1
|
Gimeno A, Ehlers AM, Delgado S, Langenbach JWH, van den Bos LJ, Kruijtzer JAW, Guigas BGA, Boons GJ. Site-Specific Glyco-Tagging of Native Proteins for the Development of Biologicals. J Am Chem Soc 2024; 146:34452-34465. [PMID: 39653378 DOI: 10.1021/jacs.4c11091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Glycosylation is an attractive approach to enhance biological properties of pharmaceutical proteins; however, the precise installation of glycans for structure-function studies remains challenging. Here, we describe a chemoenzymatic methodology for glyco-tagging of proteins by peptidoligase catalyzed modification of the N-terminus of a protein with a synthetic glycopeptide ester having an N-acetyl-glucosamine (GlcNAc) moiety to generate an N-GlcNAc modified protein. The GlcNAc moiety can be elaborated into complex glycans by trans-glycosylation using well-defined sugar oxazolines and mutant forms of endo β-N-acetylglucosaminidases (ENGases). The glyco-tagging methodology makes it possible to modify on-demand therapeutic proteins, including heterologous proteins expressed in E. coli, with diverse glycan structures. As a proof of principle, the N-terminus of interleukin (IL)-18 and interferon (IFN)α-2a was modified by a glycopeptide harboring a complex N-glycan without compromising biological potencies. The glyco-tagging methodology was also used to prepare several glycosylated insulin variants that exhibit reduced oligomerization, aggregation, and fibrillization yet maintained cell signaling properties, which are attractive for the development of insulins with improved shelf-lives. It was found that by employing different peptidoligases, it is possible to modify either the A or both chains of human insulin.
Collapse
Affiliation(s)
- Ana Gimeno
- Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, CG 3584, The Netherlands
| | - Anna M Ehlers
- Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, CG 3584, The Netherlands
| | - Sandra Delgado
- CIC bioGUNE, Basque Research & Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, Derio 48160, Bizkaia Spain
| | - Jan-Willem H Langenbach
- Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, CG 3584, The Netherlands
| | | | - John A W Kruijtzer
- Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, CG 3584, The Netherlands
| | - Bruno G A Guigas
- Leiden University Center of Infectious Diseases, Leiden University Medical Center, Leiden, ZA 2333, The Netherlands
| | - Geert-Jan Boons
- Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, CG 3584, The Netherlands
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, United States
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
2
|
Yamada K, Mukaimine A, Nakamura A, Kusakari Y, Pradipta AR, Chang TC, Tanaka K. Chemistry-driven translocation of glycosylated proteins in mice. Nat Commun 2024; 15:7409. [PMID: 39358337 PMCID: PMC11446924 DOI: 10.1038/s41467-024-51342-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 08/06/2024] [Indexed: 10/04/2024] Open
Abstract
Cell surface glycans form various "glycan patterns" consisting of different types of glycan molecules, thus enabling strong and selective cell-to-cell recognition. We previously conjugated different N-glycans to human serum albumin to construct glycoalbumins mimicking natural glycan patterns that could selectively recognize target cells or control excretion pathways in mice. Here, we develop an innovative glycoalbumin capable of undergoing transformation and remodeling of its glycan pattern in vivo, which induces its translocation from the initial target to a second one. Replacing α(2,3)-sialylated N-glycans on glycoalbumin with galactosylated glycans induces the translocation of the glycoalbumin from blood or tumors to the intestine in mice. Such "in vivo glycan pattern remodeling" strategy can be used as a drug delivery system to promote excretion of a drug or medical radionuclide from the tumor after treatment, thereby preventing prolonged exposure leading to adverse effects. Alternatively, this study provides a potential strategy for using a single glycoalbumin for the simultaneous treatment of multiple diseases in a patient.
Collapse
Affiliation(s)
- Kenshiro Yamada
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8552, Japan
| | - Akari Mukaimine
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan
| | - Akiko Nakamura
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan
| | - Yuriko Kusakari
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan
| | - Ambara R Pradipta
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8552, Japan
| | - Tsung-Che Chang
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8552, Japan.
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan.
| | - Katsunori Tanaka
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8552, Japan.
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan.
| |
Collapse
|
3
|
Wu S, Østergaard M, Fredholt F, Christensen NJ, Sørensen KK, Mishra NK, Nielsen HM, Jensen KJ. Ca 2+-Responsive Glyco-insulin. Bioconjug Chem 2023; 34:518-528. [PMID: 36756787 DOI: 10.1021/acs.bioconjchem.2c00590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Chemical modification of peptides and proteins, such as PEGylation and lipidation, creates conjugates with new properties. However, they are typically not dynamic or stimuli-responsive. Self-assembly controlled by a stimulus will allow adjusting properties directly. Here, we report that conjugates of oligogalacturonic acids (OGAs), isolated from plant-derived pectin, are Ca2+-responsive. We report the conjugation of OGA to human insulin (HI) to create new glyco-insulins. In addition, we coupled OGA to model peptides. We studied their self-assembly by dynamic light scattering, small-angle X-ray scattering, and circular dichroism, which showed that the self-assembly to form nanostructures depended on the length of the OGA sequence and Zn2+ and Ca2+ concentrations. Subcutaneous administration of OGA12-HI with Zn2+ showed a stable decrease in blood glucose over a longer period of time compared to HI, despite the lower receptor binding affinity.
Collapse
Affiliation(s)
- Shunliang Wu
- Biomolecular Nanoscale Engineering Center, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
- Department of Chemistry, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| | - Mads Østergaard
- Department of Chemistry, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| | - Freja Fredholt
- Center for Biopharmaceuticals and Biobarriers in Drug Delivery, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Niels Johan Christensen
- Department of Chemistry, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| | - Kasper K Sørensen
- Department of Chemistry, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| | - Narendra K Mishra
- Biomolecular Nanoscale Engineering Center, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
- Department of Chemistry, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
- Center for Biopharmaceuticals and Biobarriers in Drug Delivery, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Hanne M Nielsen
- Center for Biopharmaceuticals and Biobarriers in Drug Delivery, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Knud J Jensen
- Biomolecular Nanoscale Engineering Center, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
- Department of Chemistry, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
- Center for Biopharmaceuticals and Biobarriers in Drug Delivery, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| |
Collapse
|
4
|
Cobo I, Matheu MI, Castillón S, Davis BG, Boutureira O. Probing Site-Selective Conjugation Chemistries for the Construction of Homogeneous Synthetic Glycodendriproteins. Chembiochem 2022; 23:e202200020. [PMID: 35322922 PMCID: PMC9322419 DOI: 10.1002/cbic.202200020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/14/2022] [Indexed: 11/22/2022]
Abstract
Methods that site‐selectively attach multivalent carbohydrate moieties to proteins can be used to generate homogeneous glycodendriproteins as synthetic functional mimics of glycoproteins. Here, we study aspects of the scope and limitations of some common bioconjugation techniques that can give access to well‐defined glycodendriproteins. A diverse reactive platform was designed via use of thiol‐Michael‐type additions, thiol‐ene reactions, and Cu(I)‐mediated azide‐alkyne cycloadditions from recombinant proteins containing the non‐canonical amino acids dehydroalanine, homoallylglycine, homopropargylglycine, and azidohomoalanine.
