1
|
Cabotaje P, Walter K, Zamader A, Huang P, Ho F, Land H, Senger M, Berggren G. Probing Substrate Transport Effects on Enzymatic Hydrogen Catalysis: An Alternative Proton Transfer Pathway in Putatively Sensory [FeFe] Hydrogenase. ACS Catal 2023; 13:10435-10446. [PMID: 37560193 PMCID: PMC10407848 DOI: 10.1021/acscatal.3c02314] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/04/2023] [Indexed: 08/11/2023]
Abstract
[FeFe] hydrogenases, metalloenzymes catalyzing proton/dihydrogen interconversion, have attracted intense attention due to their remarkable catalytic properties and (bio-)technological potential for a future hydrogen economy. In order to unravel the factors enabling their efficient catalysis, both their unique organometallic cofactors and protein structural features, i.e., "outer-coordination sphere" effects have been intensively studied. These structurally diverse enzymes are divided into distinct phylogenetic groups, denoted as Group A-D. Prototypical Group A hydrogenases display high turnover rates (104-105 s-1). Conversely, the sole characterized Group D representative, Thermoanaerobacter mathranii HydS (TamHydS), shows relatively low catalytic activity (specific activity 10-1 μmol H2 mg-1 min-1) and has been proposed to serve a H2-sensory function. The various groups of [FeFe] hydrogenase share the same catalytic cofactor, the H-cluster, and the structural factors causing the diverging reactivities of Group A and D remain to be elucidated. In the case of the highly active Group A enzymes, a well-defined proton transfer pathway (PTP) has been identified, which shuttles H+ between the enzyme surface and the active site. In Group D hydrogenases, this conserved pathway is absent. Here, we report on the identification of highly conserved amino acid residues in Group D hydrogenases that constitute a possible alternative PTP. We varied two proposed key amino acid residues of this pathway (E252 and E289, TamHydS numbering) via site-directed mutagenesis and analyzed the resulting variants via biochemical and spectroscopic methods. All variants displayed significantly decreased H2-evolution and -oxidation activities. Additionally, the variants showed two redox states that were not characterized previously. These findings provide initial evidence that these amino acid residues are central to the putative PTP of Group D [FeFe] hydrogenase. Since the identified residues are highly conserved in Group D exclusively, our results support the notion that the PTP is not universal for different phylogenetic groups in [FeFe] hydrogenases.
Collapse
Affiliation(s)
| | | | - Afridi Zamader
- Molecular Biomimetics, Department
of Chemistry, Ångström Laboratory, Uppsala University, Box 523, SE-75120 Uppsala, Sweden
| | - Ping Huang
- Molecular Biomimetics, Department
of Chemistry, Ångström Laboratory, Uppsala University, Box 523, SE-75120 Uppsala, Sweden
| | - Felix Ho
- Molecular Biomimetics, Department
of Chemistry, Ångström Laboratory, Uppsala University, Box 523, SE-75120 Uppsala, Sweden
| | - Henrik Land
- Molecular Biomimetics, Department
of Chemistry, Ångström Laboratory, Uppsala University, Box 523, SE-75120 Uppsala, Sweden
| | - Moritz Senger
- Molecular Biomimetics, Department
of Chemistry, Ångström Laboratory, Uppsala University, Box 523, SE-75120 Uppsala, Sweden
| | - Gustav Berggren
- Molecular Biomimetics, Department
of Chemistry, Ångström Laboratory, Uppsala University, Box 523, SE-75120 Uppsala, Sweden
| |
Collapse
|
2
|
Heghmanns M, Rutz A, Kutin Y, Engelbrecht V, Winkler M, Happe T, Kasanmascheff M. The oxygen-resistant [FeFe]-hydrogenase CbA5H harbors an unknown radical signal. Chem Sci 2022; 13:7289-7294. [PMID: 35799827 PMCID: PMC9214887 DOI: 10.1039/d2sc00385f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/28/2022] [Indexed: 11/21/2022] Open
Abstract
[FeFe]-hydrogenases catalyze the reversible conversion of molecular hydrogen into protons and electrons with remarkable efficiency. However, their industrial applications are limited by their oxygen sensitivity. Recently, it was shown that the [FeFe]-hydrogenase from Clostridium beijerinckii (CbA5H) is oxygen-resistant and can be reactivated after oxygen exposure. In this work, we used multifrequency continuous wave and pulsed electron paramagnetic resonance (EPR) spectroscopy to characterize the active center of CbA5H, the H-cluster. Under oxidizing conditions, the spectra were dominated by an additional and unprecedented radical species. The generation of this radical signal depends on the presence of an intact H-cluster and a complete proton transfer pathway including the bridging azadithiolate ligand. Selective 57Fe enrichment combined with isotope-sensitive electron-nuclear double resonance (ENDOR) spectroscopy revealed a spin density distribution that resembles an H-cluster state. Overall, we uncovered a radical species in CbA5H that is potentially involved in the redox sensing of CbA5H. Electron paramagnetic resonance spectroscopy revealed an unprecedented radical species in the oxygen-resistant [FeFe]-hydrogenase CbA5H. Analysis of the isotope-sensitive data suggests that it is related to the active site, the H-cluster.![]()
Collapse
Affiliation(s)
- Melanie Heghmanns
- TU Dortmund University, Department of Chemistry and Chemical Biology, Otto-Hahn-Straße 6, 44227 Dortmund, Germany
| | - Andreas Rutz
- Ruhr University Bochum, Faculty of Biology and Biotechnology, Photobiotechnology, Universitätsstr. 150, 44801 Bochum, Germany
| | - Yury Kutin
- TU Dortmund University, Department of Chemistry and Chemical Biology, Otto-Hahn-Straße 6, 44227 Dortmund, Germany
| | - Vera Engelbrecht
- Ruhr University Bochum, Faculty of Biology and Biotechnology, Photobiotechnology, Universitätsstr. 150, 44801 Bochum, Germany
| | - Martin Winkler
- Technical University of Munich Campus Straubing for Biotechnology and Sustainability, Professorship for Electrobiotechnology, Uferstrasse 53, 94315 Straubing, Germany
| | - Thomas Happe
- Ruhr University Bochum, Faculty of Biology and Biotechnology, Photobiotechnology, Universitätsstr. 150, 44801 Bochum, Germany
| | - Müge Kasanmascheff
- TU Dortmund University, Department of Chemistry and Chemical Biology, Otto-Hahn-Straße 6, 44227 Dortmund, Germany
| |
Collapse
|
3
|
Abstract
![]()
The
energetics for proton reduction in FeFe-hydrogenase has been
reinvestigated by theoretical modeling, in light of recent experiments.
Two different mechanisms have been considered. In the first one, the
bridging hydride position was blocked by the enzyme, which is the
mechanism that has been supported by a recent spectroscopic study
by Cramer et al. A major difficulty in
the present study to agree with experimental energetics was to find
the right position for the added proton in the first reduction step.
It was eventually found that the best position was as a terminal hydride
on the distal iron, which has not been suggested in any of the recent,
experimentally based mechanisms. The lowest transition state was surprisingly
found to be a bond formation between a proton on a cysteine and the
terminal hydride. This type of TS is similar to the one for heterolytic
H2 cleavage in NiFe hydrogenase. The second mechanism investigated
here is not supported by the present calculations or the recent experiments
by Cramer et al., but was still studied as an interesting comparison.
In that mechanism, the formation of the bridging hydride was allowed.
The H–H formation barrier is only 3.6 kcal/mol higher than
for the first mechanism, but there are severe problems concerning
the motion of the protons.
Collapse
Affiliation(s)
- Per E M Siegbahn
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Rong-Zhen Liao
- Key Laboratory for Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Media, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 430074 Wuhan, China
| |
Collapse
|
4
|
Barrozo A, Orio M. Molecular Electrocatalysts for the Hydrogen Evolution Reaction: Input from Quantum Chemistry. CHEMSUSCHEM 2019; 12:4905-4915. [PMID: 31557393 DOI: 10.1002/cssc.201901828] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/22/2019] [Indexed: 06/10/2023]
Abstract
In the pursuit of carbon-free fuels, hydrogen can be considered as an apt energy carrier. The design of molecular electrocatalysts for hydrogen production is important for the development of renewable energy sources that are abundant, inexpensive, and environmentally benign. Over the last 20 years, a large number of electrocatalysts have been developed, and considerable efforts have been directed toward the design of earth-abundant, first-row transition-metal complexes capable of promoting electrocatalytic hydrogen evolution reaction (HER). In this context, numerical approaches have emerged as powerful tools to study the catalytic performances of these complexes. This review covers some of the most significant theoretical mechanistic studies of biomimetic and bioinspired homogeneous HER catalysts. The approaches employed to study the free energy landscapes are discussed and methods used to obtain accurate estimates of relevant observables required to study the HER are presented. Furthermore, the structural and electronic parameters that govern the reactivity, and are necessary to achieve efficient hydrogen production, are discussed in view of future research directions.
