1
|
Grover A, Conger MA, Liptak MD. Stabilization of the Ferryl═Oxoheme Form of Staphylococcus aureus IsdG by Electron Transfer from a Second-Sphere Tryptophan. J Am Chem Soc 2025; 147:10598-10611. [PMID: 40091640 PMCID: PMC11980046 DOI: 10.1021/jacs.5c00453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
The ferryl heme forms of Staphylococcus aureus IsdG and IsdI have novel UV/vis absorption spectra that are distinct from those of the three forms of ferryl heme typically found in biological systems: compound I, compound II, and compound ES. In this work, the ferryl heme form of IsdG was characterized because it is an analogue for the immediate product of enzyme-catalyzed heme hydroxylation. The ferryl heme form of IsdG generated following the addition of meta-chloroperoxybenzoic acid to the ferric heme form of IsdG has a half-life of 4.0 ± 0.2 min, which is more than 100 times longer than the half-life for the ferryl heme form of human heme oxygenase (hHO). Magnetic circular dichroism characterization of the IsdG species yielded spectral data and zero-field splitting parameters consistent with either a compound II- or compound ES-like ferryl heme. Further characterization of isotopically enriched samples with electron paramagnetic resonance spectroscopy revealed the presence of a protein-based organic radical, as would be expected for compound ES. Finally, multiscale quantum mechanics/molecular mechanics and time-dependent density functional theory strongly suggest that the ferryl heme form of IsdG has a ruffled porphyrin ligand and an oxo ligand. Thus, the ferryl heme form of IsdG is assigned to a compound ES-like species with a Trp67-based radical. Electron transfer from Trp67 to porphyrin will stabilize the immediate product of heme hydroxylation and provide a thermodynamic driving force for the reaction. Furthermore, the ability to transfer an electron between Trp67 and the substrate may explain the differential reactivity of meso-hydroxyheme in IsdG and hHO.
Collapse
Affiliation(s)
| | | | - Matthew D. Liptak
- Department of Chemistry, University of Vermont, Burlington, Vermont 05405, United States
| |
Collapse
|
2
|
Uchida T, Umetsu S, Sasaki M, Yoshimura H, Omura I, Ishimori K. A dye-decolorizing peroxidase from Vibrio cholerae can demetallate heme. J Inorg Biochem 2025; 262:112764. [PMID: 39476502 DOI: 10.1016/j.jinorgbio.2024.112764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 09/13/2024] [Accepted: 10/21/2024] [Indexed: 11/30/2024]
Abstract
Iron is an essential element for bacterial survival. Bacterial pathogens have therefore developed methods to obtain iron. Vibrio cholerae, the intestinal pathogen that causes cholera, utilizes heme as an iron source. DyP from V. cholerae (VcDyP) is a dye-decolorizing peroxidase. When VcDyP was expressed in Escherichia coli and purified, it was found to contain protoporphyrin IX (PPIX) but not heme, indicating that the protein possesses deferrochelatase activity. Here, we examined the demetallation reaction of VcDyP using fluorescence spectroscopy. Treatment of heme-reconstituted VcDyP with sodium dithionite under anaerobic conditions led to an increase in the fluorescence intensity at 624 nm, suggesting the formation of PPIX. Although the same reaction was conducted using myoglobin, horseradish peroxidase and hemin, no increase in the fluorescence was observed. Therefore, demetallation of heme is specific to VcDyP. This reaction was faster at lower pH, but the amplitudes of the fluorescence increase were larger at pH 6.5-7.5, in clear contrast to the dye-decolorizing activity with the optimal pH of 4.5. In contrast to HutZ from V. cholerae, which is a heme-degrading enzyme that cleaves the heme macrocycle to release iron, VcDyP can remove iron from heme without degradation. To our knowledge, VcDyP is the first enzyme whose demetallation activity has been confirmed at neutral pH. Our results show that VcDyP is a bifunctional protein that degrades anthraquinone dyes and demetallates heme.
Collapse
Affiliation(s)
- Takeshi Uchida
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan; Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan.
| | - Sayaka Umetsu
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Miho Sasaki
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Haruka Yoshimura
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Issei Omura
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Koichiro Ishimori
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan; Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| |
Collapse
|
3
|
Conger MA, Cornetta AR, Liptak MD. Spectroscopic Evidence for Electronic Control of Heme Hydroxylation by IsdG. Inorg Chem 2019; 58:15455-15465. [PMID: 31693363 DOI: 10.1021/acs.inorgchem.9b02530] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Staphylococcus aureus IsdG catalyzes a unique trioxygenation of heme to staphylobilin, and the data presented in this article elucidate the mechanism of the novel chemical transformation. More specifically, the roles of the second-sphere Asn and Trp residues in the monooxygenation of ferric-peroxoheme have been clarified via spectroscopic characterization of the ferric-azidoheme analogue. Analysis of UV/vis absorption data quantified the strength of the hydrogen bond that exists between the Asn7 side chain and the azide moiety of ferric-azidoheme. X-band electron paramagnetic resonance data were acquired and analyzed, which revealed that this hydrogen bond weakens the π-donor strength of the azide, resulting in perturbations of the Fe 3d based orbitals. Finally, nuclear magnetic resonance characterization of 13C-enriched samples demonstrated that the Asn7···N3 hydrogen bond triggers partial porphyrin to iron electron transfer, resulting in spin density delocalization onto the heme meso carbons. These spectroscopic experiments were complemented by combined quantum mechanics/molecular mechanics computational modeling, which strongly suggested that the electronic structure changes observed for the N7A variant arose from loss of the Asn7···N3 hydrogen bond as opposed to a decrease in porphyrin ruffling. From these data a fascinating picture emerges where an Asn7···N3 hydrogen bond is communicated through four bonds, resulting in meso carbons with partial cationic radical character that are poised for hydroxylation. This chemistry is not observed in other heme proteins because Asn7 and Trp67 must work in concert to trigger the requisite electronic structure change.