Collapse
Affiliation(s)
- Isidro Cobo
- Universitat Rovira i Virgili, departament de quimica analitica i quimica organica, SPAIN
| | - M Isabel Matheu
- Universitat Rovira i Virgili, departament de quimica analitica i quimica organica, SPAIN
| | - Sergio Castillón
- Universitat Rovira i Virgili, departament de quimica analitica i quimica organica, SPAIN
| | | | - Omar Boutureira
- Universitat Rovira i Virgili, Departament de Quimica Analitica i Qu�mica Org�nica, Departament de Qu�mica Anal, C/ Marcel.li Domingo 1, 43007, Tarragona, SPAIN
| |
Collapse
|
5
|
Walther R, Monge P, Pedersen AB, Benderoth A, Pedersen JN, Farzadfard A, Mandrup OA, Howard KA, Otzen DE, Zelikin AN. Per-glycosylation of the Surface-Accessible Lysines: One-Pot Aqueous Route to Stabilized Proteins with Native Activity. Chembiochem 2021; 22:2478-2485. [PMID: 33998129 DOI: 10.1002/cbic.202100228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Indexed: 11/11/2022]
Abstract
Chemical glycosylation of proteins is a powerful tool applied widely in biomedicine and biotechnology. However, it is a challenging undertaking and typically relies on recombinant proteins and site-specific conjugations. The scope and utility of this nature-inspired methodology would be broadened tremendously by the advent of facile, scalable techniques in glycosylation, which are currently missing. In this work, we investigated a one-pot aqueous protocol to achieve indiscriminate, surface-wide glycosylation of the surface accessible amines (lysines and/or N-terminus). We reveal that this approach afforded minimal if any change in the protein activity and recognition events in biochemical and cell culture assays, but at the same time provided a significant benefit of stabilizing proteins against aggregation and fibrillation - as demonstrated on serum proteins (albumins and immunoglobulin G, IgG), an enzyme (uricase), and proteins involved in neurodegenerative disease (α-synuclein) and diabetes (insulin). Most importantly, this highly advantageous result was achieved via a one-pot aqueous protocol performed on native proteins, bypassing the use of complex chemical methodologies and recombinant proteins.
Collapse
Affiliation(s)
- Raoul Walther
- Department of Chemistry, Aarhus University, Aarhus, 8000, Denmark
| | - Pere Monge
- Department of Chemistry, Aarhus University, Aarhus, 8000, Denmark
| | | | - Anja Benderoth
- Department of Chemistry, Aarhus University, Aarhus, 8000, Denmark
| | | | - Azad Farzadfard
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Aarhus, 8000, Denmark
| | - Ole A Mandrup
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Aarhus, 8000, Denmark
| | - Kenneth A Howard
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Aarhus, 8000, Denmark
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, 8000, Denmark
| | - Daniel E Otzen
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Aarhus, 8000, Denmark
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, 8000, Denmark
| | - Alexander N Zelikin
- Department of Chemistry, Aarhus University, Aarhus, 8000, Denmark
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Aarhus, 8000, Denmark
| |
Collapse
|
6
|
Chandrashekar C, Hossain MA, Wade JD. Chemical Glycosylation and Its Application to Glucose Homeostasis-Regulating Peptides. Front Chem 2021; 9:650025. [PMID: 33912539 PMCID: PMC8072350 DOI: 10.3389/fchem.2021.650025] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/22/2021] [Indexed: 11/13/2022] Open
Abstract
Peptides and proteins are attractive targets for therapeutic drug development due to their exquisite target specificity and low toxicity profiles. However, their complex structures give rise to several challenges including solubility, stability, aggregation, low bioavailability, and poor pharmacokinetics. Numerous chemical strategies to address these have been developed including the introduction of several natural and non-natural modifications such as glycosylation, lipidation, cyclization and PEGylation. Glycosylation is considered to be one of the most useful modifications as it is known to contribute to increasing the stability, to improve solubility, and increase the circulating half-lifves of these biomolecules. However, cellular glycosylation is a highly complex process that generally results in heterogenous glycan structures which confounds quality control and chemical and biological assays. For this reason, much effort has been expended on the development of chemical methods, including by solid phase peptide synthesis or chemoenzymatic processes, to enable the acquisition of homogenous glycopeptides to greatly expand possibilities in drug development. In this mini-review, we highlight the importance of such chemical glycosylation methods for improving the biophysical properties of naturally non-glycosylated peptides as applied to the therapeutically essential insulin and related peptides that are used in the treatment of diabetes.
Collapse
Affiliation(s)
- Chaitra Chandrashekar
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia
| | - Mohammed Akhter Hossain
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia
| | - John D Wade
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia.,School of Chemistry, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
7
|
Abstract
The pancreatic peptide hormone insulin, first discovered exactly 100 years ago, is essential for glycemic control and is used as a therapeutic for the treatment of type 1 and, increasingly, type 2 diabetes. With a worsening global diabetes epidemic and its significant health budget imposition, there is a great demand for new analogues possessing improved physical and functional properties. However, the chemical synthesis of insulin's intricate 51-amino acid, two-chain, three-disulfide bond structure, together with the poor physicochemical properties of both the individual chains and the hormone itself, has long represented a major challenge to organic chemists. This review provides a timely overview of the past efforts to chemically assemble this fascinating hormone using an array of strategies to enable both correct folding of the two chains and selective formation of disulfide bonds. These methods not only have contributed to general peptide synthesis chemistry and enabled access to the greatly growing numbers of insulin-like and cystine-rich peptides but also, today, enable the production of insulin at the synthetic efficiency levels of recombinant DNA expression methods. They have led to the production of a myriad of novel analogues with optimized structural and functional features and of the feasibility for their industrial manufacture.
Collapse
|
8
|
Kabotso DEK, Smiley D, Mayer JP, Gelfanov VM, Perez-Tilve D, DiMarchi RD, Pohl NLB, Liu F. Addition of Sialic Acid to Insulin Confers Superior Physical Properties and Bioequivalence. J Med Chem 2020; 63:6134-6143. [PMID: 32406685 DOI: 10.1021/acs.jmedchem.0c00266] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Native insulin is susceptible to biophysical aggregation and fibril formation, promoted by manual agitation and elevated temperatures. The safety of the drug and its application to alternative forms of administration could be enhanced through the identification of chemical modifications that strengthen its physical stability without compromising its biological properties. Complex polysialic acids (PSAs) exist naturally and provide a means to enhance the physical properties of peptide therapeutics. A set of insulin analogues site-specifically derivatized with sialic acid were prepared in an overall yield of 50-60%. Addition of a single or multiple sialic acids conferred remarkable enhancement to the biophysical stability of human insulin while maintaining its potency. The time to the onset of fibrillation was extended by more than 10-fold relative to that of the native hormone. These results demonstrate that simplified sialic acid conjugates represent a viable alternative to complex natural PSAs in increasing the stability of therapeutic peptides.
