1
|
Zhao J, Wang J, Wang J, Nie M, Mao Y, Chen Z, Ma Z, Zhang K. Evolving Nonphosphorylative Metabolism for Improving Production of 2-Oxoglutarate Derivatives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:27326-27333. [PMID: 39601787 DOI: 10.1021/acs.jafc.4c08879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The bioconversion of lignocellulosic biomass into value-added products provides an alternative solution to environmental and economic challenges. Nonphosphorylative metabolism can convert pentoses and d-galacturonate into 2-oxoglutarate (2-KG) in a few steps, facilitating the production of 2-KG derivatives. However, the efficiency of the Weimberg pathway from Caulobacter crescentus, a type of nonphosphorylative metabolism, is constrained by the low activity of CcXylX, 2-keto-3-deoxy-d-xylonate dehydratase. To overcome this limitation, we engineered CcXylX through directed evolution. A resulting CcXylX mutant exhibited a 3-fold higher kcat value and notably enhanced the production of 2-KG derivatives from d-xylose, a major component of lignocellulosic hydrolysates, including a 32% increase in l-glutamate titer (8.3 g/L) and a 79% increase in l-proline titer (4.3 g/L) compared with the wild-type CcXylX. This research holds promise for advancing lignocellulosic biotechnology and provides insights into economically viable production of other 2-KG derivatives besides l-glutamate and l-proline.
Collapse
Affiliation(s)
- Jing Zhao
- School of Engineering, Westlake University, Hangzhou 310030, P. R. China
| | - Jilong Wang
- Beijing Lifewe Biotechnology Institute Co., Ltd., Beijing 102200, P. R. China
| | - Jingyu Wang
- School of Engineering, Westlake University, Hangzhou 310030, P. R. China
| | - Mengzhen Nie
- School of Engineering, Westlake University, Hangzhou 310030, P. R. China
| | - Yaping Mao
- School of Engineering, Westlake University, Hangzhou 310030, P. R. China
| | - Zeyao Chen
- School of Engineering, Westlake University, Hangzhou 310030, P. R. China
| | - Zhiping Ma
- School of Engineering, Westlake University, Hangzhou 310030, P. R. China
| | - Kechun Zhang
- School of Engineering, Westlake University, Hangzhou 310030, P. R. China
| |
Collapse
|
2
|
Zhang L, Wang J, Gu S, Liu X, Hou M, Zhang J, Yang G, Zhao D, Dong R, Gao H. Biosynthesis of D-1,2,4-butanetriol promoted by a glucose-xylose dual metabolic channel system in engineered Escherichia coli. N Biotechnol 2024; 83:26-35. [PMID: 38936658 DOI: 10.1016/j.nbt.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/29/2024] [Accepted: 06/14/2024] [Indexed: 06/29/2024]
Abstract
D-1,2,4-butanetriol (BT) is a widely used fine chemical that can be manufactured by engineered Escherichia coli expressing heterologous pathways and using xylose as a substrate. The current study developed a glucose-xylose dual metabolic channel system in an engineered E. coli and Combinatorially optimized it using multiple strategies to promote BT production. The carbon catabolite repression effects were alleviated by deleting the gene ptsG that encodes the major glucose transporter IICBGlc and mutating the gene crp that encodes the catabolite repressor protein, thereby allowing C-fluxes of both glucose and xylose into their respective metabolic channels separately and simultaneously, which increased BT production by 33% compared with that of the original MJ133K-1 strain. Then, the branch metabolic pathways of intermediates in the BT channel were investigated, the transaminase HisC, the ketoreductases DlD, OLD, and IlvC, and the aldolase MhpE and YfaU were identified as the enzymes for the branched metabolism of 2-keto-3-deoxy-xylonate, deletion of the gene hisC increased BT titer by 21.7%. Furthermore, the relationship between BT synthesis and the intracellular NADPH level was examined, and deletion of the gene pntAB that encodes a transhydrogenase resulted in an 18.1% increase in BT production. The combination of the above approaches to optimize the metabolic network increased BT production by 47.5%, resulting in 2.67 g/L BT in 24 deep-well plates. This study provides insights into the BT biosynthesis pathway and demonstrates effective strategies to increase BT production, which will promote the industrialization of the biosynthesis of BT.
Collapse
Affiliation(s)
- Lu Zhang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Jinbao Wang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Songhe Gu
- School of Life Science, Qufu Normal University, Qufu 273165, Shandong, China
| | - Xuedan Liu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Miao Hou
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Jing Zhang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Ge Yang
- School of Life Science, Qufu Normal University, Qufu 273165, Shandong, China
| | - Dongxu Zhao
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Runan Dong
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Haijun Gao
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
3
|
Kumar V, Agrawal D, Bommareddy RR, Islam MA, Jacob S, Balan V, Singh V, Thakur VK, Navani NK, Scrutton NS. Arabinose as an overlooked sugar for microbial bioproduction of chemical building blocks. Crit Rev Biotechnol 2024; 44:1103-1120. [PMID: 37932016 DOI: 10.1080/07388551.2023.2270702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/06/2023] [Accepted: 09/19/2023] [Indexed: 11/08/2023]
Abstract
The circular economy is anticipated to bring a disruptive transformation in manufacturing technologies. Robust and industrial scalable microbial strains that can simultaneously assimilate and valorize multiple carbon substrates are highly desirable, as waste bioresources contain substantial amounts of renewable and fermentable carbon, which is diverse. Lignocellulosic biomass (LCB) is identified as an inexhaustible and alternative resource to reduce global dependence on oil. Glucose, xylose, and arabinose are the major monomeric sugars in LCB. However, primary research has focused on the use of glucose. On the other hand, the valorization of pentose sugars, xylose, and arabinose, has been mainly overlooked, despite possible assimilation by vast microbial communities. The present review highlights the research efforts that have explicitly proven the suitability of arabinose as the starting feedstock for producing various chemical building blocks via biological routes. It begins by analyzing the availability of various arabinose-rich biorenewable sources that can serve as potential feedstocks for biorefineries. The subsequent section outlines the current understanding of arabinose metabolism, biochemical routes prevalent in prokaryotic and eukaryotic systems, and possible products that can be derived from this sugar. Further, currently, exemplar products from arabinose, including arabitol, 2,3-butanediol, 1,2,3-butanetriol, ethanol, lactic acid, and xylitol are discussed, which have been produced by native and non-native microbial strains using metabolic engineering and genome editing tools. The final section deals with the challenges and obstacles associated with arabinose-based production, followed by concluding remarks and prospects.
Collapse
Affiliation(s)
- Vinod Kumar
- School of Water, Energy and Environment, Cranfield University, Cranfield, UK
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Deepti Agrawal
- Biochemistry and Biotechnology Area, Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Dehradun, India
| | - Rajesh Reddy Bommareddy
- Department of Applied Sciences, Health and Life Sciences, Hub for Biotechnology in the Built Environment, Northumbria University, Newcastle upon Tyne, UK
| | - M Ahsanul Islam
- Department of Chemical Engineering, Loughborough University, Loughborough, UK
| | - Samuel Jacob
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, India
| | - Venkatesh Balan
- Department of Engineering Technology, Cullen College of Engineering, University of Houston, Sugar Land, TX, USA
| | - Vijai Singh
- Department of Biosciences, School of Sciences, Indrashil University, Rajpur, Mehsana, India
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Edinburgh, UK
| | - Naveen Kumar Navani
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Nigel S Scrutton
- EPSRC/BBSRC Future Biomanufacturing Research Hub, Manchester Institute of Biotechnology and School of Chemistry, The University of Manchester, Manchester, UK
| |
Collapse
|
4
|
Li J, Xia Y, Wei B, Shen W, Yang H, Chen X. Metabolic engineering of Candida tropicalis for efficient 1,2,4-butanetriol production. Biochem Biophys Res Commun 2024; 710:149876. [PMID: 38579537 DOI: 10.1016/j.bbrc.2024.149876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 03/31/2024] [Indexed: 04/07/2024]
Abstract
1,2,4-Butanetriol serves as a precursor in the manufacture of diverse pharmaceuticals and the energetic plasticizer 1,2,4-butanetriol trinitrate. The study involved further modifications to an engineered Candida tropicalis strain, aimed at improving the production efficiency of 1,2,4-butanetriol. Faced with the issue of xylonate accumulation due to the low activity of heterologous xylonate dehydratase, we modulated iron metabolism at the transcriptional level to boost intracellular iron ion availability, thus enhancing the enzyme activity by 2.2-fold. Addressing the NADPH shortfall encountered during 1,2,4-butanetriol biosynthesis, we overexpressed pivotal genes in the NADPH regeneration pathway, achieving a 1,2,4-butanetriol yield of 3.2 g/L. The introduction of calcium carbonate to maintain pH balance led to an increased yield of 4 g/L, marking a 111% improvement over the baseline strain. Finally, the use of corncob hydrolysate as a substrate culminated in 1,2,4-butanetriol production of 3.42 g/L, thereby identifying a novel host for the conversion of corncob hydrolysate to 1,2,4-butanetriol.
Collapse
Affiliation(s)
- Jingyun Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, & School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Yuanyuan Xia
- Key Laboratory of Industrial Biotechnology, Ministry of Education, & School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Bo Wei
- Key Laboratory of Industrial Biotechnology, Ministry of Education, & School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Wei Shen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, & School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Haiquan Yang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, & School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Xianzhong Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, & School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
5
|
Li P, Wang M, Di H, Du Q, Zhang Y, Tan X, Xu P, Gao C, Jiang T, Lü C, Ma C. Efficient production of 1,2,4-butanetriol from corn cob hydrolysate by metabolically engineered Escherichia coli. Microb Cell Fact 2024; 23:49. [PMID: 38347493 PMCID: PMC10863244 DOI: 10.1186/s12934-024-02317-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 01/25/2024] [Indexed: 02/15/2024] Open
Abstract
Corn cob is a major waste mass-produced in corn agriculture. Corn cob hydrolysate containing xylose, arabinose, and glucose is the hydrolysis product of corn cob. Herein, a recombinant Escherichia coli strain BT-10 was constructed to transform corn cob hydrolysate into 1,2,4-butanetriol, a platform substance with diversified applications. To eliminate catabolite repression and enhance NADPH supply for alcohol dehydrogenase YqhD catalyzed 1,2,4-butanetriol generation, ptsG encoding glucose transporter EIICBGlc and pgi encoding phosphoglucose isomerase were deleted. With four heterologous enzymes including xylose dehydrogenase, xylonolactonase, xylonate dehydratase, α-ketoacid decarboxylase and endogenous YqhD, E. coli BT-10 can produce 36.63 g/L 1,2,4-butanetriol with a productivity of 1.14 g/[L·h] using xylose as substrate. When corn cob hydrolysate was used as the substrate, 43.4 g/L 1,2,4-butanetriol was generated with a productivity of 1.09 g/[L·h] and a yield of 0.9 mol/mol. With its desirable characteristics, E. coli BT-10 is a promising strain for commercial 1,2,4-butanetriol production.