Collapse
Affiliation(s)
- Matthew A Conger
- Department of Chemistry , University of Vermont , Burlington , Vermont 05405 , United States
| | - Amanda R Cornetta
- Department of Chemistry , University of Vermont , Burlington , Vermont 05405 , United States
| | - Matthew D Liptak
- Department of Chemistry , University of Vermont , Burlington , Vermont 05405 , United States
| |
Collapse
|
4
|
Conger MA, Pokhrel D, Liptak MD. Tight binding of heme to Staphylococcus aureus IsdG and IsdI precludes design of a competitive inhibitor. Metallomics 2018; 9:556-563. [PMID: 28401968 DOI: 10.1039/c7mt00035a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The micromolar equilibrium constants for heme dissociation from IsdG and IsdI reported in the literature call into question whether these enzymes are actually members of the iron-regulated surface determinant system of Staphylococcus aureus, which harvests heme iron from a host during infection. In order to address this question, the heme dissociation constants for IsdG and IsdI were reevaluated using three approaches. The heme dissociation equilibrium constants were measured using a UV/Vis absorption-detected assay analyzed with an assumption-free model, and using a newly developed fluorescence-detected assay. The heme dissociation rate constants were estimated using apomyoglobin competition assays. Analyses of the UV/Vis absorption data revealed a critical flaw in the previous measurements; heme is 99.9% protein-bound at the micromolar concentrations needed for UV/Vis absorption spectroscopy, which renders accurate equilibrium constant measurement nearly impossible. However, fluorescence can be measured for more dilute samples, and analyses of these data resulted in dissociation equilibrium constants of 1.4 ± 0.6 nM and 12.9 ± 1.3 nM for IsdG and IsdI, respectively. Analyses of the kinetic data obtained from apomyoglobin competition assays estimated heme dissociation rate constants of 0.022 ± 0.002 s-1 for IsdG and 0.092 ± 0.008 s-1 for IsdI. Based upon these data, and what is known regarding the post-translational regulation of IsdG and IsdI, it is proposed that only IsdG is a member of the heme iron acquisition pathway and IsdI regulates heme homeostasis. Furthermore, the nanomolar dissociation constants mean that heme is bound tightly by IsdG and indicates that competitive inhibition of this protein will be difficult. Instead, uncompetitive inhibition based upon a detailed understanding of enzyme mechanism is a more promising antibiotic development strategy.
Collapse
Affiliation(s)
- Matthew A Conger
- Department of Chemistry, University of Vermont, Burlington, Vermont 05405, USA.
| | | | | |
Collapse
|
5
|
Kekilli D, Petersen CA, Pixton DA, Ghafoor DD, Abdullah GH, Dworkowski FSN, Wilson MT, Heyes DJ, Hardman SJO, Murphy LM, Strange RW, Scrutton NS, Andrew CR, Hough MA. Engineering proximal vs. distal heme-NO coordination via dinitrosyl dynamics: implications for NO sensor design. Chem Sci 2017; 8:1986-1994. [PMID: 28451315 PMCID: PMC5390784 DOI: 10.1039/c6sc04190f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 11/08/2016] [Indexed: 01/18/2023] Open
Abstract
Proximal vs. distal heme-NO coordination is a novel strategy for selective gas response in heme-based NO-sensors. In the case of Alcaligenes xylosoxidans cytochrome c' (AXCP), formation of a transient distal 6cNO complex is followed by scission of the trans Fe-His bond and conversion to a proximal 5cNO product via a putative dinitrosyl species. Here we show that replacement of the AXCP distal Leu16 residue with smaller or similar sized residues (Ala, Val or Ile) traps the distal 6cNO complex, whereas Leu or Phe residues lead to a proximal 5cNO product with a transient or non-detectable distal 6cNO precursor. Crystallographic, spectroscopic, and kinetic measurements of 6cNO AXCP complexes show that increased distal steric hindrance leads to distortion of the Fe-N-O angle and flipping of the heme 7-propionate. However, it is the kinetic parameters of the distal NO ligand that determine whether 6cNO or proximal 5cNO end products are formed. Our data support a 'balance of affinities' mechanism in which proximal 5cNO coordination depends on relatively rapid release of the distal NO from the dinitrosyl precursor. This mechanism, which is applicable to other proteins that form transient dinitrosyls, represents a novel strategy for 5cNO formation that does not rely on an inherently weak Fe-His bond. Our data suggest a general means of engineering selective gas response into biologically-derived gas sensors in synthetic biology.
Collapse
Affiliation(s)
- Demet Kekilli
- School of Biological Sciences , University of Essex , Wivenhoe Park , Colchester , Essex CO4 3SQ , UK .
| | - Christine A Petersen
- Department of Chemistry and Biochemistry , Eastern Oregon University , La Grande , Oregon 97850 , USA .
| | - David A Pixton
- Department of Chemistry and Biochemistry , Eastern Oregon University , La Grande , Oregon 97850 , USA .
| | - Dlzar D Ghafoor
- Faculty of Science and Education Science , University of Sulaimani , Sulaymaniyah , Iraq
| | | | | | - Michael T Wilson
- School of Biological Sciences , University of Essex , Wivenhoe Park , Colchester , Essex CO4 3SQ , UK .
| | - Derren J Heyes
- Manchester Institute of Biotechnology , 131 Princess Street , Manchester M1 7DN , UK
| | - Samantha J O Hardman
- Manchester Institute of Biotechnology , 131 Princess Street , Manchester M1 7DN , UK
| | - Loretta M Murphy
- School of Chemistry , Bangor University , Bangor , Gwynedd , Wales LL57 2UW , UK
| | - Richard W Strange
- School of Biological Sciences , University of Essex , Wivenhoe Park , Colchester , Essex CO4 3SQ , UK .
- Molecular Biophysics Group , Institute of Integrative Biology , Faculty of Health and Life Sciences , University of Liverpool , Liverpool , L69 7ZB , UK
| | - Nigel S Scrutton
- Manchester Institute of Biotechnology , 131 Princess Street , Manchester M1 7DN , UK
| | - Colin R Andrew
- Department of Chemistry and Biochemistry , Eastern Oregon University , La Grande , Oregon 97850 , USA .
| | - Michael A Hough
- School of Biological Sciences , University of Essex , Wivenhoe Park , Colchester , Essex CO4 3SQ , UK .