Collapse
Affiliation(s)
- Alexandre Barrozo
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, 13397, Marseille, France
| | - Maylis Orio
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, 13397, Marseille, France
| |
Collapse
|
5
|
Abstract
The active site (H-cluster) of [FeFe]-hydrogenases is a blueprint for the design of a biologically inspired H2-producing catalyst. The maturation process describes the preassembly and uptake of the unique [2FeH] cluster into apo-hydrogenase, which is to date not fully understood. In this study, we targeted individual amino acids by site-directed mutagenesis in the [FeFe]-hydrogenase CpI of Clostridium pasteurianum to reveal the final steps of H-cluster maturation occurring within apo-hydrogenase. We identified putative key positions for cofactor uptake and the subsequent structural reorganization that stabilizes the [2FeH] cofactor in its functional coordination sphere. Our results suggest that functional integration of the negatively charged [2FeH] precursor requires the positive charges and individual structural features of the 2 basic residues of arginine 449 and lysine 358, which mark the entrance and terminus of the maturation channel, respectively. The results obtained for 5 glycine-to-histidine exchange variants within a flexible loop region provide compelling evidence that the glycine residues function as hinge positions in the refolding process, which closes the secondary ligand sphere of the [2FeH] cofactor and the maturation channel. The conserved structural motifs investigated here shed light on the interplay between the secondary ligand sphere and catalytic cofactor.
Collapse
|
6
|
Firpo V, Le JM, Pavone V, Lombardi A, Bren KL. Hydrogen evolution from water catalyzed by cobalt-mimochrome VI*a, a synthetic mini-protein. Chem Sci 2018; 9:8582-8589. [PMID: 30568783 PMCID: PMC6253682 DOI: 10.1039/c8sc01948g] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 09/14/2018] [Indexed: 12/14/2022] Open
Abstract
The folding of a synthetic mini-hydrogenase is shown to enhance catalyst efficiency and longevity.
A synthetic enzyme is reported that electrocatalytically reduces protons to hydrogen (H2) in water near neutral pH under aerobic conditions. Cobalt mimochrome VI*a (CoMC6*a) is a mini-protein with a cobalt deuteroporphyrin active site within a scaffold of two synthetic peptides covalently bound to the porphyrin. Comparison of the activity of CoMC6*a to that of cobalt microperoxidase-11 (CoMP11-Ac), a cobalt porphyrin catalyst with a single “proximal” peptide and no organized secondary structure, reveals that CoMC6*a has significantly enhanced longevity, yielding a turnover number exceeding 230 000, in comparison to 25 000 for CoMP11-Ac. Furthermore, comparison of cyclic voltammograms of CoMC6*a and CoMP11-Ac indicates that the trifluoroethanol-induced folding of CoMC6*a lowers the overpotential for catalytic H2 evolution by up to 100 mV. These results demonstrate that even a minimal polypeptide matrix can enhance longevity and efficiency of a H2-evolution catalyst.
Collapse
Affiliation(s)
- Vincenzo Firpo
- Department of Chemical Sciences , University of Naples Federico II , Complesso Universitario Monte S. Angelo , via Cintia 45 , 80126 Naples , Italy .
| | - Jennifer M Le
- Department of Chemistry , University of Rochester , Rochester , NY 14627 , USA .
| | - Vincenzo Pavone
- Department of Chemical Sciences , University of Naples Federico II , Complesso Universitario Monte S. Angelo , via Cintia 45 , 80126 Naples , Italy .
| | - Angela Lombardi
- Department of Chemical Sciences , University of Naples Federico II , Complesso Universitario Monte S. Angelo , via Cintia 45 , 80126 Naples , Italy .
| | - Kara L Bren
- Department of Chemistry , University of Rochester , Rochester , NY 14627 , USA .
| |
Collapse
|
7
|
Hensley AJ, Zhang J, Vinçon I, Pereira Hernandez X, Tranca D, Seifert G, McEwen JS, Wang Y. Mechanistic understanding of methanol carbonylation: Interfacing homogeneous and heterogeneous catalysis via carbon supported Ir La. J Catal 2018. [DOI: 10.1016/j.jcat.2018.02.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
8
|
Johnson SL, Gerasimchuk NN, Mebi CA. Cyclic tetranuclear iron-carbonyl complex containing thiobisbenzenethiolate ligands: Synthesis and structural characterization. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2018.03.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
9
|
Chongdar N, Birrell JA, Pawlak K, Sommer C, Reijerse EJ, Rüdiger O, Lubitz W, Ogata H. Unique Spectroscopic Properties of the H-Cluster in a Putative Sensory [FeFe] Hydrogenase. J Am Chem Soc 2018; 140:1057-1068. [PMID: 29251926 DOI: 10.1021/jacs.7b11287] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sensory type [FeFe] hydrogenases are predicted to play a role in transcriptional regulation by detecting the H2 level of the cellular environment. These hydrogenases contain the hydrogenase domain with distinct modifications in the active site pocket, followed by a Per-Arnt-Sim (PAS) domain. As yet, neither the physiological function nor the biochemical or spectroscopic properties of these enzymes have been explored. Here, we present the characterization of an artificially maturated, putative sensory [FeFe] hydrogenase from Thermotoga maritima (HydS). This enzyme shows lower hydrogen conversion activity than prototypical [FeFe] hydrogenases and a reduced inhibition by CO. Using FTIR spectroelectrochemistry and EPR spectroscopy, three redox states of the active site were identified. The spectroscopic signatures of the most oxidized state closely resemble those of the Hox state from the prototypical [FeFe] hydrogenases, while the FTIR spectra of both singly and doubly reduced states show large differences. The FTIR bands of both the reduced states are strongly red-shifted relative to the Hox state, indicating reduction at the diiron site, but with retention of the bridging CO ligand. The unique functional and spectroscopic features of HydS are discussed with regard to the possible role of altered amino acid residues influencing the electronic properties of the H-cluster.
Collapse
Affiliation(s)
- Nipa Chongdar
- Max Planck Institute for Chemical Energy Conversion , Stiftstrasse 34-36, D45470 Mülheim an der Ruhr, Germany
| | - James A Birrell
- Max Planck Institute for Chemical Energy Conversion , Stiftstrasse 34-36, D45470 Mülheim an der Ruhr, Germany
| | - Krzysztof Pawlak
- Max Planck Institute for Chemical Energy Conversion , Stiftstrasse 34-36, D45470 Mülheim an der Ruhr, Germany
| | - Constanze Sommer
- Max Planck Institute for Chemical Energy Conversion , Stiftstrasse 34-36, D45470 Mülheim an der Ruhr, Germany
| | - Edward J Reijerse
- Max Planck Institute for Chemical Energy Conversion , Stiftstrasse 34-36, D45470 Mülheim an der Ruhr, Germany
| | - Olaf Rüdiger
- Max Planck Institute for Chemical Energy Conversion , Stiftstrasse 34-36, D45470 Mülheim an der Ruhr, Germany
| | - Wolfgang Lubitz
- Max Planck Institute for Chemical Energy Conversion , Stiftstrasse 34-36, D45470 Mülheim an der Ruhr, Germany
| | - Hideaki Ogata
- Max Planck Institute for Chemical Energy Conversion , Stiftstrasse 34-36, D45470 Mülheim an der Ruhr, Germany.,Institute of Low Temperature Science, Hokkaido University , Kita19 Nishi8, Kita-ku, 060-0819 Sapporo, Japan
| |
Collapse
|
10
|
Lampret O, Adamska-Venkatesh A, Konegger H, Wittkamp F, Apfel UP, Reijerse EJ, Lubitz W, Rüdiger O, Happe T, Winkler M. Interplay between CN - Ligands and the Secondary Coordination Sphere of the H-Cluster in [FeFe]-Hydrogenases. J Am Chem Soc 2017; 139:18222-18230. [PMID: 29179539 DOI: 10.1021/jacs.7b08735] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The catalytic cofactor of [FeFe]-hydrogenses (H-cluster) is composed of a generic cubane [4Fe-4S]-cluster (4FeH) linked to a binuclear iron-sulfur cluster (2FeH) that has an open coordination site at which the reversible conversion of protons to molecular hydrogen occurs. The (2FeH) subsite features a diatomic coordination sphere composed of three CO and two CN- ligands affecting its redox properties and providing excellent probes for FTIR spectroscopy. The CO stretch vibrations are very sensitive to the redox changes within the H-cluster occurring during the catalytic cycle, whereas the CN- signals seem to be relatively inert to these effects. This could be due to the more structural role of the CN- ligands tightly anchoring the (2FeH) unit to the protein environment through hydrogen bonding. In this work we explore the effects of structural changes within the secondary ligand sphere affecting the CN- ligands on FTIR spectroscopy and catalysis. By comparing the FTIR spectra of wild-type enzyme and two mutagenesis variants, we are able to assign the IR signals of the individual CN- ligands of the (2FeH) site for different redox states of the H-cluster. Moreover, protein film electrochemistry reveals that targeted manipulation of the secondary coordination sphere of the proximal CN- ligand (i.e., closest to the (4FeH) site) can affect the catalytic bias. These findings highlight the importance of the protein environment for re-adjusting the catalytic features of the H-cluster in individual enzymes and provide valuable information for the design of artificial hydrogenase mimics.