Collapse
Affiliation(s)
- Ping Li
- State Key Laboratory of Microbial Technology, Shandong University, NO.72 Binhai Road, Qingdao, 266237, China
- Bloomage Biotechnology Corporation Limited, 678 Tianchen Street, Jinan, 250101, China
| | - Mengjiao Wang
- State Key Laboratory of Microbial Technology, Shandong University, NO.72 Binhai Road, Qingdao, 266237, China
| | - Haiyan Di
- State Key Laboratory of Microbial Technology, Shandong University, NO.72 Binhai Road, Qingdao, 266237, China
| | - Qihang Du
- Shandong Institute of Metrology, Jinan, 250014, China
| | - Yipeng Zhang
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Xiaoxu Tan
- State Key Laboratory of Microbial Technology, Shandong University, NO.72 Binhai Road, Qingdao, 266237, China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chao Gao
- State Key Laboratory of Microbial Technology, Shandong University, NO.72 Binhai Road, Qingdao, 266237, China
| | - Tianyi Jiang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China
| | - Chuanjuan Lü
- State Key Laboratory of Microbial Technology, Shandong University, NO.72 Binhai Road, Qingdao, 266237, China.
| | - Cuiqing Ma
- State Key Laboratory of Microbial Technology, Shandong University, NO.72 Binhai Road, Qingdao, 266237, China.
| |
Collapse
|
6
|
Ma X, Sun C, Xian M, Guo J, Zhang R. Progress in research on the biosynthesis of 1,2,4-butanetriol by engineered microbes. World J Microbiol Biotechnol 2024; 40:68. [PMID: 38200399 DOI: 10.1007/s11274-024-03885-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 01/05/2024] [Indexed: 01/12/2024]
Abstract
1,2,4-butanetriol (BT) is a polyol with unique chemical properties, which has a stereocenter and can be divided into D-BT (the S-enantiomer) and L-BT (the R-enantiomer). BT can be used for the synthesis of 1,2,4-butanetriol trinitrate, 3-hydroxytetrahydrofuran, polyurethane, and other chemicals. It is widely used in the military industry, medicine, tobacco, polymer. At present, the BT is mainly synthesized by chemical methods, which are accompanied by harsh reaction conditions, poor selectivity, many by-products, and environmental pollution. Therefore, BT biosynthesis methods with the advantages of mild reaction conditions and green sustainability have become a current research hotspot. In this paper, the research status of microbial synthesis of BT was summarized from the following three aspects: (1) the biosynthetic pathway establishment for BT from xylose; (2) metabolic engineering strategies employed for improving BT production from xylose; (3) other substrates for BT production. Finally, the challenges and prospects of biosynthetic BT were discussed for future methods to improve competitiveness for industrial production.
Collapse
Affiliation(s)
- Xiangyu Ma
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chao Sun
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Mo Xian
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Jing Guo
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.
- Shandong Energy Institute, Qingdao, 266101, China.
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China.
| | - Rubing Zhang
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.
- Shandong Energy Institute, Qingdao, 266101, China.
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China.
| |
Collapse
|
7
|
Lv K, Cao X, Pedroso MM, Wu B, Li J, He B, Schenk G. Structure-guided engineering of branched-chain α-keto acid decarboxylase for improved 1,2,4-butanetriol production by in vitro synthetic enzymatic biosystem. Int J Biol Macromol 2024; 255:128303. [PMID: 37992939 DOI: 10.1016/j.ijbiomac.2023.128303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/07/2023] [Accepted: 11/19/2023] [Indexed: 11/24/2023]
Abstract
Efficient synthetic routes for biomanufacturing chemicals often require the overcoming of pathway bottlenecks by tailoring enzymes to improve the catalytic efficiency or even implement non-native activities. 1,2,4-butanetriol (BTO), a valuable commodity chemical, is currently biosynthesized from D-xylose via a four-enzyme reaction cascade, with the ThDP-dependent α-keto acid decarboxylase (KdcA) identified as the potential bottleneck. Here, to further enhance the catalytic activity of KdcA toward the non-native substrate α-keto-3-deoxy-xylonate (KDX), in silico screening and structure-guided evolution were performed. The best mutants, S286L/G402P and V461K, exhibited a 1.8- and 2.5-fold higher enzymatic activity in the conversion of KDX to 3,4-dihydroxybutanal when compared to KdcA, respectively. MD simulations revealed that the two sets of mutations reshaped the substrate binding pocket, thereby increasing the binding affinity for KDX and promoting interactions between KDX and cofactor ThDP. Then, when the V461K mutant instead of wild type KdcA was integrated into the enzyme cascade, a 1.9-fold increase in BTO titer was observed. After optimization of the reaction conditions, the enzyme cocktail contained V461K converted 60 g/L D-xylose to 22.1 g/L BTO with a yield of 52.1 %. This work illustrated that protein engineering is a powerful tool for modifying the output of metabolic pathway.
Collapse
Affiliation(s)
- Kemin Lv
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Xuefei Cao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Marcelo Monteiro Pedroso
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Brisbane, Australia
| | - Bin Wu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China.
| | - Jiahuang Li
- School of Biopharmacy, China Pharmaceutical University, Nanjing, China.
| | - Bingfang He
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, China
| | - Gerhard Schenk
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Brisbane, Australia
| |
Collapse
|
8
|
Cao Y, Niu W, Guo J, Guo J, Liu H, Liu H, Xian M. Production of Optically Pure ( S)-3-Hydroxy-γ-butyrolactone from d-Xylose Using Engineered Escherichia coli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:20167-20176. [PMID: 38088131 DOI: 10.1021/acs.jafc.3c06589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Biocatalysis has advantages in asymmetric synthesis due to the excellent stereoselectivity of enzymes. The present study established an efficient biosynthesis pathway for optically pure (S)-3-hydroxy-γ-butyrolactone [(S)-3HγBL] production using engineered Escherichia coli. We mimicked the 1,2,4-butanetriol biosynthesis route and constructed a five-step pathway consisting of d-xylose dehydrogenase, d-xylonolactonase, d-xylonate dehydratase, 2-keto acid decarboxylase, and aldehyde dehydrogenase. The engineered strain harboring the five enzymes could convert d-xylose to 3HγBL with glycerol as the carbon source. Stereochemical analysis by chiral GC proved that the microbially synthesized product was a single isomer, and the enantiomeric excess (ee) value reached 99.3%. (S)-3HγBL production was further enhanced by disrupting the branched pathways responsible for d-xylose uptake and intermediate reduction. Fed-batch fermentation of the best engineered strain showed the highest (S)-3HγBL titer of 3.5 g/L. The volumetric productivity and molar yield of (S)-3HγBL on d-xylose reached 50.6 mg/(L·h) and 52.1%, respectively. The final fermentation product was extracted, purified, and confirmed by NMR. This process utilized renewable d-xylose as the feedstock and offered an alternative approach for the production of the valuable chemical.
Collapse
Affiliation(s)
- Yujin Cao
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Wei Niu
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Jiantao Guo
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Jing Guo
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Hui Liu
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Huizhou Liu
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Mo Xian
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| |
Collapse
|
9
|
Wu W, Zhao N, Liu Y, Du S, Wang X, Mo W, Yan X, Xu C, Zhou Y, Ji B. Iridium Catalysts with f-Amphbinol Ligands: Highly Stereoselective Hydrogenation of a Variety of Ketones. Org Lett 2023. [PMID: 38047622 DOI: 10.1021/acs.orglett.3c03550] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
A series of novel and modular ferrorence-based amino-phosphine-binol (f-amphbinol) ligands have been successfully synthesized. The f-amphbinol ligands exhibited extremely high air stability and catalytic efficiency in the Ir-catalyzed stereoselective hydrogenation of various ketones to afford corresponding stereodefined alcohols with excellent results (full conversions, cis/trans >99:1, and 83% → 99% ee, TON up to 500 000). Control experiments have shown that -OH and -NH groups played a key role in this stereoselective hydrogenation.
Collapse
Affiliation(s)
- Weilong Wu
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Niu Zhao
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Yiyi Liu
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Shenshen Du
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Xinxin Wang
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Wenzhi Mo
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Xianghe Yan
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Chunying Xu
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Yan Zhou
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Baoming Ji
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China
| |
Collapse
|
10
|
Shen X, Xu H, Wang T, Zhang R, Sun X, Yuan Q, Wang J. Rational protein engineering of a ketoacids decarboxylase for efficient production of 1,2,4-butanetriol from arabinose. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:172. [PMID: 37957743 PMCID: PMC10644656 DOI: 10.1186/s13068-023-02414-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023]
Abstract
BACKGROUND Lignocellulose, the most abundant non-edible feedstock on Earth, holds substantial potential for eco-friendly chemicals, fuels, and pharmaceuticals production. Glucose, xylose, and arabinose are primary components in lignocellulose, and their efficient conversion into high-value products is vital for economic viability. While glucose and xylose have been explored for such purpose, arabinose has been relatively overlooked. RESULTS This study demonstrates a microbial platform for producing 1,2,4-butanetriol (BTO) from arabinose, a versatile compound with diverse applications in military, polymer, rubber and pharmaceutical industries. The screening of the key pathway enzyme, keto acids decarboxylase, facilitated the production of 276.7 mg/L of BTO from arabinose in Escherichia coli. Through protein engineering of the rate-limiting enzyme KivD, which involved reducing the size of the binding pocket to accommodate a smaller substrate, its activity improved threefold, resulting in an increase in the BTO titer to 475.1 mg/L. Additionally, modular optimization was employed to adjust the expression levels of pathway genes, further enhancing BTO production to 705.1 mg/L. CONCLUSION The present study showcases a promising microbial platform for sustainable BTO production from arabinose. These works widen the spectrum of potential lignocellulosic products and lays the foundation for comprehensive utilization of lignocellulosic components.