| |
Collapse
|
6
|
Machovina MM, Usselman RJ, DuBois JL. Monooxygenase Substrates Mimic Flavin to Catalyze Cofactorless Oxygenations. J Biol Chem 2016; 291:17816-28. [PMID: 27307041 DOI: 10.1074/jbc.m116.730051] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Indexed: 01/16/2023] Open
Abstract
Members of the antibiotic biosynthesis monooxygenase family catalyze O2-dependent oxidations and oxygenations in the absence of any metallo- or organic cofactor. How these enzymes surmount the kinetic barrier to reactions between singlet substrates and triplet O2 is unclear, but the reactions have been proposed to occur via a flavin-like mechanism, where the substrate acts in lieu of a flavin cofactor. To test this model, we monitored the uncatalyzed and enzymatic reactions of dithranol, a substrate for the nogalamycin monooxygenase (NMO) from Streptomyces nogalater As with flavin, dithranol oxidation was faster at a higher pH, although the reaction did not appear to be base-catalyzed. Rather, conserved asparagines contributed to suppression of the substrate pKa The same residues were critical for enzymatic catalysis that, consistent with the flavoenzyme model, occurred via an O2-dependent slow step. Evidence for a superoxide/substrate radical pair intermediate came from detection of enzyme-bound superoxide during turnover. Small molecule and enzymatic superoxide traps suppressed formation of the oxygenation product under uncatalyzed conditions, whereas only the small molecule trap had an effect in the presence of NMO. This suggested that NMO both accelerated the formation and directed the recombination of a superoxide/dithranyl radical pair. These catalytic strategies are in some ways flavin-like and stand in contrast to the mechanisms of urate oxidase and (1H)-3-hydroxy-4-oxoquinaldine 2,4-dioxygenase, both cofactor-independent enzymes that surmount the barriers to direct substrate/O2 reactivity via markedly different means.
Collapse
Affiliation(s)
- Melodie M Machovina
- From the Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59715-3400
| | - Robert J Usselman
- From the Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59715-3400
| | - Jennifer L DuBois
- From the Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59715-3400
| |
Collapse
|
7
|
Hydrogen bond donation to the heme distal ligand of Staphylococcus aureus IsdG tunes the electronic structure. J Biol Inorg Chem 2015; 20:757-70. [DOI: 10.1007/s00775-015-1263-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 04/13/2015] [Indexed: 10/23/2022]
|
8
|
Surducan M, Makarov SV, Silaghi-Dumitrescu R. O-S Bond Activation in Structures Isoelectronic with Ferric Peroxide Species Known in O-O-Activating Enzymes: Relevance for Sulfide Activation and Sulfite Reductases. Eur J Inorg Chem 2014. [DOI: 10.1002/ejic.201402657] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
9
|
Graves AB, Morse RP, Chao A, Iniguez A, Goulding CW, Liptak MD. Crystallographic and spectroscopic insights into heme degradation by Mycobacterium tuberculosis MhuD. Inorg Chem 2014; 53:5931-40. [PMID: 24901029 PMCID: PMC4060609 DOI: 10.1021/ic500033b] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mycobacterium heme utilization degrader (MhuD) is a heme-degrading protein from Mycobacterium tuberculosis responsible for extracting the essential nutrient iron from host-derived heme. MhuD has been previously shown to produce unique organic products compared to those of canonical heme oxygenases (HOs) as well as those of the IsdG/I heme-degrading enzymes from Staphylococcus aureus. Here, we report the X-ray crystal structure of cyanide-inhibited MhuD (MhuD-heme-CN) as well as detailed (1)H nuclear magnetic resonance (NMR), UV/vis absorption, and magnetic circular dichroism (MCD) spectroscopic characterization of this species. There is no evidence for an ordered network of water molecules on the distal side of the heme substrate in the X-ray crystal structure, as was previously reported for canonical HOs. The degree of heme ruffling in the crystal structure of MhuD is greater than that observed for HO and less than that observed for IsdI. As a consequence, the Fe 3dxz-, 3dyz-, and 3dxy-based MOs are very close in energy, and the room-temperature (1)H NMR spectrum of MhuD-heme-CN is consistent with population of both a (2)Eg electronic state with a (dxy)(2)(dxz,dyz)(3) electron configuration, similar to the ground state of canonical HOs, and a (2)B2g state with a (dxz,dyz)(4)(dxy)(1) electron configuration, similar to the ground state of cyanide-inhibited IsdI. Variable temperature, variable field MCD saturation magnetization data establishes that MhuD-heme-CN has a (2)B2g electronic ground state with a low-lying (2)Eg excited state. Our crystallographic and spectroscopic data suggest that there are both structural and electronic contributions to the α-meso regioselectivity of MhuD-catalyzed heme cleavage. The structural distortion of the heme substrate observed in the X-ray crystal structure of MhuD-heme-CN is likely to favor cleavage at the α- and γ-meso carbons, whereas the spin density distribution may favor selective oxygenation of the α-meso carbon.
Collapse
Affiliation(s)
- Amanda B Graves
- Department of Chemistry, University of Vermont , Burlington, Vermont 05405, United States
| | | | | | | | | | | |
Collapse
|
10
|
Xie L, Zheng H, Ye W, Qiu S, Lin Z, Guo L, Qiu B, Chen G. Novel colorimetric molecular switch based on copper(I)-catalyzed azide-alkyne cycloaddition reaction and its application for flumioxazin detection. Analyst 2014. [PMID: 23188065 DOI: 10.1039/c2an36023c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A novel colorimetric switch based on the copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) reaction has been developed. G-quadruplex-hemin DNAzyme catalyzes the oxidation of 2,2'-azinobis(3-ethylbenzothiozoline)-6-sulfonic acid (ABTS) to form ABTS˙(+), the UV absorbance of the solution increased greatly and the color of the solution changed to dark green. However, in the presence of an azide complex, the absorbance signal decreased and the solution became light green since the catalytic ability of the hemin was inhibited by the azide groups. However, once propargylamine has been added into the above reaction system, which would react with azide groups through the CuAAC reaction, the solution becomes dark green again and the absorption intensity of the system is also increased. The proposed switch allows a good reversibility and can be identified clearly by the naked eye. In addition, the method has been applied to detect some pesticides, which have alkynyl groups (flumioxazin), with high sensitivity and selectivity, where the UV absorbance has a direct linear relationship with the logarithm of flumioxazin concentrations in the range of 0.14-14 nM, and the limit of detection was 0.056 nM (S/N = 3), which can meet the requirement of the maximum residue limits (MRLs) of United States of America (56 nM).