Collapse
Affiliation(s)
- Daniel E K Kabotso
- School of Basic and Biomedical Sciences, University of Health and Allied Sciences, PMB 31 Ho, Volta Region, Ghana.,Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - David Smiley
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - John P Mayer
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Vasily M Gelfanov
- Novo Nordisk Indianapolis Research Center, 5225 Exploration Dr., Indianapolis, Indiana 46241, United States
| | - Diego Perez-Tilve
- Department of Pharmacology and Systems Physiology, University of Cincinnati-College of Medicine, Cincinnati, Ohio 45267, United States
| | - Richard D DiMarchi
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Nicola L B Pohl
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Fa Liu
- Novo Nordisk Research Center, 530 Fairview Avenue North, Seattle, Washington 98109, United States
| |
Collapse
|
9
|
Østergaard M, Mishra NK, Jensen KJ. The ABC of Insulin: The Organic Chemistry of a Small Protein. Chemistry 2020; 26:8341-8357. [DOI: 10.1002/chem.202000337] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/15/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Mads Østergaard
- Department of ChemistryUniversity of Copenhagen Thorvaldsensvej 40 1871 Frederiksberg C Denmark
| | - Narendra Kumar Mishra
- Department of ChemistryUniversity of Copenhagen Thorvaldsensvej 40 1871 Frederiksberg C Denmark
| | - Knud J. Jensen
- Department of ChemistryUniversity of Copenhagen Thorvaldsensvej 40 1871 Frederiksberg C Denmark
| |
Collapse
|
10
|
Hossain MA, Okamoto R, Karas JA, Praveen P, Liu M, Forbes BE, Wade JD, Kajihara Y. Total Chemical Synthesis of a Nonfibrillating Human Glycoinsulin. J Am Chem Soc 2019; 142:1164-1169. [DOI: 10.1021/jacs.9b11424] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
| | - Ryo Okamoto
- Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043 Japan
| | | | | | | | - Briony E. Forbes
- Discipline of Medical Biochemistry, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia 5042, Australia
| | | | - Yasuhiro Kajihara
- Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043 Japan
| |
Collapse
|
11
|
Sandanaraj BS, Bhandari PJ, Reddy MM, Lohote AB, Sahoo B. Design, Synthesis, and Self‐Assembly Studies of a Suite of Monodisperse, Facially Amphiphilic, Protein–Dendron Conjugates. Chembiochem 2019; 21:408-416. [DOI: 10.1002/cbic.201900341] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Indexed: 12/28/2022]
Affiliation(s)
- Britto S. Sandanaraj
- Departments of Chemistry & BiologyIndian Institute of Science Education and Research (IISER) Pune 411 008 India
| | | | - Mullapudi Mohan Reddy
- Departments of Chemistry & BiologyIndian Institute of Science Education and Research (IISER) Pune 411 008 India
| | - Akshay Bhagwan Lohote
- Departments of Chemistry & BiologyIndian Institute of Science Education and Research (IISER) Pune 411 008 India
| | - Bankanidhi Sahoo
- Tata Institute of Fundamental Research Hyderabad (TIFR Hyd) Hyderabad 500019 India
| |
Collapse
|
12
|
Katayama H, Nagasawa H. Chemical synthesis of N-glycosylated insulin-like androgenic gland factor from the freshwater prawn Macrobrachium rosenbergii. J Pept Sci 2019; 25:e3215. [PMID: 31515898 DOI: 10.1002/psc.3215] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/01/2019] [Accepted: 08/25/2019] [Indexed: 12/27/2022]
Abstract
Crustacean insulin-like androgenic gland factor (IAG) of Macrobrachium rosenbergii, a heterodimeric peptide having both four disulfide bonds and an N-linked glycan, was synthesized by the combination of solid-phase peptide synthesis and the regioselective disulfide formation reactions. The disulfide isomer of IAG could also be synthesized by the same manner. The conformational analysis of these peptides by circular dichroism (CD) spectral measurement indicated that the disulfide bond arrangement affected the peptide conformation in IAG. On the other hand, the N-linked glycan attached at A chain showed no effect on CD spectra of IAG. This is the first report for the chemical synthesis of insulin-like heterodimeric glycopeptide having three interchain disulfides, and the synthetic strategy shown here might be useful for the synthesis of other glycosylated four-disulfide insulin-like peptides.
Collapse
Affiliation(s)
- Hidekazu Katayama
- Department of Applied Biochemistry, School of Engineering, Tokai University, Hiratsuka, Japan
| | - Hiromichi Nagasawa
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
13
|
Guo Q, Zhang X. Synthesized of glucose-responsive nanogels labeled with fluorescence molecule based on phenylboronic acid by RAFT polymerization. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2019; 30:815-831. [PMID: 31044656 DOI: 10.1080/09205063.2019.1603065] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
We reported on the fabrication of sugar-responsive nanogels covalently incorporated with 3-acrylamidophenylboronic acid (AAPBA) as glucose-recognizing moiety, 2-(acrylamido)glucopyranose (AGA) as biocompatible moiety, and boron dipyrromethene (BODIPYMA) as fluorescence donor molecule. The p(AAPBA-AGA-BODIPYMA) nanogels were synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization in the mixture solvents of H2O/ethanol. Nanogels could respond to glucose and size of nanogels increased after treating with 3 mg/mL glucose medium. The fluorescent intensity of nanogels varied dependent on different glucose concentrations. Besides, insulin, a model drug, can be encapsulated into nanogels with the loading amount up to 8.2%. The drug release was dependent on the content of AAPBA moieties in nanogels and glucose concentrations in release medium. The investigation on the cytotoxicity of nanogels revealed that nanogels had good compatibility. Such glucose-responsive nanogels have potential in detection and treatment of diabetes.
Collapse
Affiliation(s)
- Qianqian Guo
- a Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry , Nankai University , Tianjin , China
| | - Xinge Zhang
- a Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry , Nankai University , Tianjin , China
| |
Collapse
|
14
|
Latypova L, Sibgatullina R, Ogura A, Fujiki K, Khabibrakhmanova A, Tahara T, Nozaki S, Urano S, Tsubokura K, Onoe H, Watanabe Y, Kurbangalieva A, Tanaka K. Sequential Double "Clicks" toward Structurally Well-Defined Heterogeneous N-Glycoclusters: The Importance of Cluster Heterogeneity on Pattern Recognition In Vivo. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2017; 4:1600394. [PMID: 28251056 PMCID: PMC5323863 DOI: 10.1002/advs.201600394] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Indexed: 05/27/2023]
Abstract
Structurally well-defined heterogeneous N-glycoclusters are prepared on albumin via a double click procedure. The number of glycan molecules present, in addition to the spatial arrangement of glycans in the heterogeneous glycoclusters, plays an important role in the in vivo kinetics and organ-selective accumulation through glycan pattern recognition mechanisms.
Collapse
Affiliation(s)
- Liliya Latypova
- Biofunctional Synthetic Chemistry LaboratoryRIKEN, HirosawaWako‐shi, Saitama351‐0198Japan
- Biofunctional Chemistry LaboratoryA. Butlerov Institute of ChemistryKazan Federal University18 Kremlyovskaya streetKazan420008Russia
| | - Regina Sibgatullina
- Biofunctional Synthetic Chemistry LaboratoryRIKEN, HirosawaWako‐shi, Saitama351‐0198Japan
- Biofunctional Chemistry LaboratoryA. Butlerov Institute of ChemistryKazan Federal University18 Kremlyovskaya streetKazan420008Russia
| | - Akihiro Ogura
- Biofunctional Synthetic Chemistry LaboratoryRIKEN, HirosawaWako‐shi, Saitama351‐0198Japan
| | - Katsumasa Fujiki
- Biofunctional Synthetic Chemistry LaboratoryRIKEN, HirosawaWako‐shi, Saitama351‐0198Japan
| | - Alsu Khabibrakhmanova
- Biofunctional Chemistry LaboratoryA. Butlerov Institute of ChemistryKazan Federal University18 Kremlyovskaya streetKazan420008Russia
| | - Tsuyoshi Tahara
- Center for Life Science TechnologiesRIKENMinatojima‐minamimachi, Chuo‐kuKobe, Hyogo650‐0047Japan
| | - Satoshi Nozaki
- Center for Life Science TechnologiesRIKENMinatojima‐minamimachi, Chuo‐kuKobe, Hyogo650‐0047Japan
| | - Sayaka Urano
- Biofunctional Synthetic Chemistry LaboratoryRIKEN, HirosawaWako‐shi, Saitama351‐0198Japan
| | - Kazuki Tsubokura
- Biofunctional Synthetic Chemistry LaboratoryRIKEN, HirosawaWako‐shi, Saitama351‐0198Japan
| | - Hirotaka Onoe
- Center for Life Science TechnologiesRIKENMinatojima‐minamimachi, Chuo‐kuKobe, Hyogo650‐0047Japan
| | - Yasuyoshi Watanabe
- Center for Life Science TechnologiesRIKENMinatojima‐minamimachi, Chuo‐kuKobe, Hyogo650‐0047Japan
| | - Almira Kurbangalieva
- Biofunctional Chemistry LaboratoryA. Butlerov Institute of ChemistryKazan Federal University18 Kremlyovskaya streetKazan420008Russia
| | - Katsunori Tanaka
- Biofunctional Synthetic Chemistry LaboratoryRIKEN, HirosawaWako‐shi, Saitama351‐0198Japan
- Biofunctional Chemistry LaboratoryA. Butlerov Institute of ChemistryKazan Federal University18 Kremlyovskaya streetKazan420008Russia
- JST‐PRESTO, HirosawaWako‐shi, Saitama351‐0198Japan
| |
Collapse
|
15
|
Usachev K, Yamaguchi Y, Takamatsu M, Pavlova N, Klochkov V, Kurbangalieva A, Murase T, Shimoda T, Tanaka K. Simple Gd3+-Neu5NAc complexation results in NMR chemical shift asymmetries of structurally equivalent complex-type N-glycan branches. Analyst 2017; 142:2897-2900. [DOI: 10.1039/c7an00817a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A quite simple but overlooked approach for conveniently analyzing, assigning, and extracting sialoglycans using NMR without pre-installing metal chelators.