Collapse
Affiliation(s)
- Xiaolin Shen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing, 100029, China
| | - Hongchao Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing, 100029, China
| | - Tong Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing, 100029, China
| | - Ruihua Zhang
- College of Engineering, The University of Georgia, Athens, GA, 30602, USA
| | - Xinxiao Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing, 100029, China
| | - Qipeng Yuan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing, 100029, China.
| | - Jia Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing, 100029, China.
| |
Collapse
|
11
|
Li Z, Li D, Zhong L, Li X, Liu C, Peng X. Base-free selective oxidation of monosaccharide into sugar acid by surface-functionalized carbon nanotube composites. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
12
|
Souza RM, Oliveira DF, Gomes VM, Viana AJS, Silva GH, Machado ART. Meloidogyne enterolobii-induced Changes in Guava Root Exudates Are Associated With Root Rotting Caused by Neocosmospora falciformis. J Nematol 2023; 55:20230055. [PMID: 38264459 PMCID: PMC10805520 DOI: 10.2478/jofnem-2023-0055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Indexed: 01/25/2024] Open
Abstract
Despite the worldwide importance of disease complexes involving root-feeding nematodes and soilborne fungi, there have been few in-depth studies on how these organisms interact at the molecular level. Previous studies of guava decline have shown that root exudates from Meloidogyne enterolobii-parasitized guava plants (NP plants), but not from nematode-free plants (NF plants), enable the fungus Neocosmospora falciformis to rot guava roots, leading to plant death. To further characterize this interaction, NP and NF root exudates were lyophilized; extracted with distinct solvents; quantified regarding amino acids, soluble carbohydrates, sucrose, phenols, and alkaloids; and submitted to a bioassay to determine their ability to enable N. falciformis to rot the guava seedlings' roots. NP root exudates were richer than NF root exudates in amino acids, carbohydrates, and sucrose. Only the fractions NP-03 and NP-04 enabled fungal root rotting. NP-03 was then sequentially fractionated through chromatographic silica columns. At each step, the main fractions were reassessed in bioassay. The final fraction that enabled fungal root rotting was submitted to analysis using high performance liquid chromatography, nuclear magnetic resonance, mass spectrometry, energy-dispersive X-ray fluorescence, and computational calculations, leading to the identification of 1,5-dinitrobiuret as the predominant substance. In conclusion, parasitism by M. enterolobii causes an enrichment of guava root exudates that likely favors microorganisms capable of producing 1,5-dinitrobiuret in the rhizosphere. The accumulation of biuret, a known phytotoxic substance, possibly hampers root physiology and the innate immunity of guava to N. falciformis.
Collapse
Affiliation(s)
- Ricardo M. Souza
- Departamento de Entomologia e Fitopatologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | | | - Vicente M. Gomes
- Departamento de Entomologia e Fitopatologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | | | - Geraldo H. Silva
- Laboratório de Desenvolvimento de Agroquímicos Naturais, Universidade Federal de Viçosa, Rio Paranaíba, Brazil
| | - Alan R. T. Machado
- Departamento de Ciências Exatas, Universidade do Estado de Minas Gerais, João Monlevade, Brazil
| |
Collapse
|
13
|
Ren Y, Eronen V, Blomster Andberg M, Koivula A, Hakulinen N. Structure and function of aldopentose catabolism enzymes involved in oxidative non-phosphorylative pathways. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:147. [PMID: 36578086 PMCID: PMC9795676 DOI: 10.1186/s13068-022-02252-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 12/19/2022] [Indexed: 12/29/2022]
Abstract
Platform chemicals and polymer precursors can be produced via enzymatic pathways starting from lignocellulosic waste materials. The hemicellulose fraction of lignocellulose contains aldopentose sugars, such as D-xylose and L-arabinose, which can be enzymatically converted into various biobased products by microbial non-phosphorylated oxidative pathways. The Weimberg and Dahms pathways convert pentose sugars into α-ketoglutarate, or pyruvate and glycolaldehyde, respectively, which then serve as precursors for further conversion into a wide range of industrial products. In this review, we summarize the known three-dimensional structures of the enzymes involved in oxidative non-phosphorylative pathways of pentose catabolism. Key structural features and reaction mechanisms of a diverse set of enzymes responsible for the catalytic steps in the reactions are analysed and discussed.
Collapse
Affiliation(s)
- Yaxin Ren
- grid.9668.10000 0001 0726 2490Department of Chemistry, University of Eastern Finland, 111, 80101 Joensuu, Finland
| | - Veikko Eronen
- grid.9668.10000 0001 0726 2490Department of Chemistry, University of Eastern Finland, 111, 80101 Joensuu, Finland
| | | | - Anu Koivula
- grid.6324.30000 0004 0400 1852VTT Technical Research Centre of Finland Ltd, Espoo, Finland
| | - Nina Hakulinen
- grid.9668.10000 0001 0726 2490Department of Chemistry, University of Eastern Finland, 111, 80101 Joensuu, Finland
| |
Collapse
|
14
|
Trichez D, Carneiro CVGC, Braga M, Almeida JRM. Recent progress in the microbial production of xylonic acid. World J Microbiol Biotechnol 2022; 38:127. [PMID: 35668329 DOI: 10.1007/s11274-022-03313-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/19/2022] [Indexed: 01/03/2023]
Abstract
Interest in the production of renewable chemicals from biomass has increased in the past years. Among these chemicals, carboxylic acids represent a significant part of the most desirable bio-based products. Xylonic acid is a five-carbon sugar-acid obtained from xylose oxidation that can be used in several industrial applications, including food, pharmaceutical, and construction industries. So far, the production of xylonic acid has not yet been available at an industrial scale; however, several microbial bio-based production processes are under development. This review summarizes the recent advances in pathway characterization, genetic engineering, and fermentative strategies to improve xylonic acid production by microorganisms from xylose or lignocellulosic hydrolysates. In addition, the strengths of the available microbial strains and processes and the major requirements for achieving biotechnological production of xylonic acid at a commercial scale are discussed. Efficient native and engineered microbial strains have been reported. Xylonic acid titers as high as 586 and 171 g L-1 were obtained from bacterial and yeast strains, respectively, in a laboratory medium. Furthermore, relevant academic and industrial players associated with xylonic acid production will be presented.
Collapse
Affiliation(s)
- Débora Trichez
- Laboratory of Genetics and Biotechnology, EMBRAPA Agroenergia, Brasília, Brazil
| | - Clara Vida G C Carneiro
- Laboratory of Genetics and Biotechnology, EMBRAPA Agroenergia, Brasília, Brazil.,Graduate Program of Microbial Biology, Department of Cell Biology, Institute of Biology, University of Brasília, Brasília, Brazil
| | - Melissa Braga
- Innovation and Business Office, EMBRAPA Agroenergia, Brasília, Brazil
| | - João Ricardo M Almeida
- Laboratory of Genetics and Biotechnology, EMBRAPA Agroenergia, Brasília, Brazil. .,Graduate Program of Microbial Biology, Department of Cell Biology, Institute of Biology, University of Brasília, Brasília, Brazil.
| |
Collapse
|
15
|
M. S. LS, Nampoothiri KM. Xylose Dehydrogenase Immobilized on Ferromagnetic Nanoparticles for Bioconversion of Xylose to Xylonic Acid. Bioconjug Chem 2022; 33:948-955. [DOI: 10.1021/acs.bioconjchem.2c00159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lekshmi Sundar M. S.
- Microbial Processes and Technology Division, CSIR−National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram 695019, Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDG Campus, Ghaziabad, Uttar Pradesh 201002, India
| | - K. Madhavan Nampoothiri
- Microbial Processes and Technology Division, CSIR−National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram 695019, Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDG Campus, Ghaziabad, Uttar Pradesh 201002, India
| |
Collapse
|
16
|
Wang J, Chen Q, Wang X, Chen K, Ouyang P. The Biosynthesis of D-1,2,4-Butanetriol From d-Arabinose With an Engineered Escherichia coli. Front Bioeng Biotechnol 2022; 10:844517. [PMID: 35402410 PMCID: PMC8989435 DOI: 10.3389/fbioe.2022.844517] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/11/2022] [Indexed: 12/03/2022] Open
Abstract
D-1,2,4-Butanetriol (BT) has attracted much attention for its various applications in energetic materials and the pharmaceutical industry. Here, a synthetic pathway for the biosynthesis of BT from d-arabinose was constructed and optimized in Escherichia coli. First, E. coli Trans1-T1 was selected for the synthesis of BT. Considering the different performance of the enzymes from different organisms when expressed in E. coli, the synthetic pathway was optimized. After screening two d-arabinose dehydrogenases (ARAs), two d-arabinonate dehydratases (ADs), four 2-keto acid decarboxylases (ADXs), and three aldehyde reductases (ALRs), ADG from Burkholderia sp., AraD from Sulfolobus solfataricus, KivD from Lactococcus lactis IFPL730, and AdhP from E. coli were selected for the bio-production of BT. After 48 h of catalysis, 0.88 g/L BT was produced by the recombinant strain BT5. Once the enzymes were selected for the pathway, metabolic engineering strategy was conducted for further improvement. The final strain BT5ΔyiaEΔycdWΔyagE produced 1.13 g/L BT after catalyzing for 48 h. Finally, the fermentation conditions and characteristics of BT5ΔyiaEΔycdWΔyagE were also evaluated, and then 2.24 g/L BT was obtained after 48 h of catalysis under the optimized conditions. Our work was the first report on the biosynthesis of BT from d-arabinose which provided a potential for the large-scale production of d-glucose-based BT.
Collapse
|
17
|
Mao X, Zhang B, Zhao C, Lin J, Wei D. Overexpression of mGDH in Gluconobacter oxydans to improve D-xylonic acid production from corn stover hydrolysate. Microb Cell Fact 2022; 21:35. [PMID: 35264166 PMCID: PMC8905809 DOI: 10.1186/s12934-022-01763-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 02/24/2022] [Indexed: 11/17/2022] Open
Abstract
Background d-Xylonic acid is a versatile platform chemical with broad potential applications as a water reducer and disperser for cement and as a precursor for 1,4-butanediol and 1,2,4-tributantriol. Microbial production of d-xylonic acid with bacteria such as Gluconobacter oxydans from inexpensive lignocellulosic feedstock is generally regarded as one of the most promising and cost-effective methods for industrial production. However, high substrate concentrations and hydrolysate inhibitors reduce xylonic acid productivity. Results The d-xylonic acid productivity of G. oxydans DSM2003 was improved by overexpressing the mGDH gene, which encodes membrane-bound glucose dehydrogenase. Using the mutated plasmids based on pBBR1MCS-5 in our previous work, the recombinant strain G. oxydans/pBBR-R3510-mGDH was obtained with a significant improvement in d-xylonic acid production and a strengthened tolerance to hydrolysate inhibitors. The fed-batch biotransformation of d-xylose by this recombinant strain reached a high titer (588.7 g/L), yield (99.4%), and volumetric productivity (8.66 g/L/h). Moreover, up to 246.4 g/L d-xylonic acid was produced directly from corn stover hydrolysate without detoxification at a yield of 98.9% and volumetric productivity of 11.2 g/L/h. In addition, G. oxydans/pBBR-R3510-mGDH exhibited a strong tolerance to typical inhibitors, i.e., formic acid, furfural, and 5-hydroxymethylfurfural. Conclusion Through overexpressing mgdh in G. oxydans, we obtained the recombinant strain G. oxydans/pBBR-R3510-mGDH, and it was capable of efficiently producing xylonic acid from corn stover hydrolysate under high inhibitor concentrations. The high d-xylonic acid productivity of G. oxydans/pBBR-R3510-mGDH made it an attractive choice for biotechnological production. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01763-y.