Collapse
Affiliation(s)
- Lidan Xie
- Ministry of Education Key Laboratory of Analysis and Detection for Food Safety, Fuzhou University, Fuzhou, Fujian 350002, China
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Wilks A, Heinzl G. Heme oxygenation and the widening paradigm of heme degradation. Arch Biochem Biophys 2013; 544:87-95. [PMID: 24161941 DOI: 10.1016/j.abb.2013.10.013] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 10/09/2013] [Accepted: 10/15/2013] [Indexed: 12/11/2022]
Abstract
Heme degradation through the action of heme oxygenase (HO) is unusual in that it utilizes heme as both a substrate and cofactor for its own degradation. HO catalyzes the oxygen-dependent degradation of heme to biliverdin with the release of CO and "free" iron. The characterization of HO enzymes from humans to bacteria reveals a similar overall structural fold that contributes to the unique reaction manifold. The heme oxygenases share a similar heme-dependent activation of O2 to the ferric hydroperoxide as that of the cytochrome P450s and peroxidases. However, whereas the P450s promote cleavage of the ferric hydroperoxide OO bond to the oxoferryl species the HOs stabilize the ferric hydroperoxide promoting hydroxylation at the heme edge. The alternate reaction pathway in HO is achieved through the conformational flexibility and extensive hydrogen bond network within the heme binding site priming the heme for hydroxylation. Until recently it was believed that all heme degrading enzymes converted heme to biliverdin and iron, with the release of carbon monoxide (CO). However, the recent discovery of the bacterial IsdG-like heme degrading proteins of Staphylococcus aureus, Bacillus anthracis and Mycobacterium tuberculosis has expanded the reaction manifold of heme oxidation. Characterization of the heme degradation products in the IsdG-like reaction suggests a mechanism distinct from the classical HOs. In the following review we will discuss the structure-function of the canonical HOs as it relates to the emerging alternate reaction manifold of the IsdG-like proteins.
Collapse
Affiliation(s)
- Angela Wilks
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, MD 21201-1180, USA.
| | - Geoffrey Heinzl
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, MD 21201-1180, USA
| |
Collapse
|
12
|
Solution NMR characterization of magnetic/electronic properties of azide and cyanide-inhibited substrate complexes of human heme oxygenase: Implications for steric ligand tilt. J Inorg Biochem 2013; 121:179-86. [DOI: 10.1016/j.jinorgbio.2013.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2011] [Revised: 01/03/2013] [Accepted: 01/08/2013] [Indexed: 11/20/2022]
|
13
|
Cacciatore S, Piccioli M, Turano P. Electron self-exchange of cytochrome c measured via13C detected protonless NMR. J PORPHYR PHTHALOCYA 2013. [DOI: 10.1142/s1088424612501404] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The use of protonless 13C′–13C′ EXSY (COCO-EXSY) is proposed here to measure electron self-exchange rates. The experiment is compared to the commonly employed 1H and 15N EXSY experiments using as a reference system human cytochrome c. In COCO-EXSY, the exchange peaks are stronger than in the other experiments with respect to the self peaks and their intensity is less dependent on the choice of the EXSY mixing time. The use of 13C directed detection may be essential for all those cases where T2 relaxation is detrimental, as in the case of proteins containing highly paramagnetic metal centers, or rotating slowly in solution, or where the amide signals are difficult to detect due to chemical or conformational exchange. The proposed experiment has a general applicability and can be used to monitor exchange phenomena different from electron self-exchange.
Collapse
Affiliation(s)
- Stefano Cacciatore
- Magnetic Resonance Center (CERM) and Department of Chemistry, University of Florence, Via L. Sacconi 6, Sesto, Fiorentino 50019, Italy
| | - Mario Piccioli
- Magnetic Resonance Center (CERM) and Department of Chemistry, University of Florence, Via L. Sacconi 6, Sesto, Fiorentino 50019, Italy
| | - Paola Turano
- Magnetic Resonance Center (CERM) and Department of Chemistry, University of Florence, Via L. Sacconi 6, Sesto, Fiorentino 50019, Italy
| |
Collapse
|
14
|
Abriata LA, Zaballa ME, Berry RE, Yang F, Zhang H, Walker FA, Vila AJ. Electron spin density on the axial His ligand of high-spin and low-spin nitrophorin 2 probed by heteronuclear NMR spectroscopy. Inorg Chem 2013; 52:1285-95. [PMID: 23327568 PMCID: PMC3594510 DOI: 10.1021/ic301805y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The electronic structure of heme proteins is exquisitely tuned by the interaction of the iron center with the axial ligands. NMR studies of paramagnetic heme systems have been focused on the heme signals, but signals from the axial ligands have been rather difficult to detect and assign. We report an extensive assignment of the (1)H, (13)C and (15)N resonances of the axial His ligand in the NO-carrying protein nitrophorin 2 (NP2) in the paramagnetic high-spin and low-spin forms, as well as in the diamagnetic NO complex. We find that the high-spin protein has σ spin delocalization to all atoms in the axial His57, which decreases in size as the number of bonds between Fe(III) and the atom in question increases, except that within the His57 imidazole ring the contact shifts are a balance between positive σ and negative π contributions. In contrast, the low-spin protein has π spin delocalization to all atoms of the imidazole ring. Our strategy, adequately combined with a selective residue labeling scheme, represents a straightforward characterization of the electron spin density in heme axial ligands.
Collapse
Affiliation(s)
- Luciano A Abriata
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Ocampo y Esmeralda, Predio CONICET Rosario, Rosario 2000, Santa Fe, Argentina
| | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
All but a few bacterial species have an absolute need for heme, and most are able to synthesize it via a pathway that is highly conserved among all life domains. Because heme is a rich source for iron, many pathogenic bacteria have also evolved processes for sequestering heme from their hosts. The heme biosynthesis pathways are well understood at the genetic and structural biology levels. In comparison, much less is known about the heme acquisition, trafficking, and degradation processes in bacteria. Gram-positive and Gram-negative bacteria have evolved similar strategies but different tactics for importing and degrading heme, likely as a consequence of their different cellular architectures. The differences are manifested in distinct structures for molecules that perform similar functions. Consequently, the aim of this chapter is to provide an overview of the structural biology of proteins and protein-protein interactions that enable Gram-positive and Gram-negative bacteria to sequester heme from the extracellular milieu, import it to the cytosol, and degrade it to mine iron.