Collapse
Affiliation(s)
- Oliver Lampret
- Fakultät für Biologie und Biotechnologie, Lehrstuhl für Biochemie der Pflanzen, AG Photobiotechnologie, Ruhr Universität Bochum , Universitätsstraße 150, 44801 Bochum, Germany
| | - Agnieszka Adamska-Venkatesh
- Max-Planck-Institut für Chemische Energiekonversion , Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Hannes Konegger
- Fakultät für Biologie und Biotechnologie, Lehrstuhl für Biochemie der Pflanzen, AG Photobiotechnologie, Ruhr Universität Bochum , Universitätsstraße 150, 44801 Bochum, Germany
| | - Florian Wittkamp
- Fakultät für Chemie und Biochemie, Lehrstuhl für Anorganische Chemie I-Bioanorganische Chemie, Ruhr Universität Bochum , Universitätsstraße 150, 44801 Bochum, Germany
| | - Ulf-Peter Apfel
- Fakultät für Chemie und Biochemie, Lehrstuhl für Anorganische Chemie I-Bioanorganische Chemie, Ruhr Universität Bochum , Universitätsstraße 150, 44801 Bochum, Germany
| | - Edward J Reijerse
- Max-Planck-Institut für Chemische Energiekonversion , Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Wolfgang Lubitz
- Max-Planck-Institut für Chemische Energiekonversion , Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Olaf Rüdiger
- Max-Planck-Institut für Chemische Energiekonversion , Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Thomas Happe
- Fakultät für Biologie und Biotechnologie, Lehrstuhl für Biochemie der Pflanzen, AG Photobiotechnologie, Ruhr Universität Bochum , Universitätsstraße 150, 44801 Bochum, Germany
| | - Martin Winkler
- Fakultät für Biologie und Biotechnologie, Lehrstuhl für Biochemie der Pflanzen, AG Photobiotechnologie, Ruhr Universität Bochum , Universitätsstraße 150, 44801 Bochum, Germany
| |
Collapse
|
11
|
Interplay of hemilability and redox activity in models of hydrogenase active sites. Proc Natl Acad Sci U S A 2017; 114:E9775-E9782. [PMID: 29087322 DOI: 10.1073/pnas.1710475114] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The hydrogen evolution reaction, as catalyzed by two electrocatalysts [M(N2S2)·Fe(NO)2]+, [Fe-Fe]+ (M = Fe(NO)) and [Ni-Fe]+ (M = Ni) was investigated by computational chemistry. As nominal models of hydrogenase active sites, these bimetallics feature two kinds of actor ligands: Hemilabile, MN2S2 ligands and redox-active, nitrosyl ligands, whose interplay guides the H2 production mechanism. The requisite base and metal open site are masked in the resting state but revealed within the catalytic cycle by cleavage of the MS-Fe(NO)2 bond from the hemilabile metallodithiolate ligand. Introducing two electrons and two protons to [Ni-Fe]+ produces H2 from coupling a hydride temporarily stored on Fe(NO)2 (Lewis acid) and a proton accommodated on the exposed sulfur of the MN2S2 thiolate (Lewis base). This Lewis acid-base pair is initiated and preserved by disrupting the dative donation through protonation on the thiolate or reduction on the thiolate-bound metal. Either manipulation modulates the electron density of the pair to prevent it from reestablishing the dative bond. The electron-buffering nitrosyl's role is subtler as a bifunctional electron reservoir. With more nitrosyls as in [Fe-Fe]+, accumulated electronic space in the nitrosyls' π*-orbitals makes reductions easier, but redirects the protonation and reduction to sites that postpone the actuation of the hemilability. Additionally, two electrons donated from two nitrosyl-buffered irons, along with two external electrons, reduce two protons into two hydrides, from which reductive elimination generates H2.
Collapse
|
12
|
Kositzki R, Mebs S, Schuth N, Leidel N, Schwartz L, Karnahl M, Wittkamp F, Daunke D, Grohmann A, Apfel UP, Gloaguen F, Ott S, Haumann M. Electronic and molecular structure relations in diiron compounds mimicking the [FeFe]-hydrogenase active site studied by X-ray spectroscopy and quantum chemistry. Dalton Trans 2017; 46:12544-12557. [PMID: 28905949 DOI: 10.1039/c7dt02720f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Synthetic diiron compounds of the general formula Fe2(μ-S2R)(CO)n(L)6-n (R = alkyl or aromatic groups; L = CN- or phosphines) are versatile models for the active-site cofactor of hydrogen turnover in [FeFe]-hydrogenases. A series of 18 diiron compounds, containing mostly a dithiolate bridge and terminal ligands of increasing complexity, was characterized by X-ray absorption and emission spectroscopy in combination with density functional theory. Fe K-edge absorption and Kβ main-line emission spectra revealed the varying geometry and the low-spin state of the Fe(i) centers. Good agreement between experimental and calculated core-to-valence-excitation absorption and radiative valence-to-core-decay emission spectra revealed correlations between spectroscopic and structural features and provided access to the electronic configuration. Four main effects on the diiron core were identified, which were preferentially related to variation either of the dithiolate or of the terminal ligands. Alteration of the dithiolate bridge affected mainly the Fe-Fe bond strength, while more potent donor substitution and ligand field asymmetrization changed the metal charge and valence level localization. In contrast, cyanide ligation altered all relevant properties and, in particular, the frontier molecular orbital energies of the diiron core. Mutual benchmarking of experimental and theoretical parameters provides guidelines to verify the electronic properties of related diiron compounds.
Collapse
Affiliation(s)
- Ramona Kositzki
- Freie Universität Berlin, Fachbereich Physik, 14195 Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Organophosphorous ligands in hydrogenase-inspired iron-based catalysts: A DFT study on the energetics of metal protonation as a function of P-atom substitution. J PHYS ORG CHEM 2017. [DOI: 10.1002/poc.3748] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
14
|
Chen J, Sit PHL. Density Functional Theory and Car–Parrinello Molecular Dynamics Study of the Hydrogen-Producing Mechanism of the Co(dmgBF2)2 and Co(dmgH)2 Cobaloxime Complexes in Acetonitrile–Water Solvent. J Phys Chem A 2017; 121:3515-3525. [DOI: 10.1021/acs.jpca.7b00163] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Jinfan Chen
- School of Energy and Environment, City University of Hong Kong, Hong Kong Special Administrative Region
| | - Patrick H.-L. Sit
- School of Energy and Environment, City University of Hong Kong, Hong Kong Special Administrative Region
| |
Collapse
|
15
|
Liu CT, Chu JF, Lin CK, Hong CW. First-principles computation of electron transfer and reaction rate at a perovskite cathode for hydrogen production. Phys Chem Chem Phys 2017; 19:8300-8306. [PMID: 28280826 DOI: 10.1039/c7cp00541e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The focus of this research is on the electron transfer and its reaction rate at the perovskite cathode of a photoelectrochemical cell for hydrogen production. By employing the density functional theory (DFT), the electron density, projected density of states (PDOS), electron distribution and electron transfer path between [Fe-Fe] hydrogenase and the perovskite cathode can be obtained. Simulation results show that the perovskite cathode is better than traditional cathodes for hydrogen production. Before transmission to the [Fe-Fe] hydrogenase, electron clouds mainly aggregate at the periphery of amine molecules. Simulations also show that the key to hydrogen production at the perovskite structure lies in the organic molecules. Electrons are transferred to the hydrocarbon structural chain before reaching the Fe atoms. The Rice, Ramsperger, Kassel and Marcus (RRKM) theory was used to predict the reaction rates at different temperatures. It was found that the reaction rates are in good agreement with the experimental results. This research provides more physical insight into the electron transfer mechanism during the hydrogen production process.