Collapse
Affiliation(s)
- Xinlei Mao
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Baoqi Zhang
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Chenxiu Zhao
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Jinping Lin
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.
| | - Dongzhi Wei
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| |
Collapse
|
18
|
Peiman S, Baharfar R, Hosseinzadeh R. CuI NPs immobilized on a ternary hybrid system of magnetic nanosilica, PAMAM dendrimer and trypsin, as an efficient catalyst for A3‑coupling reaction. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-021-04654-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
19
|
Yu P, Jiang J, Chen C, Wang Z, Wang D, Li G, Li X. Ru/SiO2 Catalyst for Highly Selective Hydrogenation of Dimethyl Malate to 1,2,4-Butanetriol at Low Temperatures in Aqueous Solvent. Catal Letters 2022. [DOI: 10.1007/s10562-021-03877-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
20
|
Lu KW, Wang CT, Chang H, Wang RS, Shen CR. Overcoming glutamate auxotrophy in Escherichia coli itaconate overproducer by the Weimberg pathway. Metab Eng Commun 2021; 13:e00190. [PMID: 34934621 DOI: 10.1016/j.mec.2021.e00190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/11/2021] [Accepted: 11/26/2021] [Indexed: 10/19/2022] Open
Abstract
Biosynthesis of itaconic acid occurs through decarboxylation of the TCA cycle intermediate cis-aconitate. Engineering of efficient itaconate producers often requires elimination of the highly active isocitrate dehydrogenase to conserve cis-aconitate, leading to 2-ketoglutarate auxotrophy in the producing strains. Supplementation of glutamate or complex protein hydrolysate then becomes necessary, often in large quantities, to support the high cell density desired during itaconate fermentation and adds to the production cost. Here, we present an alternative approach to overcome the glutamate auxotrophy in itaconate producers by synthetically introducing the Weimberg pathway from Burkholderia xenovorans for 2-ketoglutarate biosynthesis. Because of its independence from natural carbohydrate assimilation pathways in Escherichia coli, the Weimberg pathway is able to provide 2-ketoglutarate using xylose without compromising the carbon flux toward itaconate. With xylose concentration carefully tuned to minimize excess 2-ketoglutarate flux in the stationary phase, the final strain accumulated 20 g/L of itaconate in minimal medium from 18 g/L of xylose and 45 g/L of glycerol. Necessity of the recombinant Weimberg pathway for growth also allowed us to maintain multi-copy plasmids carrying in operon the itaconate-producing genes without addition of antibiotics. Use of the Weimberg pathway for growth restoration is applicable to other production systems with disrupted 2-ketoglutarate synthesis.
Collapse
Affiliation(s)
- Ken W Lu
- Department of Chemical Engineering, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan
| | - Chris T Wang
- Department of Chemical Engineering, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan
| | - Hengray Chang
- Department of Chemical Engineering, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan
| | - Ryan S Wang
- Department of Chemical Engineering, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan
| | - Claire R Shen
- Department of Chemical Engineering, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan
| |
Collapse
|
21
|
Understanding D-xylonic acid accumulation: a cornerstone for better metabolic engineering approaches. Appl Microbiol Biotechnol 2021; 105:5309-5324. [PMID: 34215905 DOI: 10.1007/s00253-021-11410-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/08/2021] [Accepted: 06/10/2021] [Indexed: 01/02/2023]
Abstract
The xylose oxidative pathway (XOP) has been engineered in microorganisms for the production of a wide range of industrially relevant compounds. However, the performance of metabolically engineered XOP-utilizing microorganisms is typically hindered by D-xylonic acid accumulation. It acidifies the media and perturbs cell growth due to toxicity, thus curtailing enzymatic activity and target product formation. Fortunately, from the growing portfolio of genetic tools, several strategies that can be adapted for the generation of efficient microbial cell factories have been implemented to address D-xylonic acid accumulation. This review centers its discussion on the causes of D-xylonic acid accumulation and how to address it through different engineering and synthetic biology techniques with emphasis given on bacterial strains. In the first part of this review, the ability of certain microorganisms to produce and tolerate D-xylonic acid is also tackled as an important aspect in developing efficient microbial cell factories. Overall, this review could shed some insights and clarity to those working on XOP in bacteria and its engineering for the development of industrially applicable product-specialist strains. KEY POINTS: D-Xylonic acid accumulation is attributed to the overexpression of xylose dehydrogenase concomitant with basal or inefficient expression of enzymes involved in D-xylonic acid assimilation. Redox imbalance and insufficient cofactors contribute to D-xylonic acid accumulation. Overcoming D-xylonic acid accumulation can increase product formation among engineered strains. Engineering strategies involving enzyme engineering, evolutionary engineering, coutilization of different sugar substrates, and synergy of different pathways could potentially address D-xylonic acid accumulation.
Collapse
|
22
|
Herrera CRJ, Vieira VR, Benoliel T, Carneiro CVGC, De Marco JL, de Moraes LMP, de Almeida JRM, Torres FAG. Engineering Zymomonas mobilis for the Production of Xylonic Acid from Sugarcane Bagasse Hydrolysate. Microorganisms 2021; 9:1372. [PMID: 34202822 PMCID: PMC8304316 DOI: 10.3390/microorganisms9071372] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 11/17/2022] Open
Abstract
Sugarcane bagasse is an agricultural residue rich in xylose, which may be used as a feedstock for the production of high-value-added chemicals, such as xylonic acid, an organic acid listed as one of the top 30 value-added chemicals on a NREL report. Here, Zymomonas mobilis was engineered for the first time to produce xylonic acid from sugarcane bagasse hydrolysate. Seven coding genes for xylose dehydrogenase (XDH) were tested. The expression of XDH gene from Paraburkholderia xenovorans allowed the highest production of xylonic acid (26.17 ± 0.58 g L-1) from 50 g L-1 xylose in shake flasks, with a productivity of 1.85 ± 0.06 g L-1 h-1 and a yield of 1.04 ± 0.04 gAX/gX. Deletion of the xylose reductase gene further increased the production of xylonic acid to 56.44 ± 1.93 g L-1 from 54.27 ± 0.26 g L-1 xylose in a bioreactor. Strain performance was also evaluated in sugarcane bagasse hydrolysate as a cheap feedstock, which resulted in the production of 11.13 g L-1 xylonic acid from 10 g L-1 xylose. The results show that Z. mobilis may be regarded as a potential platform for the production of organic acids from cheap lignocellulosic biomass in the context of biorefineries.
Collapse
Affiliation(s)
- Christiane Ribeiro Janner Herrera
- Departamento de Biologia Celular, Universidade de Brasília, Brasília 70910-900, DF, Brazil; (C.R.J.H.); (V.R.V.); (T.B.); (C.V.G.C.C.); (J.L.D.M.); (L.M.P.d.M.)
| | - Vanessa Rodrigues Vieira
- Departamento de Biologia Celular, Universidade de Brasília, Brasília 70910-900, DF, Brazil; (C.R.J.H.); (V.R.V.); (T.B.); (C.V.G.C.C.); (J.L.D.M.); (L.M.P.d.M.)
| | - Tiago Benoliel
- Departamento de Biologia Celular, Universidade de Brasília, Brasília 70910-900, DF, Brazil; (C.R.J.H.); (V.R.V.); (T.B.); (C.V.G.C.C.); (J.L.D.M.); (L.M.P.d.M.)
| | - Clara Vida Galrão Corrêa Carneiro
- Departamento de Biologia Celular, Universidade de Brasília, Brasília 70910-900, DF, Brazil; (C.R.J.H.); (V.R.V.); (T.B.); (C.V.G.C.C.); (J.L.D.M.); (L.M.P.d.M.)
- Laboratório de Genética e Biotecnologia, Parque Estação Biológica, Embrapa, Agroenergia, W3 Norte, Brasília 70770-901, DF, Brazil;
| | - Janice Lisboa De Marco
- Departamento de Biologia Celular, Universidade de Brasília, Brasília 70910-900, DF, Brazil; (C.R.J.H.); (V.R.V.); (T.B.); (C.V.G.C.C.); (J.L.D.M.); (L.M.P.d.M.)
| | - Lídia Maria Pepe de Moraes
- Departamento de Biologia Celular, Universidade de Brasília, Brasília 70910-900, DF, Brazil; (C.R.J.H.); (V.R.V.); (T.B.); (C.V.G.C.C.); (J.L.D.M.); (L.M.P.d.M.)
| | - João Ricardo Moreira de Almeida
- Laboratório de Genética e Biotecnologia, Parque Estação Biológica, Embrapa, Agroenergia, W3 Norte, Brasília 70770-901, DF, Brazil;
| | - Fernando Araripe Gonçalves Torres
- Departamento de Biologia Celular, Universidade de Brasília, Brasília 70910-900, DF, Brazil; (C.R.J.H.); (V.R.V.); (T.B.); (C.V.G.C.C.); (J.L.D.M.); (L.M.P.d.M.)
| |
Collapse
|
23
|
|
24
|
Yoo JI, Sohn YJ, Son J, Jo SY, Pyo J, Park SK, Choi JI, Joo JC, Kim HT, Park SJ. Recent advances in the microbial production of C4 alcohols by metabolically engineered microorganisms. Biotechnol J 2021; 17:e2000451. [PMID: 33984183 DOI: 10.1002/biot.202000451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 04/28/2021] [Accepted: 04/28/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND The heavy global dependence on petroleum-based industries has led to serious environmental problems, including climate change and global warming. As a result, there have been calls for a paradigm shift towards the use of biorefineries, which employ natural and engineered microorganisms that can utilize various carbon sources from renewable resources as host strains for the carbon-neutral production of target products. PURPOSE AND SCOPE C4 alcohols are versatile chemicals that can be used directly as biofuels and bulk chemicals and in the production of value-added materials such as plastics, cosmetics, and pharmaceuticals. C4 alcohols can be effectively produced by microorganisms using DCEO biotechnology (tools to design, construct, evaluate, and optimize) and metabolic engineering strategies. SUMMARY OF NEW SYNTHESIS AND CONCLUSIONS In this review, we summarize the production strategies and various synthetic tools available for the production of C4 alcohols and discuss the potential development of microbial cell factories, including the optimization of fermentation processes, that offer cost competitiveness and potential industrial commercialization.
