sugars are particular useful to observe this transition, as sugar entrapment does not restrict conformational changes of BR but rather retards them. The material obtained was named sugar-induced blue membrane (SIBM). The formation of SIBM is inhibited by the addition of divalent cations. Furthermore, SIBM is reverted immediately to PM by addition of water. A characteristic time dependence of the thermal reversion of SIBM to PM proves that the phase transition of PM triggers the release and uptake of divalent cations and the corresponding color change.
Collapse
Affiliation(s)
- Daniel Rhinow
- Department of Chemistry, and Material Sciences Center, University of Marburg, Hans-Meerwein-Strasse, D-35032 Marburg, Germany
| | | |
Collapse
|
10
|
Fischer T, Hampp NA. Two-photon absorption of bacteriorhodopsin: formation of a red-shifted thermally stable photoproduct F620. Biophys J 2005; 89:1175-82. [PMID: 15894635 PMCID: PMC1366602 DOI: 10.1529/biophysj.104.055806] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
By means of high-intensity 532 nm laser pulses, a photochemical conversion of the initial B(570) state of bacteriorhodopsin (BR) to a stable photoproduct absorbing maximally at approximately 620 nm in BR suspensions and at approximately 610 nm in BR films is induced. This state, which we named F(620), is photochemically further converted to a group of three products with maximal absorptions in the wavelength range from 340 nm to 380 nm, which show identical spectral properties to the so-called P(360) state reported in the literature. The photoconversion from B(570) to F(620) is most likely a resonant two-photon absorption induced step. The formation of F(620) and P(360) leads to a distinguished photo-induced permanent optical anisotropy in BR films. The spectral dependence of the photo-induced anisotropy and the anisotropy orientations at the educt (B(570)) and product (F(620)) wavelengths are strong indicators that F(620) is formed in a direct photochemical step from B(570). The chemical nature of the P(360) products probably is that of a retro-retinal containing BR, but the structural characteristics of the F(620) state are still unclear. The photo-induced permanent anisotropy induced by short laser pulses in BR films helps to better understand the photochemical pathways related to this transition, and it is interesting in view of potential applications as this feature is the molecular basis for permanent optical data storage using BR films.
Collapse
|
11
|
Gillespie NB, Wise KJ, Ren L, Stuart JA, Marcy DL, Hillebrecht J, Li Q, Ramos L, Jordan K, Fyvie S, Birge RR. Characterization of the Branched-Photocycle Intermediates P and Q of Bacteriorhodopsin. J Phys Chem B 2002. [DOI: 10.1021/jp021221p] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nathan B. Gillespie
- Departments of Chemistry and of Molecular and Cell Biology, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, and W. M. Keck Center for Molecular Electronics and Department of Chemistry, Syracuse University, 111 College Place, Syracuse, New York 13244-4100
| | - Kevin J. Wise
- Departments of Chemistry and of Molecular and Cell Biology, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, and W. M. Keck Center for Molecular Electronics and Department of Chemistry, Syracuse University, 111 College Place, Syracuse, New York 13244-4100
| | - Lei Ren
- Departments of Chemistry and of Molecular and Cell Biology, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, and W. M. Keck Center for Molecular Electronics and Department of Chemistry, Syracuse University, 111 College Place, Syracuse, New York 13244-4100
| | - Jeffrey A. Stuart
- Departments of Chemistry and of Molecular and Cell Biology, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, and W. M. Keck Center for Molecular Electronics and Department of Chemistry, Syracuse University, 111 College Place, Syracuse, New York 13244-4100
| | - Duane L. Marcy
- Departments of Chemistry and of Molecular and Cell Biology, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, and W. M. Keck Center for Molecular Electronics and Department of Chemistry, Syracuse University, 111 College Place, Syracuse, New York 13244-4100
| | - Jason Hillebrecht
- Departments of Chemistry and of Molecular and Cell Biology, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, and W. M. Keck Center for Molecular Electronics and Department of Chemistry, Syracuse University, 111 College Place, Syracuse, New York 13244-4100
| | - Qun Li
- Departments of Chemistry and of Molecular and Cell Biology, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, and W. M. Keck Center for Molecular Electronics and Department of Chemistry, Syracuse University, 111 College Place, Syracuse, New York 13244-4100
| | - Lavoisier Ramos
- Departments of Chemistry and of Molecular and Cell Biology, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, and W. M. Keck Center for Molecular Electronics and Department of Chemistry, Syracuse University, 111 College Place, Syracuse, New York 13244-4100
| | - Kevin Jordan
- Departments of Chemistry and of Molecular and Cell Biology, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, and W. M. Keck Center for Molecular Electronics and Department of Chemistry, Syracuse University, 111 College Place, Syracuse, New York 13244-4100
| | - Sean Fyvie
- Departments of Chemistry and of Molecular and Cell Biology, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, and W. M. Keck Center for Molecular Electronics and Department of Chemistry, Syracuse University, 111 College Place, Syracuse, New York 13244-4100
| | - Robert R. Birge
- Departments of Chemistry and of Molecular and Cell Biology, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, and W. M. Keck Center for Molecular Electronics and Department of Chemistry, Syracuse University, 111 College Place, Syracuse, New York 13244-4100
| |
Collapse
|