Collapse
Affiliation(s)
- Konstantin Usachev
- NMR Laboratory
- Institute of Physics
- Kazan Federal University
- Kazan 420008
- Russia
| | - Yoshiki Yamaguchi
- Structural Glycobiology Team
- Systems Glycobiology Research Group
- RIKEN Global Research Cluster
- RIKEN
- Saitama 351-0198
| | | | - Nataliya Pavlova
- NMR Laboratory
- Institute of Physics
- Kazan Federal University
- Kazan 420008
- Russia
| | - Vladimir Klochkov
- NMR Laboratory
- Institute of Physics
- Kazan Federal University
- Kazan 420008
- Russia
| | - Almira Kurbangalieva
- Biofunctional Chemistry Laboratory
- A. Butlerov Institute of Chemistry
- Kazan Federal University
- Kazan 420008
- Russia
| | | | - Taiji Shimoda
- GlycoTargeting Research Team
- RIKEN
- Saitama 351-0198
- Japan
| | - Katsunori Tanaka
- Biofunctional Synthetic Chemistry Laboratory
- RIKEN
- Saitama 351-0198
- Japan
- Biofunctional Chemistry Laboratory
| |
Collapse
|
16
|
Suda M, Sumiyoshi W, Kinoshita T, Ohno S. Reaction of sugar oxazolines with primary amines. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.10.074] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
Hu QY, Berti F, Adamo R. Towards the next generation of biomedicines by site-selective conjugation. Chem Soc Rev 2016; 45:1691-719. [PMID: 26796469 DOI: 10.1039/c4cs00388h] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Bioconjugates represent an emerging class of medicines, which offer therapeutic opportunities overtaking those of the individual components. Many novel bioconjugates have been explored in order to address various emerging medical needs. The last decade has witnessed the exponential growth of new site-selective bioconjugation techniques, however very few methods have made the way into human clinical trials. Here we discuss various applications of site-selective conjugation in biomedicines, including half-life extension, antibody-drug conjugates, conjugate vaccines, bispecific antibodies and cell therapy. The review is intended to highlight both the progress and challenges, and identify a potential roadmap to address the gap.
Collapse
Affiliation(s)
- Qi-Ying Hu
- Novartis Institutes for Biomedical Research (NIBR), 100 Technology Square, Cambridge, MA 02139, USA.
| | - Francesco Berti
- GSK Vaccines (former Novartis Vaccines & Diagnostics), Via Fiorentina 1, 53100 Siena, Italy.
| | - Roberto Adamo
- GSK Vaccines (former Novartis Vaccines & Diagnostics), Via Fiorentina 1, 53100 Siena, Italy.
| |
Collapse
|
18
|
Hudak JE, Belardi B, Appel MJ, Solania A, Robinson PV, Bertozzi CR. Piperidine-based glycodendrons as protein N-glycan prosthetics. Bioorg Med Chem 2016; 24:4791-4800. [PMID: 27283789 DOI: 10.1016/j.bmc.2016.05.050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 05/18/2016] [Accepted: 05/24/2016] [Indexed: 02/04/2023]
Abstract
The generation of homogeneously glycosylated proteins is essential for defining glycoform-specific activity and improving protein-based therapeutics. We present a novel glycodendron prosthetic which can be site-selectively appended to recombinant proteins to create 'N-glycosylated' glycoprotein mimics. Using computational modeling, we designed the dendrimer scaffold and protein attachment point to resemble the native N-glycan architecture. Three piperidine-melamine glycodendrimers were synthesized via a chemoenzymatic route and attached to human growth hormone and the Fc region of human IgG. These products represent a new class of engineered biosimilars bearing novel glycodendrimer structures.
Collapse
Affiliation(s)
- Jason E Hudak
- Department of Chemistry, University of California Berkeley, CA 94720, USA
| | - Brian Belardi
- Department of Chemistry, University of California Berkeley, CA 94720, USA
| | - Mason J Appel
- Department of Chemistry, University of California Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California Berkeley, CA 94720, USA
| | - Angelo Solania
- Department of Chemistry, University of California Berkeley, CA 94720, USA
| | - Peter V Robinson
- Department of Chemistry, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Carolyn R Bertozzi
- Department of Chemistry, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
19
|
Yule LR, Bower RL, Kaur H, Kowalczyk R, Hay DL, Brimble MA. Synthesis and amylin receptor activity of glycomimetics of pramlintide using click chemistry. Org Biomol Chem 2016; 14:5238-45. [PMID: 27139251 DOI: 10.1039/c6ob00850j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Pramlintide (Symlin®), a synthetic analogue of the neuroendocrine hormone amylin, is devoid of the tendency to form cytotoxic amyloid fibrils and is currently used in patients with type I and type II diabetes mellitus as an adjunctive therapy with insulin or insulin analogues. As part of an on-going search for a pramlintide analogue with improved pharmacokinetic properties, we herein report the synthesis of mono- and di-glycosylated analogues of pramlintide and their activity at the AMY1(a) receptor. Introduction of N-glycosylated amino acids into the pramlintide sequence afforded the native N-linked glycomimetics whilst use of Cu(i)-catalysed azide-alkyne 1,3-dipolar cycloaddition (click) chemistry delivered 1,2,3-triazole linked glycomimetics. AMY1(a) receptor activity was retained by incorporation of single or multiple GlcNAc moieties at positions 21 and 35 of native pramlintide. Importantly, no difference in AMY1(a) activity was observed between native N-linked glycomimetics and 1,2,3-triazole linked glycomimetics demonstrating that the click variants can act as surrogates for the native N-glycosides in a biological setting.