Collapse
Affiliation(s)
- C T Liu
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan.
| | - J F Chu
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 11529, Taiwan
| | - C K Lin
- Center for Condensed Matter Sciences, National Taiwan University, Taipei 10617, Taiwan
| | - C W Hong
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan.
| |
Collapse
|
16
|
Mulder DW, Guo Y, Ratzloff MW, King PW. Identification of a Catalytic Iron-Hydride at the H-Cluster of [FeFe]-Hydrogenase. J Am Chem Soc 2016; 139:83-86. [PMID: 27973768 DOI: 10.1021/jacs.6b11409] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Hydrogenases couple electrochemical potential to the reversible chemical transformation of H2 and protons, yet the reaction mechanism and composition of intermediates are not fully understood. In this Communication we describe the biophysical properties of a hydride-bound state (Hhyd) of the [FeFe]-hydrogenase from Chlamydomonas reinhardtii. The catalytic H-cluster of [FeFe]-hydrogenase consists of a [4Fe-4S] subcluster ([4Fe-4S]H) linked by a cysteine thiol to an azadithiolate-bridged 2Fe subcluster ([2Fe]H) with CO and CN- ligands. Mössbauer analysis and density functional theory (DFT) calculations show that Hhyd consists of a reduced [4Fe-4S]H+ coupled to a diferrous [2Fe]H with a terminally bound Fe-hydride. The existence of the Fe-hydride in Hhyd was demonstrated by an unusually low Mössbauer isomer shift of the distal Fe of the [2Fe]H subcluster. A DFT model of Hhyd shows that the Fe-hydride is part of a H-bonding network with the nearby bridging azadithiolate to facilitate fast proton exchange and catalytic turnover.
Collapse
Affiliation(s)
- David W Mulder
- Biosciences Center, National Renewable Energy Laboratory , Golden, Colorado 80401, United States
| | - Yisong Guo
- Department of Chemistry, Carnegie Mellon University , Pittsburgh, Pennsylvania 15213, United States
| | - Michael W Ratzloff
- Biosciences Center, National Renewable Energy Laboratory , Golden, Colorado 80401, United States
| | - Paul W King
- Biosciences Center, National Renewable Energy Laboratory , Golden, Colorado 80401, United States
| |
Collapse
|
17
|
Abul-Futouh H, Almazahreh LR, Sakamoto T, Stessman NYT, Lichtenberger DL, Glass RS, Görls H, El-Khateeb M, Schollhammer P, Mloston G, Weigand W. [FeFe]-Hydrogenase H-Cluster Mimics with Unique Planar μ-(SCH2)2ER2Linkers (E=Ge and Sn). Chemistry 2016; 23:346-359. [DOI: 10.1002/chem.201603843] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Hassan Abul-Futouh
- Institut für Anorganische und Analytische Chemie; Friedrich-Schiller-Universität Jena; Humboldt Str. 8 07743 Jena Germany
| | - Laith R. Almazahreh
- Institut für Anorganische und Analytische Chemie; Friedrich-Schiller-Universität Jena; Humboldt Str. 8 07743 Jena Germany
| | - Takahiro Sakamoto
- Department of Chemistry and Biochemistry; The University of Arizona; Tucson AZ 85721 USA
| | - Nhu Y. T. Stessman
- Department of Chemistry and Biochemistry; The University of Arizona; Tucson AZ 85721 USA
| | | | - Richard S. Glass
- Department of Chemistry and Biochemistry; The University of Arizona; Tucson AZ 85721 USA
| | - Helmar Görls
- Institut für Anorganische und Analytische Chemie; Friedrich-Schiller-Universität Jena; Humboldt Str. 8 07743 Jena Germany
| | - Mohammad El-Khateeb
- Chemistry Department; Jordan University of Science and Technology; Irbid 22110 Jordan
| | - Philippe Schollhammer
- UMR CNRS 6521; Université de Bretagne Occidentale; 6 avenue Le Gorgeu, C.S. 93837 29238 Brest-Cedex France
| | - Grzegorz Mloston
- Section of Heteroorganic Compounds; University of Lodz; Tamka 12 91-403 Łódź Poland
| | - Wolfgang Weigand
- Institut für Anorganische und Analytische Chemie; Friedrich-Schiller-Universität Jena; Humboldt Str. 8 07743 Jena Germany
| |
Collapse
|
18
|
Pandey IK, Natarajan M, Hemlata, Hussain F, Kaur-Ghumaan S. Diiron Complexes [Fe2(CO)5(μ-pdt/Mebdt)(L)] Containing a Chelating Diphosphine Ligand L=(Oxydi-2,1-phenylene)bis(diphenylphosphine): Bioinspired [FeFe] Hydrogenase Model Complexes. ChemistrySelect 2016. [DOI: 10.1002/slct.201601216] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | - Mookan Natarajan
- Department of Chemistry; University of Delhi; Delhi- 110007 India
| | - Hemlata
- Department of Chemistry; University of Delhi; Delhi- 110007 India
| | - Firasat Hussain
- Department of Chemistry; University of Delhi; Delhi- 110007 India
| | | |
Collapse
|
19
|
Katz S, Noth J, Horch M, Shafaat HS, Happe T, Hildebrandt P, Zebger I. Vibrational spectroscopy reveals the initial steps of biological hydrogen evolution. Chem Sci 2016; 7:6746-6752. [PMID: 28451119 PMCID: PMC5355867 DOI: 10.1039/c6sc01098a] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 06/29/2016] [Indexed: 12/30/2022] Open
Abstract
[FeFe] hydrogenases are biocatalytic model systems for the exploitation and investigation of catalytic hydrogen evolution. Here, we used vibrational spectroscopic techniques to characterize, in detail, redox transformations of the [FeFe] and [4Fe4S] sub-sites of the catalytic centre (H-cluster) in a monomeric [FeFe] hydrogenase. Through the application of low-temperature resonance Raman spectroscopy, we discovered a novel metastable intermediate that is characterized by an oxidized [FeIFeII] centre and a reduced [4Fe4S]1+ cluster. Based on this unusual configuration, this species is assigned to the first, deprotonated H-cluster intermediate of the [FeFe] hydrogenase catalytic cycle. Providing insights into the sequence of initial reaction steps, the identification of this species represents a key finding towards the mechanistic understanding of biological hydrogen evolution.