Collapse
Affiliation(s)
- Jee In Yoo
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, Republic of Korea
| | - Yu Jung Sohn
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, Republic of Korea
| | - Jina Son
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, Republic of Korea
| | - Seo Young Jo
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, Republic of Korea
| | - Jiwon Pyo
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, Republic of Korea
| | - Su Kyeong Park
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, Republic of Korea
| | - Jong-Il Choi
- Department of Biotechnology and Engineering, Interdisciplinary Program of Bioenergy and Biomaterials, Chonnam National University, Gwangju, Republic of Korea
| | - Jeong Chan Joo
- Department of Biotechnology, The Catholic University of Korea, Bucheon, Gyenggi-do, Republic of Korea
| | - Hee Taek Kim
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Chungnam National University, Daejeon, Republic of Korea
| | - Si Jae Park
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, Republic of Korea
| |
Collapse
|
25
|
Bañares AB, Nisola GM, Valdehuesa KNG, Lee WK, Chung WJ. Engineering of xylose metabolism in Escherichia coli for the production of valuable compounds. Crit Rev Biotechnol 2021; 41:649-668. [PMID: 33563072 DOI: 10.1080/07388551.2021.1873243] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The lignocellulosic sugar d-xylose has recently gained prominence as an inexpensive alternative substrate for the production of value-added compounds using genetically modified organisms. Among the prokaryotes, Escherichia coli has become the de facto host for the development of engineered microbial cell factories. The favored status of E. coli resulted from a century of scientific explorations leading to a deep understanding of its systems. However, there are limited literature reviews that discuss engineered E. coli as a platform for the conversion of d-xylose to any target compounds. Additionally, available critical review articles tend to focus on products rather than the host itself. This review aims to provide relevant and current information about significant advances in the metabolic engineering of d-xylose metabolism in E. coli. This focusses on unconventional and synthetic d-xylose metabolic pathways as several review articles have already discussed the engineering of native d-xylose metabolism. This paper, in particular, is essential to those who are working on engineering of d-xylose metabolism using E. coli as the host.
Collapse
Affiliation(s)
- Angelo B Bañares
- Environmental Waste Recycle Institute (EWRI), Department of Energy Science and Technology (DEST), Myongji University, Yongin, Gyeonggi, South Korea
| | - Grace M Nisola
- Environmental Waste Recycle Institute (EWRI), Department of Energy Science and Technology (DEST), Myongji University, Yongin, Gyeonggi, South Korea
| | - Kris N G Valdehuesa
- Environmental Waste Recycle Institute (EWRI), Department of Energy Science and Technology (DEST), Myongji University, Yongin, Gyeonggi, South Korea
| | - Won-Keun Lee
- Division of Bioscience and Bioinformatics, Myongji University, Yongin, Gyeonggi, South Korea
| | - Wook-Jin Chung
- Environmental Waste Recycle Institute (EWRI), Department of Energy Science and Technology (DEST), Myongji University, Yongin, Gyeonggi, South Korea
| |
Collapse
|
26
|
Slagman S, Fessner WD. Biocatalytic routes to anti-viral agents and their synthetic intermediates. Chem Soc Rev 2021; 50:1968-2009. [DOI: 10.1039/d0cs00763c] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
An assessment of biocatalytic strategies for the synthesis of anti-viral agents, offering guidelines for the development of sustainable production methods for a future COVID-19 remedy.
Collapse
Affiliation(s)
- Sjoerd Slagman
- Institut für Organische Chemie und Biochemie
- Technische Universität Darmstadt
- Germany
| | - Wolf-Dieter Fessner
- Institut für Organische Chemie und Biochemie
- Technische Universität Darmstadt
- Germany
| |
Collapse
|
27
|
Sundar MSL, Susmitha A, Rajan D, Hannibal S, Sasikumar K, Wendisch VF, Nampoothiri KM. Heterologous expression of genes for bioconversion of xylose to xylonic acid in Corynebacterium glutamicum and optimization of the bioprocess. AMB Express 2020; 10:68. [PMID: 32296988 PMCID: PMC7158973 DOI: 10.1186/s13568-020-01003-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 04/04/2020] [Indexed: 11/10/2022] Open
Abstract
In bacterial system, direct conversion of xylose to xylonic acid is mediated through NAD-dependent xylose dehydrogenase (xylB) and xylonolactonase (xylC) genes. Heterologous expression of these genes from Caulobacter crescentus into recombinant Corynebacterium glutamicum ATCC 13032 and C. glutamicum ATCC 31831 (with an innate pentose transporter, araE) resulted in an efficient bioconversion process to produce xylonic acid from xylose. Process parameters including the design of production medium was optimized using a statistical tool, Response Surface Methodology (RSM). Maximum xylonic acid of 56.32 g/L from 60 g/L xylose, i.e. about 76.67% of the maximum theoretical yield was obtained after 120 h fermentation from pure xylose with recombinant C. glutamicum ATCC 31831 containing the plasmid pVWEx1 xylB. Under the same condition, the production with recombinant C. glutamicum ATCC 13032 (with pVWEx1 xylB) was 50.66 g/L, i.e. 69% of the theoretical yield. There was no significant improvement in production with the simultaneous expression of xylB and xylC genes together indicating xylose dehydrogenase activity as one of the rate limiting factor in the bioconversion. Finally, proof of concept experiment in utilizing biomass derived pentose sugar, xylose, for xylonic acid production was also carried out and obtained 42.94 g/L xylonic acid from 60 g/L xylose. These results promise a significant value addition for the future bio refinery programs.![]()
Collapse
|
28
|
Zhao Z, Xian M, Liu M, Zhao G. Biochemical routes for uptake and conversion of xylose by microorganisms. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:21. [PMID: 32021652 PMCID: PMC6995148 DOI: 10.1186/s13068-020-1662-x] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/21/2020] [Indexed: 05/23/2023]
Abstract
Xylose is a major component of lignocellulose and the second most abundant sugar present in nature. Efficient utilization of xylose is required for the development of economically viable processes to produce biofuels and chemicals from biomass. However, there are still some bottlenecks in the bioconversion of xylose, including the fact that some microorganisms cannot assimilate xylose naturally and that the uptake and metabolism of xylose are inhibited by glucose, which is usually present with xylose in lignocellulose hydrolysate. To overcome these issues, numerous efforts have been made to discover, characterize, and engineer the transporters and enzymes involved in xylose utilization to relieve glucose inhibition and to develop recombinant microorganisms to produce fuels and chemicals from xylose. Here we describe a recent advancement focusing on xylose-utilizing pathways, biosynthesis of chemicals from xylose, and engineering strategies used to improve the conversion efficiency of xylose.
Collapse
Affiliation(s)
- Zhe Zhao
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Mo Xian
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 China
| | - Min Liu
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 China
| | - Guang Zhao
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 China
| |
Collapse
|
29
|
Enhancement of Gluconobacter oxydans Resistance to Lignocellulosic-Derived Inhibitors in Xylonic Acid Production by Overexpressing Thioredoxin. Appl Biochem Biotechnol 2020; 191:1072-1083. [PMID: 31960365 DOI: 10.1007/s12010-020-03253-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 01/08/2020] [Indexed: 12/21/2022]
Abstract
Efficient utilization of lignocellulose is an economically relevant practice for improving the financial prospects of biorefineries. Lignocellulose contains significant levels of xylose that can be converted into valuable xylonic acid. However, some inhibitors of bioconversion processes are produced after pretreatment. Xylonic acid production in bacteria, such as Gluconobacter oxydans, is hindered by poor bacterial tolerance to contaminants. Therefore, in order to enhance bacterial resistance to inhibitors, a recombinant strain of G. oxydans was created by the introduction of the thioredoxin gene. Thioredoxin is a key protein responsible for maintaining cellular redox potential and is critical to the conversion of xylose to xylonate. Overexpression of thioredoxin was confirmed at the enzymatic level, while the recombinant strain showed increased catalytic activity when inhibitors, such as formic acid or p-hydroxybenzaldehyde (PHBA), were added to the synthetic xylose medium (17% and 7% improvement in xylonic acid yield, respectively). To probe the molecular mechanism behind the recombinant strain response to inhibitors, the expression levels of various genes were analyzed by qRT-PCR, which revealed five differentially expressed genes (DEGs) upon exposure to formic acid or PHBA.
Collapse
|
30
|
Francois JM, Alkim C, Morin N. Engineering microbial pathways for production of bio-based chemicals from lignocellulosic sugars: current status and perspectives. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:118. [PMID: 32670405 PMCID: PMC7341569 DOI: 10.1186/s13068-020-01744-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 06/01/2020] [Indexed: 05/08/2023]
Abstract
Lignocellulose is the most abundant biomass on earth with an annual production of about 2 × 1011 tons. It is an inedible renewable carbonaceous resource that is very rich in pentose and hexose sugars. The ability of microorganisms to use lignocellulosic sugars can be exploited for the production of biofuels and chemicals, and their concurrent biotechnological processes could advantageously replace petrochemicals' processes in a medium to long term, sustaining the emerging of a new economy based on bio-based products from renewable carbon sources. One of the major issues to reach this objective is to rewire the microbial metabolism to optimally configure conversion of these lignocellulosic-derived sugars into bio-based products in a sustainable and competitive manner. Systems' metabolic engineering encompassing synthetic biology and evolutionary engineering appears to be the most promising scientific and technological approaches to meet this challenge. In this review, we examine the most recent advances and strategies to redesign natural and to implement non-natural pathways in microbial metabolic framework for the assimilation and conversion of pentose and hexose sugars derived from lignocellulosic material into industrial relevant chemical compounds leading to maximal yield, titer and productivity. These include glycolic, glutaric, mesaconic and 3,4-dihydroxybutyric acid as organic acids, monoethylene glycol, 1,4-butanediol and 1,2,4-butanetriol, as alcohols. We also discuss the big challenges that still remain to enable microbial processes to become industrially attractive and economically profitable.