Collapse
Affiliation(s)
- Lauren R Yule
- The School of Biological Sciences, University of Auckland, 3A Symonds St, Auckland 1010, New Zealand.
| | | | | | | | | | | |
Collapse
|
20
|
Zhou J, Manabe Y, Tanaka K, Fukase K. Efficient Synthesis of the Disialylated Tetrasaccharide Motif in N-Glycans through an Amide-Protection Strategy. Chem Asian J 2016; 11:1436-40. [DOI: 10.1002/asia.201600139] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Indexed: 11/12/2022]
Affiliation(s)
- Jiazhou Zhou
- Department of Chemistry, Graduate School of Science; Osaka University; Machikaneyama 1-1 Toyonaka Osaka 560-0043 Japan
| | - Yoshiyuki Manabe
- Department of Chemistry, Graduate School of Science; Osaka University; Machikaneyama 1-1 Toyonaka Osaka 560-0043 Japan
| | - Katsunori Tanaka
- Biofunctional Synthetic Chemistry Laboratory; RIKEN; Hirosawa 2-1 Wako Saitama 351-0198 Japan
| | - Koichi Fukase
- Department of Chemistry, Graduate School of Science; Osaka University; Machikaneyama 1-1 Toyonaka Osaka 560-0043 Japan
| |
Collapse
|
21
|
Ogura A, Kurbangalieva A, Tanaka K. Exploring the glycan interaction in vivo: Future prospects of neo-glycoproteins for diagnostics. Glycobiology 2016; 26:804-12. [PMID: 26980440 DOI: 10.1093/glycob/cww038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 03/09/2016] [Indexed: 12/21/2022] Open
Abstract
Herein the biodistributions and in vivo kinetics of chemically prepared neoglycoproteins are reviewed. Chemical methods can be used to conjugate various mono- and oligosaccharides onto a protein surface. The kinetics and organ-specific accumulation profiles of these glycoconjugates, which are introduced through intravenous injections, have been analyzed using conventional dissection studies as well as noninvasive methods such as single photon emission computed tomography, positron emission tomography and fluorescence imaging. These studies suggest that glycan-dependent protein distribution kinetics may be useful for pharmacological and diagnostic applications.
Collapse
Affiliation(s)
- Akihiro Ogura
- Biofunctional Synthetic Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Almira Kurbangalieva
- Biofunctional Chemistry Laboratory, A. Butlerov Institute of Chemistry, Kazan Federal University, 18 Kremlyovskaya street, Kazan 420008, Russia
| | - Katsunori Tanaka
- Biofunctional Synthetic Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan Biofunctional Chemistry Laboratory, A. Butlerov Institute of Chemistry, Kazan Federal University, 18 Kremlyovskaya street, Kazan 420008, Russia JST PRESTO, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| |
Collapse
|
22
|
Zhou JQ, He T, Wang JW. The microbial transglutaminase immobilization on carboxylated poly(N-isopropylacrylamide) for thermo-responsivity. Enzyme Microb Technol 2016; 87-88:44-51. [PMID: 27178794 DOI: 10.1016/j.enzmictec.2016.02.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 02/19/2016] [Accepted: 02/24/2016] [Indexed: 01/19/2023]
Abstract
Microbial transglutaminase (mTG) is widely utilized in the PEGylation of pharmaceutical proteins. mTG immobilization can be achieved via covalent bonding on solid supports. However, the catalytic efficiency of mTG immobilized on solid supports was significantly reduced by mass transfer limitation. To overcome this limitation, mTG was covalently immobilized on the thermo-responsive carboxylated poly(N-isopropylacrylamide) (pNIPAM). The pNIPAM-mTG conjugate exhibited reversibly solubility in aqueous solution with a low critical solution temperature (LCST) at 39°C, i.e., it was insoluble above 39°C and soluble below 39°C. The pH dependence of the pNIPAM-mTG conjugate was similar with that of the native mTG. Upon conjugation to pNIPAM, the optimal temperature of mTG shifted down from 50-55°C to 40-45°C, and the thermal stability of the conjugate was elevated. The easy separation of the pNIPAM-mTG conjugate with its substrate and the catalytic efficiency of the pNIPAM-mTG conjugate were demonstrated by employing the pNIPAM-mTG conjugate to cross-link bovine serum albumin (BSA) and catalyze PEGylation of therapeutic protein, cytochrome c (Cyt C), respectively. The thermo-responsive mTG is suitable to modify proteins in food processing and biomedical engineering.
Collapse
Affiliation(s)
- Jian Qin Zhou
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, PR China
| | - Ting He
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, PR China
| | - Jian Wen Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, PR China.
| |
Collapse
|
23
|
Guo H, Li H, Gao J, Zhao G, Ling L, Wang B, Guo Q, Gu Y, Li C. Phenylboronic acid-based amphiphilic glycopolymeric nanocarriers for in vivo insulin delivery. Polym Chem 2016. [DOI: 10.1039/c6py00131a] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Diabetes mellitus, a disorder of glucose regulation, is a global burden affecting millions of people across the world.
Collapse
Affiliation(s)
- Honglei Guo
- Division of Nephrology
- The Fifth People's Hospital of Shanghai
- Fudan University
- Shanghai
- China
| | - Hongmei Li
- Division of Nephrology
- The Fifth People's Hospital of Shanghai
- Fudan University
- Shanghai
- China
| | - Juntao Gao
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai
- P.R. China
| | - Guangxi Zhao
- Division of Gastroenterology
- Zhongshan Hospital
- Fudan University
- Shanghai
- China
| | - Lilu Ling
- Division of Nephrology
- The Fifth People's Hospital of Shanghai
- Fudan University
- Shanghai
- China
| | - Bin Wang
- Division of Nephrology
- Huashan Hospital and Institute of Nephrology
- Fudan University
- Shanghai
- China
| | - Qianqian Guo
- Key Laboratory of Functional Polymer Materials of Ministry Education
- Institute of Polymer Chemistry
- Nankai University
- Tianjin 300071
- China
| | - Yong Gu
- Division of Nephrology
- The Fifth People's Hospital of Shanghai
- Fudan University
- Shanghai
- China
| | - Chaoxing Li
- Key Laboratory of Functional Polymer Materials of Ministry Education
- Institute of Polymer Chemistry
- Nankai University
- Tianjin 300071
- China
| |
Collapse
|
24
|
Tanaka K. Chemically synthesized glycoconjugates on proteins: effects of multivalency and glycoform in vivo. Org Biomol Chem 2016; 14:7610-21. [DOI: 10.1039/c6ob00788k] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The biodistributions and in vivo kinetics of chemically prepared glycoconjugates on proteins are reviewed.
Collapse
Affiliation(s)
- Katsunori Tanaka
- Biofunctional Synthetic Chemistry Laboratory
- RIKEN
- Wako-shi
- Japan
- Biofunctional Chemistry Laboratory
| |
Collapse
|
25
|
Cheng S, Chang X, Wang Y, Gao GF, Shao Y, Ma L, Li X. Glycosylated Enfuvirtide: A Long-Lasting Glycopeptide with Potent Anti-HIV Activity. J Med Chem 2015; 58:1372-9. [DOI: 10.1021/jm5016582] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shuihong Cheng
- CAS
Key Laboratory of Pathogenic Microbiology and Immunology, Institute
of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China
- National
Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, China
| | - Xuesong Chang
- CAS
Key Laboratory of Pathogenic Microbiology and Immunology, Institute
of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China
| | - Yan Wang
- State
Key Laboratory for Infection Disease Prevention and Control, National
Center for AIDS/STD Control and Prevention, Chinese Center for Disease
Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Changping District, Beijing 102206, China
| | - George F. Gao
- CAS
Key Laboratory of Pathogenic Microbiology and Immunology, Institute
of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China
- Center for Influenza
Research and Early-warning,
Chinese Academy of Sciences (CASCIRE), Chaoyang
District, Beijing 100101, China
| | - Yiming Shao
- State
Key Laboratory for Infection Disease Prevention and Control, National
Center for AIDS/STD Control and Prevention, Chinese Center for Disease
Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Changping District, Beijing 102206, China
| | - Liying Ma
- State
Key Laboratory for Infection Disease Prevention and Control, National
Center for AIDS/STD Control and Prevention, Chinese Center for Disease
Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Changping District, Beijing 102206, China
| | - Xuebing Li
- CAS
Key Laboratory of Pathogenic Microbiology and Immunology, Institute
of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China
- National
Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, China
- Center for Influenza
Research and Early-warning,
Chinese Academy of Sciences (CASCIRE), Chaoyang
District, Beijing 100101, China
| |
Collapse
|
26
|
Kowalczyk R, Brimble MA, Tomabechi Y, Fairbanks AJ, Fletcher M, Hay DL. Convergent chemoenzymatic synthesis of a library of glycosylated analogues of pramlintide: structure-activity relationships for amylin receptor agonism. Org Biomol Chem 2014; 12:8142-51. [PMID: 25030939 DOI: 10.1039/c4ob01208a] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Pramlintide (Symlin®), a synthetic analogue of the naturally occurring pancreatic hormone amylin, is currently used with insulin in adjunctive therapy for type 1 and type 2 diabetes mellitus. Herein we report a systematic study into the effect that N-glycosylation of pramlintide has on activation of amylin receptors. A highly efficient convergent synthetic route, involving a combination of solid phase peptide synthesis and enzymatic glycosylation, delivered a library of N-glycosylated variants of pramlintide bearing either GlcNAc, the core N-glycan pentasaccharide [Man3(GlcNAc)2] or a complex biantennary glycan [(NeuAcGalGlcNAcMan)2Man(GlcNAc)2] at each of its six asparagine residues. The majority of glycosylated versions of pramlintide were potent receptor agonists, suggesting that N-glycosylation may be used as a tool to optimise the pharmacokinetic properties of pramlintide and so deliver improved therapeutic agents for the treatment of diabetes and obesity.