Collapse
Affiliation(s)
- S Katz
- Institut für Chemie , Technische Universitaet Berlin , Strasse des 17. Juni 135 , D-10623 Berlin , Germany . ;
| | - J Noth
- Fakultaet für Biologie und Biotechnologie , Lehrstuhl für Biochemie der Pflanzen , AG Photobiotechnologie , Ruhr-Universitaet Bochum , Universitaetsstrasse 150 , D-44801 Bochum , Germany
| | - M Horch
- Institut für Chemie , Technische Universitaet Berlin , Strasse des 17. Juni 135 , D-10623 Berlin , Germany . ;
| | - H S Shafaat
- Max-Planck-Institut für Chemische Energiekonversion , Stiftstraße 34-36 , D-45470 , Muelheim an der Ruhr , Germany
| | - T Happe
- Fakultaet für Biologie und Biotechnologie , Lehrstuhl für Biochemie der Pflanzen , AG Photobiotechnologie , Ruhr-Universitaet Bochum , Universitaetsstrasse 150 , D-44801 Bochum , Germany
| | - P Hildebrandt
- Institut für Chemie , Technische Universitaet Berlin , Strasse des 17. Juni 135 , D-10623 Berlin , Germany . ;
| | - I Zebger
- Institut für Chemie , Technische Universitaet Berlin , Strasse des 17. Juni 135 , D-10623 Berlin , Germany . ;
| |
Collapse
|
20
|
Ding S, Ghosh P, Lunsford AM, Wang N, Bhuvanesh N, Hall MB, Darensbourg MY. Hemilabile Bridging Thiolates as Proton Shuttles in Bioinspired H2 Production Electrocatalysts. J Am Chem Soc 2016; 138:12920-12927. [DOI: 10.1021/jacs.6b06461] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Shengda Ding
- Department of Chemistry, Texas A & M University, College Station, Texas 77843, United States
| | - Pokhraj Ghosh
- Department of Chemistry, Texas A & M University, College Station, Texas 77843, United States
| | - Allen M. Lunsford
- Department of Chemistry, Texas A & M University, College Station, Texas 77843, United States
| | - Ning Wang
- Department of Chemistry, Texas A & M University, College Station, Texas 77843, United States
| | - Nattamai Bhuvanesh
- Department of Chemistry, Texas A & M University, College Station, Texas 77843, United States
| | - Michael B. Hall
- Department of Chemistry, Texas A & M University, College Station, Texas 77843, United States
| | - Marcetta Y. Darensbourg
- Department of Chemistry, Texas A & M University, College Station, Texas 77843, United States
| |
Collapse
|
21
|
Cheng M, Wang M, Zheng D, Sun L. Effect of the S-to-S bridge on the redox properties and H2activation performance of diiron complexes related to the [FeFe]-hydrogenase active site. Dalton Trans 2016; 45:17687-17696. [DOI: 10.1039/c6dt02953a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Studies on diiron dithiolate complexes containing the same PNP ligand but different S-to-S bridges demonstrate that changing the S-to-S bridge can considerably alter the H2activation performance of [FeFe]-hydrogenase models.
Collapse
Affiliation(s)
- Minglun Cheng
- State Key Laboratory of Fine Chemicals
- DUT-KTH Joint Education and Research Center on Molecular Devices
- Dalian University of Technology
- Dalian 116024
- China
| | - Mei Wang
- State Key Laboratory of Fine Chemicals
- DUT-KTH Joint Education and Research Center on Molecular Devices
- Dalian University of Technology
- Dalian 116024
- China
| | - Dehua Zheng
- State Key Laboratory of Fine Chemicals
- DUT-KTH Joint Education and Research Center on Molecular Devices
- Dalian University of Technology
- Dalian 116024
- China
| | - Licheng Sun
- State Key Laboratory of Fine Chemicals
- DUT-KTH Joint Education and Research Center on Molecular Devices
- Dalian University of Technology
- Dalian 116024
- China
| |
Collapse
|
22
|
Zipoli F, Car R, Cohen MH, Selloni A. Theoretical Design by First Principles Molecular Dynamics of a Bioinspired Electrode-Catalyst System for Electrocatalytic Hydrogen Production from Acidified Water. J Chem Theory Comput 2015; 6:3490-502. [PMID: 26617099 DOI: 10.1021/ct100319b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Bacterial di-iron hydrogenases produce hydrogen efficiently from water. Accordingly, we have studied by first-principles molecular-dynamics simulations (FPMD) electrocatalytic hydrogen production from acidified water by their common active site, the [FeFe]H cluster, extracted from the enzyme and linked directly to the (100) surface of a pyrite electrode. We found that the cluster could not be attached stably to the surface via a thiol link analogous to that which attaches it to the rest of the enzyme, despite the similarity of the (100) pyrite surface to the Fe4S4 cubane to which it is linked in the enzyme. We report here a systematic sequence of modifications of the structure and composition of the cluster devised to maintain the structural stability of the pyrite/cluster complex in water throughout its hydrogen production cycle, an example of the molecular design of a complex system by FPMD.
Collapse
Affiliation(s)
- Federico Zipoli
- Department of Chemistry and Princeton Institute for the Science and Technology of Materials, Princeton University, Princeton, New Jersey 08544, and Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854
| | - Roberto Car
- Department of Chemistry and Princeton Institute for the Science and Technology of Materials, Princeton University, Princeton, New Jersey 08544, and Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854
| | - Morrel H Cohen
- Department of Chemistry and Princeton Institute for the Science and Technology of Materials, Princeton University, Princeton, New Jersey 08544, and Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854
| | - Annabella Selloni
- Department of Chemistry and Princeton Institute for the Science and Technology of Materials, Princeton University, Princeton, New Jersey 08544, and Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854
| |
Collapse
|
23
|
Chang CH, Kim K. Density Functional Theory Calculation of Bonding and Charge Parameters for Molecular Dynamics Studies on [FeFe] Hydrogenases. J Chem Theory Comput 2015; 5:1137-45. [PMID: 26609623 DOI: 10.1021/ct800342w] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
We have developed and tested molecular mechanics parameters for [FeS] clusters found in known [FeFe] hydrogenases. Bond stretching, angle bending, dihedral and improper torsion parameters for models of the oxidized and reduced catalytic H-cluster, [4Fe4S](+,2+)Cys4, [4Fe4S](+,2+)Cys3His, and [2Fe2S](+,2+)Cys4, were calculated solely from Kohn-Sham density functional theory and Natural Population Analysis. Circumsphere analysis of the cubane clusters in the energy-minimized structure of the full Clostridium pasteurianum hydrogenase I showed the resulting metallocluster structures to be similar to known cubane structures. All clusters were additionally stable in molecular dynamics simulations over the course of 1.0 ns in the fully oxidized and fully reduced enzyme models. Normal modes calculated by quasiharmonic analysis from the dynamics data show unexpected couplings among internal coordinate motions, which may reflect the effects of the protein structure on metallocluster dynamics.