Collapse
Affiliation(s)
- David R Benson
- Department of Chemistry, University of Kansas, Multidisciplinary Research Building, 2030 Becker Dr., Lawrence, KS, 66047, USA,
| | | |
Collapse
|
16
|
Peng D, Ma LH, Smith KM, Zhang X, Sato M, La Mar GN. Role of propionates in substrate binding to heme oxygenase from Neisseria meningitidis: a nuclear magnetic resonance study. Biochemistry 2012; 51:7054-63. [PMID: 22913621 DOI: 10.1021/bi3007803] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Heme oxygenase (HO) cleaves hemin into biliverdin, iron, and CO. For mammalian HOs, both native hemin propionates are required for substrate binding and activity. The HO from the pathogenic bacterium Neisseria meningitidis (NmHO) possesses a crystallographically undetected C-terminal fragment that by solution (1)H nuclear magnetic resonance (NMR) is found to fold and interact with the active site. One of the substrate propionates has been proposed to form a salt bridge to the C-terminus rather than to the conventional buried cationic side chain in other HOs. Moreover, the C-terminal dipeptide Arg208His209 cleaves spontaneously over ~24 h at a rate dependent on substituent size. Two-dimensional (1)H NMR of NmHO azide complexes with hemins with selectively deleted or rearranged propionates shows that all bind to NmHO with a structurally conserved active site as reflected in optical spectra and NMR nuclear Overhauser effect spectroscopy cross-peak and hyperfine shift patterns. In contrast to mammalian HOs, NmHO requires only a single propionate interacting with the buried terminus of Lys16 to exhibit full activity and tolerates the existence of a propionate at the exposed 8-position. The structure of the C-terminus is qualitatively retained upon deletion of the 7-propionate, but a dramatic change in the 7-propionate carboxylate (13)C chemical shift upon C-terminal cleavage confirms its role in the interaction with the C-terminus. The stronger hydrophobic contacts between pyrroles A and B with NmHO contribute more substantially to the substrate binding free energy than in mammalian HOs, "liberating" one propionate to stabilize the C-terminus. The functional implications of the C-terminus in product release are discussed.
Collapse
Affiliation(s)
- Dungeng Peng
- Department of Chemistry, University of California, Davis, CA 95616, USA
| | | | | | | | | | | |
Collapse
|
17
|
Ukpabi G, Takayama SIJ, Mauk AG, Murphy MEP. Inactivation of the heme degrading enzyme IsdI by an active site substitution that diminishes heme ruffling. J Biol Chem 2012; 287:34179-88. [PMID: 22891243 PMCID: PMC3464526 DOI: 10.1074/jbc.m112.393249] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
IsdG and IsdI are paralogous heme degrading enzymes from the bacterium Staphylococcus aureus. Heme bound by these enzymes is extensively ruffled such that the meso-carbons at the sites of oxidation are distorted toward bound oxygen. In contrast, the canonical heme oxygenase family degrades heme that is bound with minimal distortion. Trp-66 is a conserved heme pocket residue in IsdI implicated in heme ruffling. IsdI variants with Trp-66 replaced with residues having less bulky aromatic and alkyl side chains were characterized with respect to catalytic activity, heme ruffling, and electrochemical properties. The heme degradation activity of the W66Y and W66F variants was approximately half that of the wild-type enzyme, whereas the W66L and W66A variants were inactive. A crystal structure and NMR spectroscopic analysis of the W66Y variant reveals that heme binds to this enzyme with less heme ruffling than observed for wild-type IsdI. The reduction potential of this variant (-96 ± 7 mV versus standard hydrogen electrode) is similar to that of wild-type IsdI (-89 ± 7 mV), so we attribute the diminished activity of this variant to the diminished heme ruffling observed for heme bound to this enzyme and conclude that Trp-66 is required for optimal catalytic activity.
Collapse
Affiliation(s)
- Georgia Ukpabi
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, V6T 1Z3 Canada
| | | | | | | |
Collapse
|
18
|
Caillet-Saguy C, Piccioli M, Turano P, Lukat-Rodgers G, Wolff N, Rodgers KR, Izadi-Pruneyre N, Delepierre M, Lecroisey A. Role of the iron axial ligands of heme carrier HasA in heme uptake and release. J Biol Chem 2012; 287:26932-43. [PMID: 22700962 DOI: 10.1074/jbc.m112.366385] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The hemophore protein HasA from Serratia marcescens cycles between two states as follows: the heme-bound holoprotein, which functions as a carrier of the metal cofactor toward the membrane receptor HasR, and the heme-free apoprotein fishing for new porphyrin to be taken up after the heme has been delivered to HasR. Holo- and apo-forms differ for the conformation of the two loops L1 and L2, which provide the axial ligands of the iron through His(32) and Tyr(75), respectively. In the apo-form, loop L1 protrudes toward the solvent far away from loop L2; in the holoprotein, closing of the loops on the heme occurs upon establishment of the two axial coordination bonds. We have established that the two variants obtained via single point mutations of either axial ligand (namely H32A and Y75A) are both in the closed conformation. The presence of the heme and one out of two axial ligands is sufficient to establish a link between L1 and L2, thanks to the presence of coordinating solvent molecules. The latter are stabilized in the iron coordination environment by H-bond interactions with surrounding protein residues. The presence of such a water molecule in both variants is revealed here through a set of different spectroscopic techniques. Previous studies had shown that heme release and uptake processes occur via intermediate states characterized by a Tyr(75)-iron-bound form with open conformation of loop L1. Here, we demonstrate that these states do not naturally occur in the free protein but can only be driven by the interaction with the partner proteins.
Collapse
Affiliation(s)
- Célia Caillet-Saguy
- Unité de RMN des Biomolecules (CNRS URA 2185), Institut Pasteur, 28 Rue du Docteur Roux, 75015 Paris, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Moreira LM, Poli AL, Lyon JP, Aimbire F, Toledo JC, Costa-Filho AJ, Imasato H. Ligand changes in ferric species of the giant extracellular hemoglobin of Glossoscolex paulistusas function of pH: correlations between redox, spectroscopic and oligomeric properties and general implications with different hemoproteins. J PORPHYR PHTHALOCYA 2012. [DOI: 10.1142/s108842461000201x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The present review is focused on the relationship between oligomeric and heme properties of HbGp, emphasizing the characteristics that can be generalized to other hemoproteins. This study represents the state-of-the-art with respect to the approaches for investigating giant extracellular hemoglobins as well as the correlation between oligomeric assembly alterations and their consequent changes in the first coordination sphere. A wide introduction focused on the properties of this hemoglobin is developed. Indeed, this hemoprotein is considered an interesting prototype of blood substitute and biosensor due to its peculiar properties, such as resistance to autoxidation and oligomeric stability. Previous studies by our group employing UV-vis, EPR and CD spectroscopies have been revised in a complete approach, in agreement with recent and relevant data from the literature. In fact, a consistent and inter-related spectroscopic study is described propitiating a wide assignment of "fingerprint" peaks found in the techniques evaluated in this paper. This review furnishes physicochemical information regarding the identification of ferric heme species of hemoproteins and metallic complexes through their spectroscopic bands. This effort at the attribution of UV-vis, EPR and CD peaks is not restricted to HbGp, and includes a comparative analysis of several hemoproteins involving relevant implications regarding several types of iron-porphyrin systems.