Collapse
Affiliation(s)
- Renata Kowalczyk
- The School of Chemical Sciences, University of Auckland, 23 Symonds St, Auckland 1010, New Zealand.
| | | | | | | | | | | |
Collapse
|
27
|
In vivo kinetics and biodistribution analysis of neoglycoproteins: effects of chemically introduced glycans on proteins. Glycoconj J 2014; 31:273-9. [DOI: 10.1007/s10719-014-9520-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 03/12/2014] [Accepted: 03/17/2014] [Indexed: 12/15/2022]
|
28
|
Guo Q, Wu Z, Zhang X, Sun L, Li C. Phenylboronate-diol crosslinked glycopolymeric nanocarriers for insulin delivery at physiological pH. SOFT MATTER 2014; 10:911-920. [PMID: 24835766 DOI: 10.1039/c3sm52485j] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Research into polymers with glucose-sensitivity in physiological conditions has expanded recently due to their therapeutic potential in diabetes. Herein, to explore the glucose-responsive properties of a new polymer under physiological conditions, we synthesized an amphiphilic block glycopolymer based on phenylboronic acid and a carbohydrate, which was named poly(d-gluconamidoethyl methacrylate-block-3-acrylamidophenylboronic acid) (p(AAPBA-b-GAMA)). Based on the cross-linking between the diol groups of the carbohydrates and phenylboronic acid, the glycopolymers self-assembled to form nanoparticles (NPs). The glucose-sensitivity was revealed by the swelling behavior of the NPs at different glucose concentrations and was found to be dependent on the glucose level. The morphology of the NPs revealed by transmission electron microscopy showed that the NPs were spherical in shape with good dispersity. The cell viability of the NPs investigated by MTT assay was more than 90%, indicating that the glycopolymers had good cytocompatibility. Insulin could be loaded onto the glycopolymer NPs with high efficiency (up to 10%), and insulin release increased with enhancement of the glucose level in the medium. Such a glucose-responsive glycopolymer is an excellent candidate that holds great potential in the treatment of diabetes.
Collapse
Affiliation(s)
- Qianqian Guo
- Key Laboratory of Functional Polymer Materials of Ministry Education, Institute of Polymer Chemistry, Nankai University, Tianjin 300071, China.
| | | | | | | | | |
Collapse
|
29
|
Hudak JE, Bertozzi CR. Glycotherapy: new advances inspire a reemergence of glycans in medicine. CHEMISTRY & BIOLOGY 2014; 21:16-37. [PMID: 24269151 PMCID: PMC4111574 DOI: 10.1016/j.chembiol.2013.09.010] [Citation(s) in RCA: 172] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Revised: 09/16/2013] [Accepted: 09/30/2013] [Indexed: 12/21/2022]
Abstract
The beginning of the 20(th) century marked the dawn of modern medicine with glycan-based therapies at the forefront. However, glycans quickly became overshadowed as DNA- and protein-focused treatments became readily accessible. The recent development of new tools and techniques to study and produce structurally defined carbohydrates has spurred renewed interest in the therapeutic applications of glycans. This review focuses on advances within the past decade that are bringing glycan-based treatments back to the forefront of medicine and the technologies that are driving these efforts. These include the use of glycans themselves as therapeutic molecules as well as engineering protein and cell surface glycans to suit clinical applications. Glycan therapeutics offer a rich and promising frontier for developments in the academic, biopharmaceutical, and medical fields.
Collapse
Affiliation(s)
- Jason E Hudak
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Carolyn R Bertozzi
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
30
|
Tanaka K, Fukase K. Chemical Approach to a Whole Body Imaging of Sialo-N-Linked Glycans. Top Curr Chem (Cham) 2014; 367:201-30. [PMID: 25971916 DOI: 10.1007/128_2014_603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
PET and noninvasive fluorescence imaging of the sialo-N-linked glycan derivatives are described. To establish the efficient labeling protocol for N-glycans and/or glycoconjugates, new labeling probes of fluorescence and ⁶⁸Ga-DOTA, as the positron emission nucleus for PET, through rapid 6π-azaelectrocyclization were designed and synthesized, (E)-ester aldehydes. The high reactivity of these probes enabled the labeling of lysine residues in peptides, proteins, and even amino groups on the cell surfaces at very low concentrations of the target molecules (~10⁻⁸ M) within a short reaction time (~5 min) to result in "selective" and "non-destructive" labeling of the more accessible amines. The first MicroPET of glycoproteins, ⁶⁸Ga-DOTA-orosomucoid and asialoorosomucoid, successfully visualized the differences in the circulatory residence of glycoproteins, in the presence or absence of sialic acids. In vivo dynamics of the new N-glycoclusters, prepared by the "self-activating" Huisgen cycloaddition reaction, could also be affected significantly by their partial structures at the non-reducing end, i.e., the presence or absence of sialic acids, and/or sialoside linkages to galactose. Azaelectrocyclization chemistry is also applicable to the engineering of the proteins and/or the cell surfaces by the oligosaccharides; lymphocytes chemically engineered by sialo-N-glycan successfully target the tumor implanted in BALB/C nude mice, detected by noninvasive fluorescence imaging.