Collapse
Affiliation(s)
- Christopher H Chang
- National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden, Colorado 80401
| | - Kwiseon Kim
- National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden, Colorado 80401
| |
Collapse
|
24
|
Yang D, Li Y, Wang B, Zhao X, Su L, Chen S, Tong P, Luo Y, Qu J. Synthesis and Electrocatalytic Property of Diiron Hydride Complexes Derived from a Thiolate-Bridged Diiron Complex. Inorg Chem 2015; 54:10243-9. [DOI: 10.1021/acs.inorgchem.5b01508] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dawei Yang
- State Key Laboratory of Fine Chemicals,
School of Pharmaceutical Science and Technology, Faculty of Chemical,
Environmental and Biological Science and Technology, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Yang Li
- State Key Laboratory of Fine Chemicals,
School of Pharmaceutical Science and Technology, Faculty of Chemical,
Environmental and Biological Science and Technology, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Baomin Wang
- State Key Laboratory of Fine Chemicals,
School of Pharmaceutical Science and Technology, Faculty of Chemical,
Environmental and Biological Science and Technology, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Xiangyu Zhao
- State Key Laboratory of Fine Chemicals,
School of Pharmaceutical Science and Technology, Faculty of Chemical,
Environmental and Biological Science and Technology, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Linan Su
- State Key Laboratory of Fine Chemicals,
School of Pharmaceutical Science and Technology, Faculty of Chemical,
Environmental and Biological Science and Technology, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Si Chen
- State Key Laboratory of Fine Chemicals,
School of Pharmaceutical Science and Technology, Faculty of Chemical,
Environmental and Biological Science and Technology, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Peng Tong
- State Key Laboratory of Fine Chemicals,
School of Pharmaceutical Science and Technology, Faculty of Chemical,
Environmental and Biological Science and Technology, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Yi Luo
- State Key Laboratory of Fine Chemicals,
School of Pharmaceutical Science and Technology, Faculty of Chemical,
Environmental and Biological Science and Technology, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Jingping Qu
- State Key Laboratory of Fine Chemicals,
School of Pharmaceutical Science and Technology, Faculty of Chemical,
Environmental and Biological Science and Technology, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| |
Collapse
|
25
|
Chouffai D, Capon JF, De Gioia L, Pétillon FY, Schollhammer P, Talarmin J, Zampella G. A Diferrous Dithiolate as a Model of the Elusive Hoxinact State of the [FeFe] Hydrogenases: An Electrochemical and Theoretical Dissection of Its Redox Chemistry. Inorg Chem 2014; 54:299-311. [DOI: 10.1021/ic5024746] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Dounia Chouffai
- UMR CNRS 6521 Chimie, Electrochimie Moléculaires
et Chimie Analytique, Université de Bretagne Occidentale, UFR Sciences et Techniques, CS 93837, 29238 Brest-Cedex 3, France
| | - Jean-François Capon
- UMR CNRS 6521 Chimie, Electrochimie Moléculaires
et Chimie Analytique, Université de Bretagne Occidentale, UFR Sciences et Techniques, CS 93837, 29238 Brest-Cedex 3, France
| | - Luca De Gioia
- Department
of Biotechnology and Bioscience, University of Milano-Bicocca, Piazza
della Scienza 2, 20126 Milan, Italy
| | - François Y. Pétillon
- UMR CNRS 6521 Chimie, Electrochimie Moléculaires
et Chimie Analytique, Université de Bretagne Occidentale, UFR Sciences et Techniques, CS 93837, 29238 Brest-Cedex 3, France
| | - Philippe Schollhammer
- UMR CNRS 6521 Chimie, Electrochimie Moléculaires
et Chimie Analytique, Université de Bretagne Occidentale, UFR Sciences et Techniques, CS 93837, 29238 Brest-Cedex 3, France
| | - Jean Talarmin
- UMR CNRS 6521 Chimie, Electrochimie Moléculaires
et Chimie Analytique, Université de Bretagne Occidentale, UFR Sciences et Techniques, CS 93837, 29238 Brest-Cedex 3, France
| | - Giuseppe Zampella
- Department
of Biotechnology and Bioscience, University of Milano-Bicocca, Piazza
della Scienza 2, 20126 Milan, Italy
| |
Collapse
|
26
|
Finkelmann AR, Stiebritz MT, Reiher M. Activation Barriers of Oxygen Transformation at the Active Site of [FeFe] Hydrogenases. Inorg Chem 2014; 53:11890-902. [DOI: 10.1021/ic501049z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Arndt R. Finkelmann
- Laboratorium
für Physikalische
Chemie, ETH Zürich, Valdimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Martin T. Stiebritz
- Laboratorium
für Physikalische
Chemie, ETH Zürich, Valdimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Markus Reiher
- Laboratorium
für Physikalische
Chemie, ETH Zürich, Valdimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| |
Collapse
|
27
|
Mulder DW, Ratzloff MW, Bruschi M, Greco C, Koonce E, Peters JW, King PW. Investigations on the role of proton-coupled electron transfer in hydrogen activation by [FeFe]-hydrogenase. J Am Chem Soc 2014; 136:15394-402. [PMID: 25286239 DOI: 10.1021/ja508629m] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Proton-coupled electron transfer (PCET) is a fundamental process at the core of oxidation-reduction reactions for energy conversion. The [FeFe]-hydrogenases catalyze the reversible activation of molecular H2 through a unique metallocofactor, the H-cluster, which is finely tuned by the surrounding protein environment to undergo fast PCET transitions. The correlation of electronic and structural transitions at the H-cluster with proton-transfer (PT) steps has not been well-resolved experimentally. Here, we explore how modification of the conserved PT network via a Cys → Ser substitution at position 169 proximal to the H-cluster of Chlamydomonas reinhardtii [FeFe]-hydrogenase (CrHydA1) affects the H-cluster using electron paramagnetic resonance (EPR) and Fourier transform infrared (FTIR) spectroscopy. Despite a substantial decrease in catalytic activity, the EPR and FTIR spectra reveal different H-cluster catalytic states under reducing and oxidizing conditions. Under H2 or sodium dithionite reductive treatments, the EPR spectra show signals that are consistent with a reduced [4Fe-4S]H(+) subcluster. The FTIR spectra showed upshifts of νCO modes to energies that are consistent with an increase in oxidation state of the [2Fe]H subcluster, which was corroborated by DFT analysis. In contrast to the case for wild-type CrHydA1, spectra associated with Hred and Hsred states are less populated in the Cys → Ser variant, demonstrating that the exchange of -SH with -OH alters how the H-cluster equilibrates among different reduced states of the catalytic cycle under steady-state conditions.
Collapse
Affiliation(s)
- David W Mulder
- Biosciences Center, National Renewable Energy Laboratory , Golden, Colorado 80401, United States
| | | | | | | | | | | | | |
Collapse
|
28
|
Huynh MT, Wang W, Rauchfuss TB, Hammes-Schiffer S. Computational investigation of [FeFe]-hydrogenase models: characterization of singly and doubly protonated intermediates and mechanistic insights. Inorg Chem 2014; 53:10301-11. [PMID: 25207842 PMCID: PMC4186672 DOI: 10.1021/ic5013523] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
![]()
The [FeFe]-hydrogenase enzymes catalyze
hydrogen oxidation and production efficiently with binuclear Fe metal
centers. Recently the bioinspired H2-producing model system
Fe2(adt)(CO)2(dppv)2 (adt=azadithiolate
and dppv=diphosphine) was synthesized and studied experimentally.
In this system, the azadithiolate bridge facilitates the formation
of a doubly protonated ammonium-hydride species through a proton relay.
Herein computational methods are utilized to examine this system in
the various oxidation states and protonation states along proposed
mechanistic pathways for H2 production. The calculated
results agree well with the experimental data for the geometries,
CO vibrational stretching frequencies, and reduction potentials. The
calculations illustrate that the NH···HFe dihydrogen
bonding distance in the doubly protonated species is highly sensitive
to the effects of ion-pairing between the ammonium and BF4– counterions, which are present in the crystal
structure, in that the inclusion of BF4– counterions leads to a significantly longer dihydrogen bond. The
non-hydride Fe center was found to be the site of reduction for terminal
hydride species and unsymmetric bridging hydride species, whereas
the reduced symmetric bridging hydride species exhibited spin delocalization
between the Fe centers. According to both experimental measurements
and theoretical calculations of the relative pKa values, the Fed center of the neutral species
is more basic than the amine, and the bridging hydride species is
more thermodynamically stable than the terminal hydride species. The
calculations implicate a possible pathway for H2 evolution
that involves an intermediate with H2 weakly bonded to
one Fe, a short H2 distance similar to the molecular bond
length, the spin density delocalized over the two Fe centers, and
a nearly symmetrically bridged CO ligand. Overall, this study illustrates
the mechanistic roles of the ammonium-hydride interaction, flexibility
of the bridging CO ligand, and intramolecular electron transfer between
the Fe centers in the catalytic cycle. Such insights will assist in
the design of more effective bioinspired catalysts for H2 production. Theoretical calculations
in conjunction with supporting experimental data are used to analyze
the mechanistic pathway for hydrogen evolution catalyzed by the bioinspired
model Fe2(adt)(CO)2(dppv)2. This
study elucidates the site of reduction and the pKa values associated with formation of the singly and doubly
protonated species, as well as the roles of the ammonium-hydride interaction,
flexibility of the bridging CO ligand, and intramolecular electron
transfer between the Fe centers in the catalytic cycle for H2 production.
Collapse
Affiliation(s)
- Mioy T Huynh
- Department of Chemistry, 600 South Mathews Avenue, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | | | | | | |
Collapse
|
29
|
Zheng D, Wang M, Chen L, Wang N, Sun L. Redox Reactions of [FeFe]-Hydrogenase Models Containing an Internal Amine and a Pendant Phosphine. Inorg Chem 2014; 53:1555-61. [DOI: 10.1021/ic4025519] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dehua Zheng
- State Key Laboratory of Fine Chemicals, DUT-KTH Joint Education and Research Center on Molecular Devices, Dalian University of Technology (DUT) , Linggong Road 2, Dalian 116024, China
| | | | | | | | | |
Collapse
|
30
|
Lambertz C, Chernev P, Klingan K, Leidel N, Sigfridsson KGV, Happe T, Haumann M. Electronic and molecular structures of the active-site H-cluster in [FeFe]-hydrogenase determined by site-selective X-ray spectroscopy and quantum chemical calculations. Chem Sci 2014. [DOI: 10.1039/c3sc52703d] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Site-selective X-ray spectroscopy discriminated the cubane and diiron units in the H-cluster of [FeFe]-hydrogenase revealing its electronic and structural configurations.