Collapse
Affiliation(s)
- Leonardo Marmo Moreira
- Instituto de Pesquisa e Desenvolvimento, Universidade do Vale do Paraíba, 12244-000 São José dos Campos SP, Brazil
- Instituto de Química de São Carlos, Universidade de São Paulo, 13560-970 São Carlos SP, Brazil
- Instituto de Pesquisa e Qualidade Acadêmica (IPQA), Universidade Camilo Castelo Branco, São José dos Campos SP, Brazil
| | - Alessandra Lima Poli
- Instituto de Química de São Carlos, Universidade de São Paulo, 13560-970 São Carlos SP, Brazil
| | - Juliana Pereira Lyon
- Instituto de Pesquisa e Desenvolvimento, Universidade do Vale do Paraíba, 12244-000 São José dos Campos SP, Brazil
| | - Flávio Aimbire
- Instituto de Pesquisa e Desenvolvimento, Universidade do Vale do Paraíba, 12244-000 São José dos Campos SP, Brazil
- Instituto de Pesquisa e Qualidade Acadêmica (IPQA), Universidade Camilo Castelo Branco, São José dos Campos SP, Brazil
| | | | | | - Hidetake Imasato
- Instituto de Química de São Carlos, Universidade de São Paulo, 13560-970 São Carlos SP, Brazil
| |
Collapse
|
20
|
Peng D, Satterlee JD, Ma LH, Dallas JL, Smith KM, Zhang X, Sato M, La Mar GN. Influence of substrate modification and C-terminal truncation on the active site structure of substrate-bound heme oxygenase from Neisseriae meningitidis. A 1H NMR study. Biochemistry 2011; 50:8823-33. [PMID: 21870860 DOI: 10.1021/bi200978g] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Heme oxygenase (HO), from the pathogenic bacterium N. meningitidis(NmHO), which secures host iron, shares many properties with mammalian HOs but also exhibits some key differences. The crystal structure appears more compact, and the crystal-undetected C-terminus interacts with substrate in solution. The unique nature of substrate-protein, specifically pyrrole-I/II-helix-2, peripheral interactions in NmHO are probed by 2D (1)H NMR to reveal unique structural features controlling substrate orientation. The thermodynamics of substrate orientational isomerism are mapped for substrates with individual vinyl → methyl → hydrogen substitutions and with enzyme C-terminal deletions. NmHO exhibits significantly stronger orientational preference, reflecting much stronger and selective pyrrole-I/II interactions with the protein matrix, than in mammalian HOs. Thus, replacing bulky vinyls with hydrogens results in a 180° rotation of substrate about the α,γ-meso axis in the active site. A "collapse" of the substrate pocket as substrate size decreases is reflected in movement of helix-2 toward the substrate as indicated by significant and selective increased NOESY cross-peak intensity, increase in steric Fe-CN tilt reflected in the orientation of the major magnetic axis, and decrease in steric constraints controlling the rate of aromatic ring reorientation. The active site of NmHO appears "stressed" for native protohemin, and its "collapse" upon replacing vinyls by hydrogen leads to a factor ~10(2) increase in substrate affinity. Interaction of the C-terminus with the active site destabilizes the crystallographic protohemin orientation by ~0.7 kcal/mol, which is consistent with optimizing the His207-Asp27 H-bond. Implications of the active site "stress" for product release are discussed.
Collapse
Affiliation(s)
- Dungeng Peng
- Department of Chemistry, University of California, Davis, Davis, California 95616, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Yang F, Shokhireva TK, Walker FA. Linear correlation between 1H and 13C chemical shifts of ferriheme proteins and model ferrihemes. Inorg Chem 2011; 50:1176-83. [PMID: 21244013 PMCID: PMC3079238 DOI: 10.1021/ic1020274] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The (1)H{(13)C} HMQC experiment at natural-abundance (13)C provides a very useful way of determining not only (1)H but also (13)C chemical shifts of most heme substituents, without isotopic labeling of the hemin. This is true both in model low-spin ferriheme complexes and in low-spin ferriheme proteins, even when the proton resonances are buried in the protein diamagnetic region, because the carbon shifts are much larger than the proton shifts. In addition, in many cases, the protohemin methyl cross peaks are fairly linearly related to each other, with the slope of the correlation, δ(C)/δ(H), being approximately -2.0 for most low-spin ferriheme proteins. The reasons why this should be the case, and when it is not, are discussed.
Collapse
Affiliation(s)
- Fei Yang
- Department of Chemistry and Biochemistry, The University of Arizona, P.O. Box 210041, Tucson, Arizona 85721-0041, United States
| | | | | |
Collapse
|
22
|
Peng D, Ma LH, Ogura H, Yang EC, Zhang X, Yoshida T, La Mar GN. 1H NMR study of the influence of mutation on the interaction of the C-terminus with the active site in heme oxygenase from Neisseria meningitidis: implications for product release. Biochemistry 2010; 49:5832-40. [PMID: 20540495 DOI: 10.1021/bi1000867] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The HO from the pathogenic bacterium Neisseria meningitidis, NmHO, possesses C-terminal His207, Arg208, and His209 residues that are undetected in crystal structures. NMR found the C-terminus ordered and interacting with the active site and shown to undergo a spontaneous cleavage of the C-terminal Arg208-His209 bond that affects the product off rate. A preliminary model for the interaction based on the wild-type (WT) NmHO complexes has been presented [Liu, Y., Ma, L.-H., Satterlee, J. D., Zhang, X., Yoshida, T., and La Mar, G. N. (2006) Biochemistry 45, 3875-3886]. Two-dimensional (1)H NMR data of resting-state, azide-inhibited substrate complexes of the three C-terminal truncation mutants (Des-His209-, Des-Arg208His209-, and Des-His207Arg208His209-NmHO) confirm the previous proposed roles for His207 and Arg208 and reveal important additional salt bridges involving the His209 carboxylate and the side chains of both Lys126 and Arg208. Deletion of His209 leads to a qualitatively retained C-terminal geometry, but with increased separation between the C-terminus and active site. Moreover, replacing vinyls with methyls on the substrate leads to a decrease in the separation between the C-terminus and the active site. The expanded model for the C-terminus reveals a less stable His207-Arg208 cis peptide bond, providing a rationalization for its spontaneous cleavage. The rate of this spontaneous cleavage is shown to correlate with the proximity of the C-terminus to the active site, suggesting that the closer interaction leads to increased strain on the already weak His207-Arg208 peptide bond. The relevance of the C-terminus structure for in vitro studies, and the physiological function of product release, is discussed.