Collapse
Affiliation(s)
- Katsunori Tanaka
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan,
| | | |
Collapse
|
31
|
Tomabechi Y, Krippner G, Rendle PM, Squire MA, Fairbanks AJ. Glycosylation of Pramlintide: Synthetic Glycopeptides that Display In Vitro and In Vivo Activities as Amylin Receptor Agonists. Chemistry 2013; 19:15084-8. [DOI: 10.1002/chem.201303303] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Indexed: 12/16/2022]
|
32
|
Transglutaminase-mediated macromolecular assembly: production of conjugates for food and pharmaceutical applications. Amino Acids 2013; 46:767-76. [DOI: 10.1007/s00726-013-1561-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 07/04/2013] [Indexed: 12/16/2022]
|
33
|
Ribeiro-Viana R, Sánchez-Navarro M, Luczkowiak J, Koeppe JR, Delgado R, Rojo J, Davis BG. Virus-like glycodendrinanoparticles displaying quasi-equivalent nested polyvalency upon glycoprotein platforms potently block viral infection. Nat Commun 2013; 3:1303. [PMID: 23250433 PMCID: PMC3535419 DOI: 10.1038/ncomms2302] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 11/15/2012] [Indexed: 01/08/2023] Open
Abstract
Ligand polyvalency is a powerful modulator of protein–receptor interactions. Host–pathogen infection interactions are often mediated by glycan ligand–protein interactions, yet its interrogation with very high copy number ligands has been limited to heterogenous systems. Here we report that through the use of nested layers of multivalency we are able to assemble the most highly valent glycodendrimeric constructs yet seen (bearing up to 1,620 glycans). These constructs are pure and well-defined single entities that at diameters of up to 32 nm are capable of mimicking pathogens both in size and in their highly glycosylated surfaces. Through this mimicry these glyco-dendri-protein-nano-particles are capable of blocking (at picomolar concentrations) a model of the infection of T-lymphocytes and human dendritic cells by Ebola virus. The high associated polyvalency effects (β>106, β/N ~102–103) displayed on an unprecedented surface area by precise clusters suggest a general strategy for modulation of such interactions. Host–pathogen relationships can be mediated by polyvalent glycan ligand–protein interactions. Here well-defined highly valent glycodendrimeric constructs are synthesized that can mimic pathogens, and can inhibit a model of infection by the Ebola virus.
Collapse
Affiliation(s)
- Renato Ribeiro-Viana
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, UK
| | | | | | | | | | | | | |
Collapse
|
34
|
Cheng Y, Liu Y, Liba BD, Ghodssi R, Rubloff GW, Bentley WE, Payne GF. Biofabricating the Bio-Device Interface Using Biological Materials and Mechanisms. Biofabrication 2013. [DOI: 10.1016/b978-1-4557-2852-7.00012-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Fukase K, Tanaka K. Bio-imaging and cancer targeting with glycoproteins and N-glycans. Curr Opin Chem Biol 2012. [DOI: 10.1016/j.cbpa.2012.09.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
36
|
Tanaka K, Fukase K. Development of Azaelectrocyclization-Based Labeling and Application to Noninvasive Imaging and Targeting Using N-Glycan Derivatives—In Pursuit of N-Glycan Functions on Proteins, Dendrimers, and Living Cells—. TRENDS GLYCOSCI GLYC 2012. [DOI: 10.4052/tigg.24.47] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
37
|
Watanabe A, Nishijima KI, Zhao S, Tanaka Y, Itoh T, Takemoto H, Tamaki N, Kuge Y. Effect of glycosylation on biodistribution of radiolabeled glucagon-like peptide 1. Ann Nucl Med 2011; 26:184-91. [PMID: 22187312 DOI: 10.1007/s12149-011-0558-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 11/13/2011] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Glycosylation is generally applicable as a strategy for increasing the activity of bioactive proteins. In this study, we examined the effect of glycosylation on biodistribution of radiolabeled glucagon-like peptide 1 (GLP-1) as a bioactive peptide for type 2 diabetes. METHODS Noninvasive imaging studies were performed using a gamma camera after the intravenous administration of (123)I-GLP-1 or (123)I-α2, 6-sialyl N-acetyllactosamine (glycosylated) GLP-1 in rats. In ex vivo biodistribution studies using (125)I-GLP-1 or (125)I-glycosylated GLP-1, organ samples were measured for radioactivity. Plasma samples were added to 15% trichloroacetic acid (TCA) to obtain TCA-insoluble and TCA-soluble fractions. The radioactivity in the TCA-insoluble and TCA-soluble fractions was measured. RESULTS In the noninvasive imaging studies, a relatively high accumulation level of (123)I-GLP-1 was found in the liver, which is the major organ to eliminate exogenous GLP-1. The area under the time-activity curve (AUC) of (123)I-glycosylated GLP-1 in the liver was significantly lower (89%) than that of (123)I-GLP-1. These results were consistent with those of ex vivo biodistribution studies using (125)I-labeled peptides. The AUC of (125)I-glycosylated GLP-1 in the TCA-insoluble fraction was significantly higher (1.7-fold) than that of GLP-1. CONCLUSIONS This study demonstrated that glycosylation significantly decreased the distribution of radiolabeled GLP-1 into the liver and increased the concentration of radiolabeled GLP-1 in plasma. These results suggested that glycosylation is a useful strategy for decreasing the distribution into the liver of bioactive peptides as desirable pharmaceuticals.
Collapse
Affiliation(s)
- Ayahisa Watanabe
- Department of Radiobiology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Discovery and application of 6π-azaelectrocyclization to natural product synthesis and synthetic biology. Sci China Chem 2011. [DOI: 10.1007/s11426-011-4466-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
39
|
Ohyanagi T, Nagahori N, Shimawaki K, Hinou H, Yamashita T, Sasaki A, Jin T, Iwanaga T, Kinjo M, Nishimura SI. Importance of Sialic Acid Residues Illuminated by Live Animal Imaging Using Phosphorylcholine Self-Assembled Monolayer-Coated Quantum Dots. J Am Chem Soc 2011; 133:12507-17. [DOI: 10.1021/ja111201c] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Tatsuya Ohyanagi
- Field of Drug Discovery Research, Faculty of Advanced Life Science, Hokkaido University, Sapporo, 001-0021, Japan
| | - Noriko Nagahori
- Field of Drug Discovery Research, Faculty of Advanced Life Science, Hokkaido University, Sapporo, 001-0021, Japan
| | - Ken Shimawaki
- Field of Drug Discovery Research, Faculty of Advanced Life Science, Hokkaido University, Sapporo, 001-0021, Japan
| | - Hiroshi Hinou
- Field of Drug Discovery Research, Faculty of Advanced Life Science, Hokkaido University, Sapporo, 001-0021, Japan
| | - Tadashi Yamashita
- Field of Drug Discovery Research, Faculty of Advanced Life Science, Hokkaido University, Sapporo, 001-0021, Japan
| | - Akira Sasaki
- Field of Drug Discovery Research, Faculty of Advanced Life Science, Hokkaido University, Sapporo, 001-0021, Japan
| | - Takashi Jin
- WPI Immunology Frontier Research Center, Osaka University, Yamada-oka 1-3, Suita, Osaka 565-0871, Japan
| | - Toshihiko Iwanaga
- Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo, 060-8638, Japan
| | - Masataka Kinjo
- Field of Drug Discovery Research, Faculty of Advanced Life Science, Hokkaido University, Sapporo, 001-0021, Japan
| | - Shin-Ichiro Nishimura
- Field of Drug Discovery Research, Faculty of Advanced Life Science, Hokkaido University, Sapporo, 001-0021, Japan
| |
Collapse
|
40
|
Tanaka K, Siwu ERO, Minami K, Hasegawa K, Nozaki S, Kanayama Y, Koyama K, Chen WC, Paulson JC, Watanabe Y, Fukase K. Noninvasive imaging of dendrimer-type N-glycan clusters: in vivo dynamics dependence on oligosaccharide structure. Angew Chem Int Ed Engl 2011; 49:8195-200. [PMID: 20857462 DOI: 10.1002/anie.201000892] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Katsunori Tanaka
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka-shi, Osaka 560-0043, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Tanaka K. Exploring A Unique Reactivity of 6π-Azaelectrocyclization: Discovery and Application to Natural Products Synthesis and Synthetic Chemical Biology. J SYN ORG CHEM JPN 2011. [DOI: 10.5059/yukigoseikyokaishi.69.1389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Katsunori Tanaka