Collapse
Affiliation(s)
- Jean Marie Francois
- Toulouse Biotechnology Institute, CNRS, INRA, LISBP INSA, 135 Avenue de Rangueil, Toulouse Cedex 04, 31077 France
- Toulouse White Biotechnology (TWB, UMS INRA/INSA/CNRS), NAPA CENTER Bât B, 3 Rue Ariane 31520, Ramonville Saint-Agnes, France
| | - Ceren Alkim
- Toulouse Biotechnology Institute, CNRS, INRA, LISBP INSA, 135 Avenue de Rangueil, Toulouse Cedex 04, 31077 France
- Toulouse White Biotechnology (TWB, UMS INRA/INSA/CNRS), NAPA CENTER Bât B, 3 Rue Ariane 31520, Ramonville Saint-Agnes, France
| | - Nicolas Morin
- Toulouse Biotechnology Institute, CNRS, INRA, LISBP INSA, 135 Avenue de Rangueil, Toulouse Cedex 04, 31077 France
- Toulouse White Biotechnology (TWB, UMS INRA/INSA/CNRS), NAPA CENTER Bât B, 3 Rue Ariane 31520, Ramonville Saint-Agnes, France
| |
Collapse
|
31
|
Bamba T, Yukawa T, Guirimand G, Inokuma K, Sasaki K, Hasunuma T, Kondo A. Production of 1,2,4-butanetriol from xylose by Saccharomyces cerevisiae through Fe metabolic engineering. Metab Eng 2019; 56:17-27. [PMID: 31434008 DOI: 10.1016/j.ymben.2019.08.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/24/2019] [Accepted: 08/17/2019] [Indexed: 11/29/2022]
Abstract
1,2,4-Butanetriol can be used to produce energetic plasticizer as well as several pharmaceutical compounds. Although Saccharomyces cerevisiae has some attractive characters such as high robustness for industrial production of useful chemicals by fermentation, 1,2,4-butanetriol production by S. cerevisiae has not been reported. 1,2,4-butanteriotl is produced by an oxidative xylose metabolic pathway completely different from the xylose reductase-xylitol dehydrogenase and the xylose isomerase pathways conventionally used for xylose assimilation in S. cerevisiae. In the present study, S. cerevisiae was engineered to produce 1,2,4-butanetriol by overexpression of xylose dehydrogenase (XylB), xylonate dehydratase (XylD), and 2-ketoacid decarboxylase. Further improvement of the recombinant strain was performed by the screening of optimal 2-ketoacid decarboxylase suitable for 1,2,4-butanetriol production and the enhancement of Fe uptake ability to improve the XylD enzymatic activity. Eventually, 1.7 g/L of 1,2,4-butanetriol was produced from 10 g/L xylose with a molar yield of 24.5%. Furthermore, 1.1 g/L of 1,2,4-butanetriol was successfully produced by direct fermentation of rice straw hydrolysate.
Collapse
Affiliation(s)
- Takahiro Bamba
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.
| | - Takahiro Yukawa
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.
| | - Gregory Guirimand
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan; Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.
| | - Kentaro Inokuma
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.
| | - Kengo Sasaki
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan; Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.
| | - Tomohisa Hasunuma
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan; Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan; Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan; Biomass Engineering Program, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan.
| |
Collapse
|
32
|
Sánchez-Moreno I, Benito-Arenas R, Montero-Calle P, Hermida C, García-Junceda E, Fernández-Mayoralas A. Simple and Practical Multigram Synthesis of d-Xylonate Using a Recombinant Xylose Dehydrogenase. ACS OMEGA 2019; 4:10593-10598. [PMID: 31460157 PMCID: PMC6648848 DOI: 10.1021/acsomega.9b01090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 06/05/2019] [Indexed: 06/10/2023]
Abstract
An efficient multienzyme system for the preparative synthesis of d-xylonate, a chemical with versatile industrial applications, is described. The multienzyme system is based on d-xylose oxidation catalyzed by the xylose dehydrogenase from Calulobacter crescentus and the use of catalytic amounts of NAD+. The cofactor is regenerated in situ by coupling the reduction of acetaldehyde into ethanol catalyzed by alcohol dehydrogenase from Clostridium kluyveri. Excellent conversions (>95%) were obtained in a process that allows easy product isolation by simple evaporation of the volatile buffer and byproducts.
Collapse
Affiliation(s)
| | - Raúl Benito-Arenas
- Departamento
de Química Bioorgánica, Instituto
de Química Orgánica General (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - Pilar Montero-Calle
- Departamento
de Química Bioorgánica, Instituto
de Química Orgánica General (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - Carmen Hermida
- Venter
Pharma S.L., Azalea 1, 28109 Alcobendas (Madrid), Spain
| | - Eduardo García-Junceda
- Departamento
de Química Bioorgánica, Instituto
de Química Orgánica General (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - Alfonso Fernández-Mayoralas
- Departamento
de Química Bioorgánica, Instituto
de Química Orgánica General (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| |
Collapse
|
33
|
Feng X, Gao W, Zhou Y, Zhao Z, Liu X, Han X, Xian M, Zhao G. Coupled biosynthesis and esterification of 1,2,4-butanetriol to simplify its separation from fermentation broth. Eng Life Sci 2019; 19:444-451. [PMID: 32625021 DOI: 10.1002/elsc.201800131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 01/05/2019] [Accepted: 02/13/2019] [Indexed: 01/21/2023] Open
Abstract
1,2,4-Butanetriol (BT) is a valuable chemical with versatile applications in many fields and can be produced through biosynthetic pathways. As a trihydric alcohol, BT possesses good water solubility and is very difficult to separate from fermentation broth, which does complicate the production process and increase the cost. To develop a novel method for BT separation, a biosynthetic pathway for 1,2,4-butanetriol esters with poor water solubility was constructed. Wax ester synthase/acyl-coenzyme A: diacylglycerol acyltransferase (Atf) from Acinetobacter baylyi, Mycobacterium smegmatis, and Escherichia coli were screened, and the acyltransferase from A. baylyi (AtfA) was found to have higher capability. The BT producing strain with AtfA overexpression produced 49.5 mg/L BT oleate in flask cultivation. Through enhancement of acyl-CoA production by overexpression of the acyl-CoA synthetase gene fadD and deleting the acyl coenzyme A dehydrogenase gene fadE, the production was improved to 64.4 mg/L. Under fed-batch fermentation, the resulting strain produced up to 1.1 g/L BT oleate. This is the first time showed that engineered E. coli strains can successfully produce BT esters from xylose and free fatty acids.
Collapse
Affiliation(s)
- Xinjun Feng
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences Qingdao P. R. China.,Shandong Provincial Key Laboratory of Synthetic Biology Qingdao P. R. China
| | - Wenjie Gao
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences Qingdao P. R. China
| | - Yifei Zhou
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences Qingdao P. R. China.,College of life sciences University of Chinese Academy of Sciences Beijing P. R. China
| | - Zhiqiang Zhao
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences Qingdao P. R. China.,College of life sciences University of Chinese Academy of Sciences Beijing P. R. China
| | - Xiutao Liu
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences Qingdao P. R. China.,College of life sciences University of Chinese Academy of Sciences Beijing P. R. China
| | - Xiaojuan Han
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences Qingdao P. R. China
| | - Mo Xian
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences Qingdao P. R. China
| | - Guang Zhao
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences Qingdao P. R. China.,Shandong Provincial Key Laboratory of Synthetic Biology Qingdao P. R. China
| |
Collapse
|
34
|
Zhao M, Shi D, Lu X, Zong H, Zhuge B. Co-production of 1,2,4-butantriol and ethanol from lignocellulose hydrolysates. BIORESOURCE TECHNOLOGY 2019; 282:433-438. [PMID: 30889534 DOI: 10.1016/j.biortech.2019.03.057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 03/08/2019] [Accepted: 03/09/2019] [Indexed: 06/09/2023]
Abstract
The aim of this work was to realize 1,2,4-butantriol (BT) production from sugarcane bagasse hydrolysates by microbial fermentation, and obtain co-production of BT and ethanol. Candida glycerinogenes UG21 was utilized to reduce the effect of osmolality resulting from high glucose concentration and furfural in hydrolysates on cell growth of BT-producing strains, and produced 54.1 g/L ethanol from glucose. After ethanol recovering, xylose containing stillage was obtained and used for BT production. 1.3 g/L BT was generated by a BT-producing strain. By the deletion of the crr gene and process optimization, BT titer reached 4.9 g/L. Meanwhile, the efficient utilization of sugarcane bagasse was achieved by a two-stage fermentation for co-production of BT and ethanol. This study provided a novel strategy for BT production from sugarcane bagasse, and demonstrated the potential for making full use of sugarcane bagasse hydrolysates to co-production value-added products.
Collapse
Affiliation(s)
- Meilin Zhao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, People's Republic of China; Research Centre of Industrial Microbiology, School of Biotechnology, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Dingchang Shi
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, People's Republic of China; Research Centre of Industrial Microbiology, School of Biotechnology, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Xinyao Lu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, People's Republic of China; Research Centre of Industrial Microbiology, School of Biotechnology, Jiangnan University, Wuxi 214122, People's Republic of China.
| | - Hong Zong
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, People's Republic of China; Research Centre of Industrial Microbiology, School of Biotechnology, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Bin Zhuge
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, People's Republic of China; Research Centre of Industrial Microbiology, School of Biotechnology, Jiangnan University, Wuxi 214122, People's Republic of China.
| |
Collapse
|
35
|
Xu Y, Chi P, Bilal M, Cheng H. Biosynthetic strategies to produce xylitol: an economical venture. Appl Microbiol Biotechnol 2019; 103:5143-5160. [PMID: 31101942 DOI: 10.1007/s00253-019-09881-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 04/26/2019] [Accepted: 04/29/2019] [Indexed: 01/04/2023]
Abstract
Xylitol is a natural five-carbon sugar alcohol with potential for use in food and pharmaceutical industries owing to its insulin-independent metabolic regulation, tooth rehardening, anti-carcinogenic, and anti-inflammatory, as well as osteoporosis and ear infections preventing activities. Chemical and biosynthetic routes using D-xylose, glucose, or biomass hydrolysate as raw materials can produce xylitol. Among these methods, microbial production of xylitol has received significant attention due to its wide substrate availability, easy to operate, and eco-friendly nature, in contrast with high-energy consuming and environmental-polluting chemical method. Though great advances have been made in recent years for the biosynthesis of xylitol from xylose, glucose, and biomass hydrolysate, and the yield and productivity of xylitol are substantially improved by metabolic engineering and optimizing key metabolic pathway parameters, it is still far away from industrial-scale biosynthesis of xylitol. In contrary, the chemical synthesis of xylitol from xylose remains the dominant route. Economic and highly efficient xylitol biosynthetic strategies from an abundantly available raw material (i.e., glucose) by engineered microorganisms are on the hard way to forwarding. However, synthetic biology appears as a novel and promising approach to develop a super yeast strain for industrial production of xylitol from glucose. After a brief overview of chemical-based xylitol production, we critically analyzed and comprehensively summarized the major metabolic strategies used for the enhanced biosynthesis of xylitol in this review. Towards the end, the study is wrapped up with current challenges, concluding remarks, and future prospects for designing an industrial yeast strain for xylitol biosynthesis from glucose.