Collapse
Affiliation(s)
- Dungeng Peng
- Department of Chemistry, University of California, Davis, California 95616, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Vlahakis JZ, Rahman MN, Roman G, Jia Z, Nakatsu K, Szarek WA. Rapid, convenient method for screening imidazole-containing compounds for heme oxygenase inhibition. J Pharmacol Toxicol Methods 2010; 63:79-88. [PMID: 20561893 DOI: 10.1016/j.vascn.2010.05.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Revised: 03/22/2010] [Accepted: 05/26/2010] [Indexed: 11/17/2022]
Abstract
INTRODUCTION Sensitive assays for measuring heme oxygenase activity have been based on the gas-chromatographic detection of carbon monoxide using elaborate, expensive equipment. The present study describes a rapid and convenient method for screening imidazole-containing candidates for inhibitory activity against heme oxygenase using a plate reader, based on the spectroscopic evaluation of heme degradation. METHODS A PowerWave XS plate reader was used to monitor the absorbance (as a function of time) of heme bound to purified truncated human heme oxygenase-1 (hHO-1) in the individual wells of a standard 96-well plate (with or without the addition of a test compound). The degradation of heme by heme oxygenase-1 was initiated using l-ascorbic acid, and the collected relevant absorbance data were analyzed by three different methods to calculate the percent control activity occurring in wells containing test compounds relative to that occurring in control wells with no test compound present. RESULTS In the cases of wells containing inhibitory compounds, significant shifts in λ(max) from 404 to near 412 nm were observed as well as a decrease in the rate of heme degradation relative to that of the control. Each of the three methods of data processing (overall percent drop in absorbance over 1.5h, initial rate of reaction determined over the first 5 min, and estimated pseudo first-order reaction rate constant determined over 1.5h) gave similar and reproducible results for percent control activity. The fastest and easiest method of data analysis was determined to be that using initial rates, involving data acquisition for only 5 min once reactions have been initiated using l-ascorbic acid. DISCUSSION The results of the study demonstrate that this simple assay based on the spectroscopic detection of heme represents a rapid, convenient method to determine the relative inhibitory activity of candidate compounds, and is useful in quickly screening a series or library of compounds for heme oxygenase inhibition.
Collapse
|
24
|
Abstract
Iron porphyrins with the intermediate spin S = 3/2 or admixed with S = 5/2 or 1/2 are models for a number of heme protein systems, including cytochromes c'. The (57)Fe Mossbauer quadrupole splittings and (1)H and (13)C NMR chemical shifts have been found to be useful probes of their electronic states. We present the results of the first successful quantum chemical calculations of the Mössbauer and NMR properties in various S = 3/2 iron porphyrin complexes, covering four-, five-, and six-coordinate states and three commonly seen porphyrin conformations: planar, ruffled, and saddled. Several interesting correlations among these useful experimental spectroscopic probes and geometric and electronic properties were discovered. These results should facilitate future investigations of related heme proteins and model systems.
Collapse
Affiliation(s)
- Yan Ling
- Departments of Chemistry and Biochemistry, University of Southern Mississippi, 118 College Drive #5043, Hattiesburg, MS 39406, USA
| | - Yong Zhang
- Departments of Chemistry and Biochemistry, University of Southern Mississippi, 118 College Drive #5043, Hattiesburg, MS 39406, USA
| |
Collapse
|
25
|
Ogura H, Evans JP, Peng D, Satterlee JD, Ortiz de Montellano PR, La Mar GN. The orbital ground state of the azide-substrate complex of human heme oxygenase is an indicator of distal H-bonding: implications for the enzyme mechanism. Biochemistry 2009; 48:3127-37. [PMID: 19243105 PMCID: PMC2676937 DOI: 10.1021/bi802360g] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The active site electronic structure of the azide complex of substrate-bound human heme oxygenase 1 (hHO) has been investigated by (1)H NMR spectroscopy to shed light on the orbital/spin ground state as an indicator of the unique distal pocket environment of the enzyme. Two-dimensional (1)H NMR assignments of the substrate and substrate-contact residue signals reveal a pattern of substrate methyl contact shifts that places the lone iron pi-spin in the d(xz) orbital, rather than the d(yz) orbital found in the cyanide complex. Comparison of iron spin relaxivity, magnetic anisotropy, and magnetic susceptibilities argues for a low-spin, (d(xy))(2)(d(yz),d(xz))(3), ground state in both azide and cyanide complexes. The switch from singly occupied d(yz) for the cyanide to d(xz) for the azide complex of hHO is shown to be consistent with the orbital hole determined by the azide pi-plane in the latter complex, which is approximately 90 degrees in-plane rotated from that of the imidazole pi-plane. The induction of the altered orbital ground state in the azide relative to the cyanide hHO complex, as well as the mean low-field bias of methyl hyperfine shifts and their paramagnetic relaxivity relative to those in globins, indicates that azide exerts a stronger ligand field in hHO than in the globins, or that the distal H-bonding to azide is weaker in hHO than in globins. The Asp140 --> Ala hHO mutant that abolishes activity retains the unusual WT azide complex spin/orbital ground state. The relevance of our findings for other HO complexes and the HO mechanism is discussed.
Collapse
Affiliation(s)
- Hiroshi Ogura
- Department of Chemistry, University of California, Davis, California 95616, USA
| | | | | | | | | | | |
Collapse
|
26
|
Ma LH, Liu Y, Zhang X, Yoshida T, La Mar GN. 1H NMR study of the effect of variable ligand on heme oxygenase electronic and molecular structure. J Inorg Biochem 2009; 103:10-9. [PMID: 18976815 PMCID: PMC2724318 DOI: 10.1016/j.jinorgbio.2008.08.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2008] [Revised: 07/16/2008] [Accepted: 08/26/2008] [Indexed: 11/28/2022]
Abstract
Heme oxygenase carries out stereospecific catabolism of protohemin to yield iron, CO and biliverdin. Instability of the physiological oxy complex has necessitated the use of model ligands, of which cyanide and azide are amenable to solution NMR characterization. Since cyanide and azide are contrasting models for bound oxygen, it is of interest to characterize differences in their molecular and/or electronic structures. We report on detailed 2D NMR comparison of the azide and cyanide substrate complexes of heme oxygenase from Neisseria meningitidis, which reveals significant and widespread differences in chemical shifts between the two complexes. To differentiate molecular from electronic structural changes between the two complexes, the anisotropy and orientation of the paramagnetic susceptibility tensor were determined for the azide complex for comparison with those for the cyanide complex. Comparison of the predicted and observed dipolar shifts reveals that shift differences are strongly dominated by differences in electronic structure and do not provide any evidence for detectable differences in molecular structure or hydrogen bonding except in the immediate vicinity of the distal ligand. The readily cleaved C-terminus interacts with the active site and saturation-transfer allows difficult heme assignments in the high-spin aquo complex.