Collapse
Affiliation(s)
- Camilla Lambertz
- Institute for Biochemistry of Plants
- Department of Photobiotechnology
- Ruhr-University Bochum
- 44780 Bochum, Germany
| | - Petko Chernev
- Institute for Experimental Physics
- Freie Universität Berlin
- FB Physik
- 14195 Berlin, Germany
| | - Katharina Klingan
- Institute for Experimental Physics
- Freie Universität Berlin
- FB Physik
- 14195 Berlin, Germany
| | - Nils Leidel
- Institute for Experimental Physics
- Freie Universität Berlin
- FB Physik
- 14195 Berlin, Germany
| | | | - Thomas Happe
- Institute for Biochemistry of Plants
- Department of Photobiotechnology
- Ruhr-University Bochum
- 44780 Bochum, Germany
| | - Michael Haumann
- Institute for Experimental Physics
- Freie Universität Berlin
- FB Physik
- 14195 Berlin, Germany
| |
Collapse
|
31
|
Engineering Hydrogenases for H2 Production: Bolts and Goals. MICROBIAL BIOENERGY: HYDROGEN PRODUCTION 2014. [DOI: 10.1007/978-94-017-8554-9_3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
32
|
Finkelmann AR, Stiebritz MT, Reiher M. Inaccessibility of the μ-hydride species in [FeFe] hydrogenases. Chem Sci 2014. [DOI: 10.1039/c3sc51700d] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
33
|
Zheng D, Wang M, Chen L, Wang N, Cheng M, Sun L. The influence of a S-to-S bridge in diiron dithiolate models on the oxidation reaction: a mimic of the Hairox state of [FeFe]-hydrogenases. Chem Commun (Camb) 2014; 50:9255-8. [DOI: 10.1039/c4cc03583f] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A diiron complex replicates the [FeFe]-hydrogenase Hairox state and the reversible interconversion with an FeIFeI model of the Hred state.
Collapse
Affiliation(s)
- Dehua Zheng
- State Key Laboratory of Fine Chemicals
- DUT-KTH Joint Education and Research Centre on Molecular Devices
- Dalian University of Technology (DUT)
- Dalian 116024, China
| | - Mei Wang
- State Key Laboratory of Fine Chemicals
- DUT-KTH Joint Education and Research Centre on Molecular Devices
- Dalian University of Technology (DUT)
- Dalian 116024, China
| | - Lin Chen
- State Key Laboratory of Fine Chemicals
- DUT-KTH Joint Education and Research Centre on Molecular Devices
- Dalian University of Technology (DUT)
- Dalian 116024, China
| | - Ning Wang
- State Key Laboratory of Fine Chemicals
- DUT-KTH Joint Education and Research Centre on Molecular Devices
- Dalian University of Technology (DUT)
- Dalian 116024, China
- School of Chemistry and Chemical Engineering
| | - Minglun Cheng
- State Key Laboratory of Fine Chemicals
- DUT-KTH Joint Education and Research Centre on Molecular Devices
- Dalian University of Technology (DUT)
- Dalian 116024, China
| | - Licheng Sun
- State Key Laboratory of Fine Chemicals
- DUT-KTH Joint Education and Research Centre on Molecular Devices
- Dalian University of Technology (DUT)
- Dalian 116024, China
- Department of Chemistry
| |
Collapse
|
34
|
Faiella M, Roy A, Sommer D, Ghirlanda G. De novo design of functional proteins: Toward artificial hydrogenases. Biopolymers 2013; 100:558-71. [DOI: 10.1002/bip.22420] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 07/08/2013] [Accepted: 09/18/2013] [Indexed: 12/18/2022]
Affiliation(s)
- Marina Faiella
- Department of Chemistry and Biochemistry; Arizona State University; Tempe AZ
| | - Anindya Roy
- Department of Chemistry and Biochemistry; Arizona State University; Tempe AZ
| | - Dayn Sommer
- Department of Chemistry and Biochemistry; Arizona State University; Tempe AZ
| | - Giovanna Ghirlanda
- Department of Chemistry and Biochemistry; Arizona State University; Tempe AZ
| |
Collapse
|
35
|
Wang N, Wang M, Chen L, Sun L. Reactions of [FeFe]-hydrogenase models involving the formation of hydrides related to proton reduction and hydrogen oxidation. Dalton Trans 2013; 42:12059-71. [PMID: 23846321 DOI: 10.1039/c3dt51371h] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
[FeFe]-hydrogenases are enzymes in nature that catalyze the reduction of protons and the oxidation of H2 at neutral pH with remarkably high activities and incredibly low overpotential. Structural and functional biomimicking of the active site of [FeFe]-hydrogenases can provide helpful hints for elucidating the mechanism of H2 evolution and uptake at the [FeFe]-hydrogenase active site and for designing bioinspired catalysts to replace the expensive noble metal catalysts for H2 generation and uptake. This perspective focuses on the recent progress in the formation and reactivity of iron hydrides closely related to the processes of proton reduction and hydrogen oxidation mediated by diiron dithiolate complexes. The second section surveys the bridging and terminal hydride species formed from various diiron complexes as well as the intramolecular proton transfer. The very recent progress in H2 activation by diiron dithiolate models are reviewed in the third section. In the concluding remarks and outlook, the differences in structure and catalytic mechanism between the synthetic models and the native [FeFe]-H2ase active site are compared and analyzed, which may cause the need for a significantly larger driving force and may lead to lower activities of synthetic models than the [FeFe]-H2ases for H2 generation and uptake.
Collapse
Affiliation(s)
- Ning Wang
- State Key Laboratory of Fine Chemicals, DUT-KTH Joint Education and Research Center on Molecular Devices, Dalian University of Technology (DUT), Dalian 116024, China
| | | | | | | |
Collapse
|
36
|
Does the environment around the H-cluster allow coordination of the pendant amine to the catalytic iron center in [FeFe] hydrogenases? Answers from theory. J Biol Inorg Chem 2013; 18:693-700. [DOI: 10.1007/s00775-013-1014-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 05/29/2013] [Indexed: 01/08/2023]
|
37
|
Winkler M, Esselborn J, Happe T. Molecular basis of [FeFe]-hydrogenase function: an insight into the complex interplay between protein and catalytic cofactor. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1827:974-85. [PMID: 23507618 DOI: 10.1016/j.bbabio.2013.03.004] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 02/21/2013] [Accepted: 03/08/2013] [Indexed: 12/20/2022]
Abstract
The precise electrochemical features of metal cofactors that convey the functions of redox enzymes are essentially determined by the specific interaction pattern between cofactor and enclosing protein environment. However, while biophysical techniques allow a detailed understanding of the features characterizing the cofactor itself, knowledge about the contribution of the protein part is much harder to obtain. [FeFe]-hydrogenases are an interesting class of enzymes that catalyze both, H2 oxidation and the reduction of protons to molecular hydrogen with significant efficiency. The active site of these proteins consists of an unusual prosthetic group (H-cluster) with six iron and six sulfur atoms. While H-cluster architecture and catalytic states during the different steps of H2 turnover have been thoroughly investigated during the last 20 years, possible functional contributions from the polypeptide framework were only assumed according to the level of conservancy and X-ray structure analyses. Due to the recent development of simpler and more efficient expression systems the role of single amino acids can now be experimentally investigated. This article summarizes, compares and categorizes the results of recent investigations based on site directed and random mutagenesis according to their informative value about structure function relationships in [FeFe]-hydrogenases. This article is part of a Special Issue entitled: Metals in Bioenergetics and Biomimetics Systems.