Collapse
Affiliation(s)
- Yirong Xu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ping Chi
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China.
| | - Hairong Cheng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
36
|
Boer H, Andberg M, Pylkkänen R, Maaheimo H, Koivula A. In vitro reconstitution and characterisation of the oxidative D-xylose pathway for production of organic acids and alcohols. AMB Express 2019; 9:48. [PMID: 30972503 PMCID: PMC6458216 DOI: 10.1186/s13568-019-0768-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 03/25/2019] [Indexed: 01/01/2023] Open
Abstract
The oxidative d-xylose pathway, i.e. Dahms pathway, can be utilised to produce from cheap biomass raw material useful chemical intermediates. In vitro metabolic pathways offer a fast way to study the rate-limiting steps and find the most suitable enzymes for each reaction. We have constructed here in vitro multi-enzyme cascades leading from d-xylose or d-xylonolactone to ethylene glycol, glycolic acid and lactic acid, and use simple spectrophotometric assays for the read-out of the efficiency of these pathways. Based on our earlier results, we focussed particularly on the less studied xylonolactone ring opening (hydrolysis) reaction. The bacterial Caulobacter crescentus lactonase (Cc XylC), was shown to be a metal-dependent enzyme clearly improving the formation of d-xylonic acid at pH range from 6 to 8. The following dehydration reaction by the ILVD/EDD family d-xylonate dehydratase is a rate-limiting step in the pathway, and an effort was made to screen for novel enolase family d-xylonate dehydratases, however, no suitable replacing enzymes were found for this reaction. Concerning the oxidation of glycolaldehyde to glycolic acid, several enzyme candidates were also tested. Both Escherichia coli aldehyde dehydrogenase (Ec AldA) and Azospirillum brasilense α-ketoglutarate semialdehyde dehydrogenase (Ab AraE) proved to be suitable enzymes for this reaction.
Collapse
|
37
|
Li X, Chen Y, Nielsen J. Harnessing xylose pathways for biofuels production. Curr Opin Biotechnol 2019; 57:56-65. [PMID: 30785001 DOI: 10.1016/j.copbio.2019.01.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 01/04/2019] [Accepted: 01/15/2019] [Indexed: 01/02/2023]
Abstract
Energy security, environmental pollution, and economic development drive the development of alternatives to fossil fuels as an urgent global priority. Lignocellulosic biomass has the potential to contribute to meeting the demand for biofuel production via hydrolysis and fermentation of released sugars, such as glucose, xylose, and arabinose. Construction of robust cell factories requires introducing and rewiring of their metabolism to efficiently use all these sugars. Here, we review recent advances in re-constructing pathways for metabolism of pentoses, with special focus on xylose metabolism in the most widely used cell factories Saccharomyces cerevisiae and Escherichia coli. We also highlight engineering advanced biofuels-synthesis pathways and describes progress toward overcoming the challenges facing adoption of large-scale biofuel production.
Collapse
Affiliation(s)
- Xiaowei Li
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden; Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg, Sweden
| | - Yun Chen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden; Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg, Sweden
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden; Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg, Sweden; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark; Wallenberg Center for Protein Research, Chalmers University of Technology, Gothenburg, Sweden.
| |
Collapse
|
38
|
Lindsay CM. “How” is as Important as “What”. PROPELLANTS EXPLOSIVES PYROTECHNICS 2019. [DOI: 10.1002/prep.201980231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
39
|
Niu W, Kramer L, Mueller J, Liu K, Guo J. Metabolic engineering of Escherichia coli for the de novo stereospecific biosynthesis of 1,2-propanediol through lactic acid. Metab Eng Commun 2018; 8:e00082. [PMID: 30591904 PMCID: PMC6304458 DOI: 10.1016/j.mec.2018.e00082] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 11/19/2018] [Accepted: 11/19/2018] [Indexed: 11/25/2022] Open
Abstract
1,2-propanediol (1,2-PDO) is an industrial chemical with a broad range of applications, such as the production of alkyd and unsaturated polyester resins. It is currently produced as a racemic mixture from nonrenewable petroleum-based feedstocks. We have reported a novel artificial pathway for the biosynthesis of 1,2-PDO via lactic acid isomers as the intermediates. The pathway circumvents the cytotoxicity issue caused by methylglyoxal intermediate in the naturally existing pathway. Successful E. coli bioconversion of lactic acid to 1,2-PDO was shown in previous report. Here, we demonstrated the engineering of E. coli host strains for the de novo biosynthesis of 1,2-PDO through this pathway. Under fermenter-controlled conditions, the R-1,2-PDO was produced at 17.3 g/L with a molar yield of 42.2% from glucose, while the S-isomer was produced at 9.3 g/L with a molar yield of 23.2%. The optical purities of the two isomers were 97.5% ee (R) and 99.3% ee (S), respectively. To the best of our knowledge, these are the highest titers of 1,2-PDO biosynthesized by either natural producer or engineered microbial strains that are published in peer-reviewed journals. 1,2-Propanediol is a commodity chemical in the productions of alkyd and high-performance, unsaturated polyesters. E. coli strains were engineered for biosyntheses of 1,2-propanediol from glucose via the reduction of lactic acids. The biosynthesis is stereospecific, which allowed the production of 1,2-propanediol stereoisomers with high optical purity. The highest reported titers of 17.3 g/L and 9.3 g/L were achieved for R-1,2-PDO and S-1,2-PDO, respectively.
Collapse
Affiliation(s)
- Wei Niu
- Department of Chemical&Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, United States
| | - Levi Kramer
- Department of Chemical&Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, United States
| | - Joshua Mueller
- Department of Chemical&Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, United States
| | - Kun Liu
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, United States
| | - Jiantao Guo
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, United States
| |
Collapse
|
40
|
Jing P, Cao X, Lu X, Zong H, Zhuge B. Modification of an engineered Escherichia coli by a combined strategy of deleting branch pathway, fine-tuning xylose isomerase expression, and substituting decarboxylase to improve 1,2,4-butanetriol production. J Biosci Bioeng 2018; 126:547-552. [DOI: 10.1016/j.jbiosc.2018.05.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 04/10/2018] [Accepted: 05/24/2018] [Indexed: 12/18/2022]
|
41
|
Optimisation of enzyme cascades for chiral amino alcohol synthesis in aid of host cell integration using a statistical experimental design approach. J Biotechnol 2018; 281:150-160. [PMID: 30009844 DOI: 10.1016/j.jbiotec.2018.07.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 07/06/2018] [Accepted: 07/09/2018] [Indexed: 01/20/2023]
Abstract
Chiral amino alcohols are compounds of pharmaceutical interest as they are building blocks of sphingolipids, antibiotics, and antiviral glycosidase inhibitors. Due to the challenges of chemical synthesis we recently developed two TK-TAm reaction cascades using natural and low cost feedstocks as substrates: a recycling cascade comprising of 2 enzymes and a sequential 3-step enzyme cascade yielding 30% and 1% conversion, respectively. In order to improve the conversion yield and aid the future host strain engineering for whole cell biocatalysis, we used a combination of microscale experiments and statistical experimental design. For this we implemented a full factorial design to optimise pH, temperature and buffer type, followed by the application of Response Surface Methodology for the optimisation of substrates and enzymes concentrations. Using purified enzymes we achieved 60% conversion for the recycling cascade and 3-fold improvement using the sequential pathway. Based on the results, limiting steps and individual requirements for host cell metabolic integration were identified expanding the understanding of the cascades without implementing extensive optimisation modelling. Therefore, the approach described here is well suited for optimising reaction conditions as well as defining the relative enzyme expression levels required for construction of microbial cell factories.
Collapse
|
42
|
Wang X, Xu N, Hu S, Yang J, Gao Q, Xu S, Chen K, Ouyang P. d-1,2,4-Butanetriol production from renewable biomass with optimization of synthetic pathway in engineered Escherichia coli. BIORESOURCE TECHNOLOGY 2018; 250:406-412. [PMID: 29195152 DOI: 10.1016/j.biortech.2017.11.062] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 11/21/2017] [Accepted: 11/22/2017] [Indexed: 06/07/2023]
Abstract
Bio-based production of d-1,2,4-butanetriol (BT) from renewable substrates is increasingly attracting attention. Here, the BT biosynthetic pathway was constructed and optimized in Escherichia coli to produce BT from pure d-xylose or corncob hydrolysates. First, E. coli BL21(DE3) was identified as a more proper host for BT production through host screening. Then, BT pathway was systematically optimized with gene homolog screening strategy, mainly targeting three key steps from xylonic acid to BT catalyzed by d-xylonate dehydratase (XD), 2-keto acid decarboxylase (KDC) and aldehyde reductase (ALR). After screening six ALRs, four KDCs and four XDs, AdhP from E. coli, KdcA from Lactococcus lactis and XylD from Caulobacter crescentus were identified more efficiently for BT production. The co-expression of these enzymes in recombinant strain BL21-14 led to BT production of 5.1 g/L under the optimized cultivation conditions. Finally, BT production from corncob hydrolysates was achieved with a titer of 3.4 g/L.
Collapse
Affiliation(s)
- Xin Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China
| | - Nana Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China
| | - Shewei Hu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China
| | - Jianming Yang
- Xian Modern Chemistry Research Institute, Xian 710065, China
| | - Qian Gao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China
| | - Sheng Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China
| | - Kequan Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China.
| | - Pingkai Ouyang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China
| |
Collapse
|
43
|
Rahman MM, Andberg M, Koivula A, Rouvinen J, Hakulinen N. The crystal structure of D-xylonate dehydratase reveals functional features of enzymes from the Ilv/ED dehydratase family. Sci Rep 2018; 8:865. [PMID: 29339766 PMCID: PMC5770437 DOI: 10.1038/s41598-018-19192-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 12/22/2017] [Indexed: 01/06/2023] Open
Abstract
The Ilv/ED dehydratase protein family includes dihydroxy acid-, gluconate-, 6-phosphogluconate- and pentonate dehydratases. The members of this family are involved in various biosynthetic and carbohydrate metabolic pathways. Here, we describe the first crystal structure of D-xylonate dehydratase from Caulobacter crescentus (CcXyDHT) at 2.7 Å resolution and compare it with other available enzyme structures from the IlvD/EDD protein family. The quaternary structure of CcXyDHT is a tetramer, and each monomer is composed of two domains in which the N-terminal domain forms a binding site for a [2Fe-2S] cluster and a Mg2+ ion. The active site is located at the monomer-monomer interface and contains residues from both the N-terminal recognition helix and the C-terminus of the dimeric counterpart. The active site also contains a conserved Ser490, which probably acts as a base in catalysis. Importantly, the cysteines that participate in the binding and formation of the [2Fe-2S] cluster are not all conserved within the Ilv/ED dehydratase family, which suggests that some members of the IlvD/EDD family may bind different types of [Fe-S] clusters.