Collapse
Affiliation(s)
- Li-Hua Ma
- Department of Chemistry, University of California, Davis, CA 95616, United States
| | - Yangzhong Liu
- Department of Chemistry, University of California, Davis, CA 95616, United States
| | - Xuhong Zhang
- Department of Biochemistry, Yamagata University School of Medicine, Yamagata 990-9585, Japan
| | - Tadashi Yoshida
- Department of Biochemistry, Yamagata University School of Medicine, Yamagata 990-9585, Japan
| | - Gerd N. La Mar
- Department of Chemistry, University of California, Davis, CA 95616, United States
| |
Collapse
|
27
|
Cheng RJ, Chao CW, Han YP, Chen YC, Ting CH. Saddle-shaped six-coordinate iron(iii) porphyrin complex with unusual intermediate-spin electronic structure. Chem Commun (Camb) 2009:2180-2. [DOI: 10.1039/b820443h] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
28
|
Affiliation(s)
- Ming Fang
- School of Chemical Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801
| | - Scott R. Wilson
- School of Chemical Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801
| | - Kenneth S. Suslick
- School of Chemical Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801
| |
Collapse
|
29
|
Marmo Moreira L, Lima Poli A, Costa-Filho AJ, Imasato H. Pentacoordinate and hexacoordinate ferric hemes in acid medium: EPR, UV–Vis and CD studies of the giant extracellular hemoglobin of Glossoscolex paulistus. Biophys Chem 2006; 124:62-72. [PMID: 16814451 DOI: 10.1016/j.bpc.2006.05.030] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2006] [Revised: 05/30/2006] [Accepted: 05/30/2006] [Indexed: 11/26/2022]
Abstract
The equilibrium complexity involving different axially coordinated hemes is peculiar to hemoglobins. The pH dependence of the spontaneous exchange of ligands in the extracellular hemoglobin from Glossoscolex paulistus was studied using UV-Vis, EPR, and CD spectroscopies. This protein has a complex oligomeric assembly with molecular weight of 3.1 MDa that presents an important cooperative effect. A complex coexistence of different species was observed in almost all pH values, except pH 7.0, where just aquomet species is present. Four new species were formed and coexist with the aquomethemoglobin upon acidification: (i) a "pure" low-spin hemichrome (Type II), also called hemichrome B, with an usual spin state (d(xy))(2)(d(xz),d(yz))(3); (ii) a strong g(max) hemichrome (Type I), also showing an usual spin state (d(xy))(2)(d(xz),d(yz))(3); (iii) a hemichrome with unusual spin state (d(xz),d(yz))(4)(d(xy))(1) (Type III); (iv) and a high-spin pentacoordinate species. CD measurements suggest that the mechanism of species formation could be related with an initial process of acid denaturation. However, it is worth mentioning that based on EPR the aquomet species remains even at acidic pH, indicating that the transitions are not complete. The "pure" low-spin hemichrome presents a parallel orientation of the imidazole ring planes but the strong g(max) hemichrome is a HALS (highly anisotropic low-spin) species indicating a reciprocally perpendicular orientation of the imidazole ring planes. The hemichromes and pentacoordinate formation mechanisms are discussed in detail.
Collapse
Affiliation(s)
- Leonardo Marmo Moreira
- Instituto de Química de São Carlos, Universidade de São Paulo, CEP 13566-590, São Carlos, SP, Brazil
| | | | | | | |
Collapse
|
30
|
|
31
|
Walker FA. The heme environment of mouse neuroglobin: histidine imidazole plane orientations obtained from solution NMR and EPR spectroscopy as compared with X-ray crystallography. J Biol Inorg Chem 2006; 11:391-7. [PMID: 16586113 DOI: 10.1007/s00775-006-0095-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2006] [Accepted: 02/22/2006] [Indexed: 12/16/2022]
Abstract
The 1H NMR chemical shifts of the heme methyl groups of the ferriheme complex of metneuroglobin (Du et al. in J. Am. Chem. Soc. 125:8080-8081, 2003) predict orientations of the axial histidine ligands (Shokhirev and Walker in J. Biol. Inorg. Chem. 3:581-594, 1998) that are not consistent with the X-ray data (Vallone et al. in Proteins Struct. Funct. Bioinf. 56:85-94, 2004), and the EPR spectrum (Vinck et al. in J. Am. Chem. Soc. 126:4516-4517, 2004) is only marginally consistent with these data. The reasons for these inconsistencies appear to be rooted in the high degree of aqueous solution exposure of the heme group and the fact that there are no strong hydrogen-bond acceptors for the histidine imidazole N-H protons provided by the protein. Similar inconsistencies may exist for other water-soluble heme proteins, and 1H NMR spectroscopy provides a simple means to verify whether the solution structure of the heme center is the same as or different from that in the crystalline state.
Collapse
Affiliation(s)
- F Ann Walker
- Department of Chemistry, The University of Arizona, PO Box 210041, Tucson, AZ 85721-0041, USA.
| |
Collapse
|
32
|
Shaver MP, Allan LEN, Rzepa HS, Gibson VC. Correlation of Metal Spin State with Catalytic Reactivity: Polymerizations Mediated by α-Diimine–Iron Complexes. Angew Chem Int Ed Engl 2006. [DOI: 10.1002/ange.200502985] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
33
|
Shaver MP, Allan LEN, Rzepa HS, Gibson VC. Correlation of Metal Spin State with Catalytic Reactivity: Polymerizations Mediated by α-Diimine–Iron Complexes. Angew Chem Int Ed Engl 2006; 45:1241-4. [PMID: 16416479 DOI: 10.1002/anie.200502985] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Michael P Shaver
- Department of Chemistry, Imperial College of Science, Technology and Medicine, London SW72AZ, UK
| | | | | | | |
Collapse
|