Collapse
Affiliation(s)
- Martin Winkler
- Ruhr-Universität Bochum, Fakultät für Biologie und Biotechnologie, Lehrstuhl für Biochemie der Pflanzen, AG Photobiotechnologie, Bochum, Germany
| | | | | |
Collapse
|
38
|
Vijaya Sundar J, Subramanian V. Mechanistic Studies on the pH-Controllable Hydrogenation of NAD+ by H2 and Generation of H2 from NADH by a Water-Soluble Biomimetic Iridium Complex. Organometallics 2012. [DOI: 10.1021/om300812k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- J. Vijaya Sundar
- Chemical Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai 600 020, India
| | - V. Subramanian
- Chemical Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai 600 020, India
| |
Collapse
|
39
|
A new reactivity pattern of heterodinuclear complexes [MnRe(CO)6(μ-S2CPR3)] with nBuLi/protonation and its electrochemistry properties investigation as structure and function models for the Fe-only hydrogenase active site. J Organomet Chem 2012. [DOI: 10.1016/j.jorganchem.2012.07.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
40
|
Leidel N, Chernev P, Havelius KGV, Schwartz L, Ott S, Haumann M. Electronic Structure of an [FeFe] Hydrogenase Model Complex in Solution Revealed by X-ray Absorption Spectroscopy Using Narrow-Band Emission Detection. J Am Chem Soc 2012; 134:14142-57. [DOI: 10.1021/ja304970p] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Nils Leidel
- Institut für Experimentalphysik, Freie Universität Berlin, 14195 Berlin, Germany
| | - Petko Chernev
- Institut für Experimentalphysik, Freie Universität Berlin, 14195 Berlin, Germany
| | - Kajsa G. V. Havelius
- Institut für Experimentalphysik, Freie Universität Berlin, 14195 Berlin, Germany
| | - Lennart Schwartz
- Department of Chemistry, Uppsala University, Ångström Laboratories,
75120 Uppsala, Sweden
| | - Sascha Ott
- Department of Chemistry, Uppsala University, Ångström Laboratories,
75120 Uppsala, Sweden
| | - Michael Haumann
- Institut für Experimentalphysik, Freie Universität Berlin, 14195 Berlin, Germany
| |
Collapse
|
41
|
Lounissi S, Zampella G, Capon JF, De Gioia L, Matoussi F, Mahfoudhi S, Pétillon FY, Schollhammer P, Talarmin J. Electrochemical and Theoretical Investigations of the Role of the Appended Base on the Reduction of Protons by [Fe2(CO)4(κ2-PNPR)(μ-S(CH2)3S] (PNPR={Ph2PCH2}2NR, R=Me, Ph). Chemistry 2012; 18:11123-38. [DOI: 10.1002/chem.201201087] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Indexed: 11/12/2022]
|
42
|
Foster CE, Krämer T, Wait AF, Parkin A, Jennings DP, Happe T, McGrady JE, Armstrong FA. Inhibition of [FeFe]-hydrogenases by formaldehyde and wider mechanistic implications for biohydrogen activation. J Am Chem Soc 2012; 134:7553-7. [PMID: 22512303 DOI: 10.1021/ja302096r] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Formaldehyde-a rapid and reversible inhibitor of hydrogen evolution by [FeFe]-hydrogenases-binds with a strong potential dependence that is almost complementary to that of CO. Whereas exogenous CO binds tightly to the oxidized state known as H(ox) but very weakly to a state two electrons more reduced, formaldehyde interacts most strongly with the latter. Formaldehyde thus intercepts increasingly reduced states of the catalytic cycle, and density functional theory calculations support the proposal that it reacts with the H-cluster directly, most likely targeting an otherwise elusive and highly reactive Fe-hydrido (Fe-H) intermediate.
Collapse
Affiliation(s)
- Carina E Foster
- Department of Chemistry, Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QR, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Recent Developments in Computational Bioinorganic Chemistry. STRUCTURE AND BONDING 2012. [DOI: 10.1007/b97941] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
44
|
Wright RJ, Zhang W, Yang X, Fasulo M, Tilley TD. Isolation, observation, and computational modeling of proposed intermediates in catalyticprotonreductions with the hydrogenase mimic Fe2(CO)6S2C6H4. Dalton Trans 2012; 41:73-82. [DOI: 10.1039/c1dt11428j] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
45
|
Tran PD, Barber J. Proton reduction to hydrogen in biological and chemical systems. Phys Chem Chem Phys 2012; 14:13772-84. [DOI: 10.1039/c2cp42413d] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
46
|
Insights into [FeFe]-hydrogenase structure, mechanism, and maturation. Structure 2011; 19:1038-52. [PMID: 21827941 DOI: 10.1016/j.str.2011.06.008] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 06/01/2011] [Accepted: 06/09/2011] [Indexed: 01/06/2023]
Abstract
Hydrogenases are metalloenzymes that are key to energy metabolism in a variety of microbial communities. Divided into three classes based on their metal content, the [Fe]-, [FeFe]-, and [NiFe]-hydrogenases are evolutionarily unrelated but share similar nonprotein ligand assemblies at their active site metal centers that are not observed elsewhere in biology. These nonprotein ligands are critical in tuning enzyme reactivity, and their synthesis and incorporation into the active site clusters require a number of specific maturation enzymes. The wealth of structural information on different classes and different states of hydrogenase enzymes, biosynthetic intermediates, and maturation enzymes has contributed significantly to understanding the biochemistry of hydrogen metabolism. This review highlights the unique structural features of hydrogenases and emphasizes the recent biochemical and structural work that has created a clearer picture of the [FeFe]-hydrogenase maturation pathway.
Collapse
|
47
|
Knörzer P, Silakov A, Foster CE, Armstrong FA, Lubitz W, Happe T. Importance of the protein framework for catalytic activity of [FeFe]-hydrogenases. J Biol Chem 2011; 287:1489-99. [PMID: 22110126 DOI: 10.1074/jbc.m111.305797] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The active center (H-cluster) of [FeFe]-hydrogenases is embedded into a hydrophobic pocket within the protein. We analyzed several amino acids, located in the vicinity of this niche, by site-directed mutagenesis of the [FeFe]-hydrogenases from Clostridium pasteurianum (CpI) and Chlamydomonas reinhardtii (CrHydA1). These amino acids are highly conserved and predicted to be involved in H-cluster coordination. Characterization of two hydrogenase variants confirmed this hypothesis. The exchange of residues CrHydA1Met(415) and CrHydA1Lys(228) resulted in inactive proteins, which, according to EPR and FTIR analyses, contain no intact H-cluster. However, [FeFe]-hydrogenases in which CpIMet(353) (CrHydA1Met(223)) and CpICys(299) (CrHydA1Cys(169)) were exchanged to leucine and serine, respectively, showed a structurally intact H-cluster with catalytic activity either absent (CpIC299S) or strongly diminished (CpIM353L). In the case of CrHydA1C169S, the H-cluster was trapped in an inactive state exhibiting g values and vibrational frequencies that resembled the H(trans) state of DdH from Desulfovibrio desulfuricans. This cysteine residue, interacting with the bridge head nitrogen of the di(methyl)amine ligand, seems therefore to represent an essential contribution of the immediate protein environment to the reaction mechanism. Exchanging methionine CpIM(353) (CrHydA1M(223)) to leucine led to a strong decrease in turnover without affecting the K(m) value of the electron donor. We suggest that this methionine constitutes a "fine-tuning" element of hydrogenase activity.
Collapse
Affiliation(s)
- Philipp Knörzer
- AG Photobiotechnologie, Lehrstuhl für Biochemie der Pflanzen, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | | | | | | | | | | |
Collapse
|
48
|
Chouffai D, Zampella G, Capon JF, De Gioia L, Gloaguen F, Pétillon FY, Schollhammer P, Talarmin J. Oxidatively Induced Reactivity of [Fe2(CO)4(κ2-dppe)(μ-pdt)]: an Electrochemical and Theoretical Study of the Structure Change and Ligand Binding Processes. Inorg Chem 2011; 50:12575-85. [DOI: 10.1021/ic201601q] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dounia Chouffai
- UMR CNRS 6521, Chimie, Electrochimie Moléculaires et Chimie Analytique, Université de Bretagne Occidentale, UFR Sciences et Techniques, Cs 93837, 29238 Brest-Cedex 3, France
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Oxidation State Changes and Electron Flow in Enzymatic Catalysis and Electrocatalysis through Wannier-Function Analysis. Chemistry 2011; 17:12136-43. [DOI: 10.1002/chem.201101916] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Indexed: 12/21/2022]
|
50
|
Giles LJ, Grigoropoulos A, Szilagyi RK. Electron and Spin Density Topology of the H-Cluster and Its Biomimetic Complexes. Eur J Inorg Chem 2011. [DOI: 10.1002/ejic.201100318] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|