Collapse
Affiliation(s)
- Mohammad Mubinur Rahman
- Department of Chemistry, University of Eastern Finland, PO Box 111, FIN-80101, Joensuu, Finland
| | - Martina Andberg
- VTT Technical Research Centre of Finland Ltd, PO Box 1000, FIN-02044 VTT, Espoo, Finland
| | - Anu Koivula
- VTT Technical Research Centre of Finland Ltd, PO Box 1000, FIN-02044 VTT, Espoo, Finland
| | - Juha Rouvinen
- Department of Chemistry, University of Eastern Finland, PO Box 111, FIN-80101, Joensuu, Finland
| | - Nina Hakulinen
- Department of Chemistry, University of Eastern Finland, PO Box 111, FIN-80101, Joensuu, Finland.
| |
Collapse
|
44
|
Gao H, Gao Y, Dong R. Enhanced biosynthesis of 3,4-dihydroxybutyric acid by engineered Escherichia coli in a dual-substrate system. BIORESOURCE TECHNOLOGY 2017; 245:794-800. [PMID: 28926911 DOI: 10.1016/j.biortech.2017.09.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 09/03/2017] [Accepted: 09/04/2017] [Indexed: 06/07/2023]
Abstract
3,4-Dihydroxybutyric acid (3,4-DHBA), a versatile platform four carbon (C4) chemical, can be used as a precursor in the production of many commercially important chemicals. Here, a dual-substrate biosynthesis system was developed for 3,4-DHBA production via a synthetic pathway established in an engineered Escherichia coli, and using xylose as a synthetic substrate and glucose as a cell growth substrate. The deletion of genes xylA, yjhH and yagE and others encoding for alcohol dehydrogenases in E. coli is essential for the production of 3,4-DHBA. Blocking competing pathway by removing the gene yiaE encoding for a 2-keto-3-deoxy-D-xylonate reductase also facilitated carbon flow towards the synthesis of 3,4-DHBA. Furthermore, regulation the availability of NAD+ resulted in further improved 3,4-DHBA production. The combinational optimization of the biosynthesis system led to a production of 0.38g/L 3,4-DHBA. This study provides an alternative 3,4-DHBA biosynthesis approach with the possibility of utilizing hydrolysates of lignocellulosic biomass as substrates.
Collapse
Affiliation(s)
- Haijun Gao
- School of Life Science, Beijing Institute of Technology, Beijing 100081, PR China.
| | - Yu Gao
- School of Life Science, Beijing Institute of Technology, Beijing 100081, PR China
| | - Runan Dong
- School of Life Science, Beijing Institute of Technology, Beijing 100081, PR China
| |
Collapse
|
45
|
Kataoka N, Vangnai AS, Pongtharangkul T, Yakushi T, Matsushita K. Production of 1,3-diols in Escherichia coli. BIORESOURCE TECHNOLOGY 2017; 245:1538-1541. [PMID: 28550991 DOI: 10.1016/j.biortech.2017.05.082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/13/2017] [Accepted: 05/15/2017] [Indexed: 06/07/2023]
Abstract
To expand the diversity of chemical compounds produced through microbial conversion, a platform pathway for the production of widely used industrial chemicals, 1,3-diols, was engineered in Escherichia coli. The pathway was designed by modifying the previously reported (R)-1,3-butanediol synthetic pathway to consist of pct (propionate CoA-transferase) from Megasphaera elsdenii, bktB (thiolase), phaB (NADPH-dependent acetoacetyl-CoA reductase) from Ralstonia eutropha, bld (butyraldehyde dehydrogenase) from Clostridium saccharoperbutylacetonicum, and the endogenous alcohol dehydrogenase(s) of E. coli. The recombinant E. coli strains produced 1,3-pentanediol, 4-methyl-1,3-pentanediol, and 1,2,4-butanetriol, together with 1,3-butanediol, from mixtures of glucose and propionate, isobutyrate, and glycolate, respectively, in shake flask cultures. To the best of our knowledge, this is the first report of microbial production of 1,3-pentanediol and 4-methyl-1,3-pentanediol.
Collapse
Affiliation(s)
- Naoya Kataoka
- Division of Agricultural Sciences, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8515, Japan; Research Center for Thermotolerant Microbial Resources, Yamaguchi University, Yamaguchi 753-8515, Japan.
| | - Alisa S Vangnai
- Biocatalyst and Environmental Biotechnology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; Center of Excellence in Hazardous Substance Management (HSM), Chulalongkorn University, Bangkok 10330, Thailand
| | | | - Toshiharu Yakushi
- Division of Agricultural Sciences, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8515, Japan; Research Center for Thermotolerant Microbial Resources, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Kazunobu Matsushita
- Division of Agricultural Sciences, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8515, Japan; Research Center for Thermotolerant Microbial Resources, Yamaguchi University, Yamaguchi 753-8515, Japan
| |
Collapse
|
46
|
Dai L, Tao F, Tang H, Guo Y, Shen Y, Xu P. Directing enzyme devolution for biosynthesis of alkanols and 1,n-alkanediols from natural polyhydroxy compounds. Metab Eng 2017; 44:70-80. [DOI: 10.1016/j.ymben.2017.09.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 09/07/2017] [Accepted: 09/13/2017] [Indexed: 12/01/2022]
|
47
|
Salusjärvi L, Toivari M, Vehkomäki ML, Koivistoinen O, Mojzita D, Niemelä K, Penttilä M, Ruohonen L. Production of ethylene glycol or glycolic acid from D-xylose in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2017; 101:8151-8163. [PMID: 29038973 DOI: 10.1007/s00253-017-8547-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 09/05/2017] [Accepted: 09/17/2017] [Indexed: 11/26/2022]
Abstract
The important platform chemicals ethylene glycol and glycolic acid were produced via the oxidative D-xylose pathway in the yeast Saccharomyces cerevisiae. The expression of genes encoding D-xylose dehydrogenase (XylB) and D-xylonate dehydratase (XylD) from Caulobacter crescentus and YagE or YjhH aldolase and aldehyde dehydrogenase AldA from Escherichia coli enabled glycolic acid production from D-xylose up to 150 mg/L. In strains expressing only xylB and xylD, 29 mg/L 2-keto-3-deoxyxylonic acid [(S)-4,5-dihydroxy-2-oxopentanoic acid] (2K3DXA) was produced and D-xylonic acid accumulated to ca. 9 g/L. A significant amount of D-xylonic acid (ca. 14%) was converted to 3-deoxypentonic acid (3DPA), and also, 3,4-dihydroxybutyric acid was formed. 2K3DXA was further converted to glycolaldehyde when genes encoding by either YagE or YjhH aldolase from E. coli were expressed. Reduction of glycolaldehyde to ethylene glycol by an endogenous aldo-keto reductase activity resulted further in accumulation of ethylene glycol of 14 mg/L. The possibility of simultaneous production of lactic and glycolic acids was evaluated by expression of gene encoding lactate dehydrogenase ldhL from Lactobacillus helveticus together with aldA. Interestingly, this increased the accumulation of glycolic acid to 1 g/L. The D-xylonate dehydratase activity in yeast was notably low, possibly due to inefficient Fe-S cluster synthesis in the yeast cytosol, and leading to D-xylonic acid accumulation. The dehydratase activity was significantly improved by targeting its expression to mitochondria or by altering the Fe-S cluster metabolism of the cells with FRA2 deletion.
Collapse
Affiliation(s)
- Laura Salusjärvi
- VTT Technical Research Centre of Finland Ltd., Solutions for Natural Resources and Environment, Tietotie 2, P.O. Box 1000, FI-02044 VTT, Espoo, Finland.
| | - Mervi Toivari
- VTT Technical Research Centre of Finland Ltd., Solutions for Natural Resources and Environment, Tietotie 2, P.O. Box 1000, FI-02044 VTT, Espoo, Finland
| | - Maija-Leena Vehkomäki
- VTT Technical Research Centre of Finland Ltd., Solutions for Natural Resources and Environment, Tietotie 2, P.O. Box 1000, FI-02044 VTT, Espoo, Finland
| | - Outi Koivistoinen
- VTT Technical Research Centre of Finland Ltd., Solutions for Natural Resources and Environment, Tietotie 2, P.O. Box 1000, FI-02044 VTT, Espoo, Finland
| | - Dominik Mojzita
- VTT Technical Research Centre of Finland Ltd., Solutions for Natural Resources and Environment, Tietotie 2, P.O. Box 1000, FI-02044 VTT, Espoo, Finland
| | - Klaus Niemelä
- VTT Technical Research Centre of Finland Ltd., Solutions for Natural Resources and Environment, Tietotie 2, P.O. Box 1000, FI-02044 VTT, Espoo, Finland
| | - Merja Penttilä
- VTT Technical Research Centre of Finland Ltd., Solutions for Natural Resources and Environment, Tietotie 2, P.O. Box 1000, FI-02044 VTT, Espoo, Finland
| | - Laura Ruohonen
- VTT Technical Research Centre of Finland Ltd., Solutions for Natural Resources and Environment, Tietotie 2, P.O. Box 1000, FI-02044 VTT, Espoo, Finland
| |
Collapse
|
48
|
Computational study of Simultaneous synthesis of optically active (RS)-1,2,4-butanetriol trinitrate (BTTN). J Mol Model 2017; 23:246. [DOI: 10.1007/s00894-017-3414-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 06/30/2017] [Indexed: 10/19/2022]
|
49
|
Huang K, Xu Y, Lu W, Yu S. A Precise Method for Processing Data to Determine the Dissociation Constants of Polyhydroxy Carboxylic Acids via Potentiometric Titration. Appl Biochem Biotechnol 2017; 183:1426-1438. [DOI: 10.1007/s12010-017-2509-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 05/09/2017] [Indexed: 11/25/2022]
|
50
|
Wang J, Shen X, Jain R, Wang J, Yuan Q, Yan Y. Establishing a novel biosynthetic pathway for the production of 3,4-dihydroxybutyric acid from xylose in Escherichia coli. Metab Eng 2017; 41:39-45. [DOI: 10.1016/j.ymben.2017.03.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/20/2017] [Accepted: 03/22/2017] [Indexed: 02/06/2023]
|