- Department of Chemistry, Graduate School of Science, Osaka University
| |
Collapse
|
42
|
Tanaka K, Siwu ERO, Minami K, Hasegawa K, Nozaki S, Kanayama Y, Koyama K, Chen WC, Paulson JC, Watanabe Y, Fukase K. Noninvasive Imaging of Dendrimer-Type N-Glycan Clusters: In Vivo Dynamics Dependence on Oligosaccharide Structure. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.201000892] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
43
|
Liu Y, Kim E, Ghodssi R, Rubloff GW, Culver JN, Bentley WE, Payne GF. Biofabrication to build the biology–device interface. Biofabrication 2010; 2:022002. [DOI: 10.1088/1758-5082/2/2/022002] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
44
|
Ito T, Sadamoto R, Naruchi K, Togame H, Takemoto H, Kondo H, Nishimura SI. Highly oriented recombinant glycosyltransferases: site-specific immobilization of unstable membrane proteins by using Staphylococcus aureus sortase A. Biochemistry 2010; 49:2604-14. [PMID: 20178374 DOI: 10.1021/bi100094g] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Recombinant glycosyltransferases are potential biocatalysts for the construction of a compound library of oligosaccharides, glycosphingolipids, glycopeptides, and various artificial glycoconjugates on the basis of combined chemical and enzymatic synthetic procedures. The structurally defined glycan-related compound library is a key resource both in the basic studies of their functional roles in various biological processes and in the discovery research of new diagnostic biomarkers and therapeutic reagents. Therefore, it is clear that the immobilization of extremely unstable membrane-bound glycosyltransferases on some suitable supporting materials should enhance the operational stability and activity of recombinant enzymes and makes facile separation of products and recycling use of enzymes possible. Until now, however, it seems that no standardized protocol preventing a significant loss of enzyme activity is available due to the lack of a general method of site-selective anchoring between glycosyltransferases and scaffold materials through a stable covalent bond. Here we communicate a versatile and efficient method for the immobilization of recombinant glycosyltransferases onto commercially available solid supports by means of transpeptidase reaction by Staphylococcus aureus sortase A. This protocol allowed for the first time highly specific conjugation at the designated C-terminal signal peptide moiety of recombinant human beta1,4-galactosyltransferase or recombinant Helicobacter pylori alpha1,3-fucosyltransferase with simple aliphatic amino groups displayed on the surface of solid materials. Site-specifically immobilized enzymes exhibited the desired sugar transfer activity, an improved stability, and a practical reusability required for rapid and large-scale synthesis of glycoconjugates. Considering that most mammalian enzymes responsible for the posttranslational modifications, including the protein kinase family, as well as glycosyltransferases are unstable and highly oriented membrane proteins, the merit of our strategy based on "site-specific" transpeptidation is evident because the reaction proceeds only at an engineered C-terminus without any conformational influence around the active sites of both enzymes as well as heptad repeats of rHFucT required to maintain native secondary and quaternary structures during the dimerization on cell surfaces.
Collapse
Affiliation(s)
- Takaomi Ito
- Graduate School of Life Science and Frontier Research Center for Post-Genomic Science and Technology, Hokkaido University, N21, W11, Kita-ku, Sapporo 001-0021, Japan
| | | | | | | | | | | | | |
Collapse
|
45
|
Chemo-enzymatic synthesis of glycosylated insulin using a GlcNAc tag. Bioorg Med Chem 2010; 18:1259-64. [DOI: 10.1016/j.bmc.2009.12.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Revised: 12/08/2009] [Accepted: 12/09/2009] [Indexed: 12/29/2022]
|
46
|
Kobayashi S, Makino A. Enzymatic polymer synthesis: an opportunity for green polymer chemistry. Chem Rev 2010; 109:5288-353. [PMID: 19824647 DOI: 10.1021/cr900165z] [Citation(s) in RCA: 421] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Shiro Kobayashi
- R & D Center for Bio-based Materials, Kyoto Institute of Technology, Kyoto 606-8585, Japan.
| | | |
Collapse
|
47
|
Fujimoto Y, Tanaka K, Shimoyama A, Fukase K. Self and Nonself Recognition with Bacterial and Animal Glycans, Surveys by Synthetic Chemistry. Methods Enzymol 2010; 478:323-42. [DOI: 10.1016/s0076-6879(10)78016-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
48
|
Matsushita T, Sadamoto R, Ohyabu N, Nakata H, Fumoto M, Fujitani N, Takegawa Y, Sakamoto T, Kurogochi M, Hinou H, Shimizu H, Ito T, Naruchi K, Togame H, Takemoto H, Kondo H, Nishimura SI. Functional Neoglycopeptides: Synthesis and Characterization of a New Class of MUC1 Glycoprotein Models Having Core 2-Based O-Glycan and Complex-Type N-Glycan Chains. Biochemistry 2009; 48:11117-33. [DOI: 10.1021/bi901557a] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Takahiko Matsushita
- Division of Advanced Chemical Biology, Graduate School of Life Science, Frontier Research Center for the Post-Genome Science and Technology
| | - Reiko Sadamoto
- Division of Advanced Chemical Biology, Graduate School of Life Science, Frontier Research Center for the Post-Genome Science and Technology
| | - Naoki Ohyabu
- Division of Advanced Chemical Biology, Graduate School of Life Science, Frontier Research Center for the Post-Genome Science and Technology
- Shionogi Innovation Center for Drug Discovery
| | - Hideki Nakata
- Division of Advanced Chemical Biology, Graduate School of Life Science, Frontier Research Center for the Post-Genome Science and Technology
| | - Masataka Fumoto
- Discovery Research Laboratories, Shionogi & Company, Ltd., 12-4, Sagisu 5-chome, Fukushima-ku, Osaka 541-0045, Japan
| | - Naoki Fujitani
- Division of Advanced Chemical Biology, Graduate School of Life Science, Frontier Research Center for the Post-Genome Science and Technology
| | - Yasuhiro Takegawa
- Division of Advanced Chemical Biology, Graduate School of Life Science, Frontier Research Center for the Post-Genome Science and Technology
| | - Takeshi Sakamoto
- Central Research Laboratory, Hitachi, Ltd., Kokubunji, Tokyo 185-8601, Japan
| | - Masaki Kurogochi
- Division of Advanced Chemical Biology, Graduate School of Life Science, Frontier Research Center for the Post-Genome Science and Technology
| | - Hiroshi Hinou
- Division of Advanced Chemical Biology, Graduate School of Life Science, Frontier Research Center for the Post-Genome Science and Technology
| | - Hiroki Shimizu
- National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-higashi, Toyohira-ku, Sapporo 062-8517, Japan
| | - Takaomi Ito
- Division of Advanced Chemical Biology, Graduate School of Life Science, Frontier Research Center for the Post-Genome Science and Technology
- Shionogi Innovation Center for Drug Discovery
| | - Kentarou Naruchi
- Division of Advanced Chemical Biology, Graduate School of Life Science, Frontier Research Center for the Post-Genome Science and Technology
| | | | | | - Hirosato Kondo
- Discovery Research Laboratories, Shionogi & Company, Ltd., 12-4, Sagisu 5-chome, Fukushima-ku, Osaka 541-0045, Japan
| | - Shin-Ichiro Nishimura
- Division of Advanced Chemical Biology, Graduate School of Life Science, Frontier Research Center for the Post-Genome Science and Technology
- National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-higashi, Toyohira-ku, Sapporo 062-8517, Japan
| |
Collapse
|
49
|
Jin X, Zhang X, Wu Z, Teng D, Zhang X, Wang Y, Wang Z, Li C. Amphiphilic Random Glycopolymer Based on Phenylboronic Acid: Synthesis, Characterization, and Potential as Glucose-Sensitive Matrix. Biomacromolecules 2009; 10:1337-45. [PMID: 19397257 DOI: 10.1021/bm8010006] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xingju Jin
- Key Laboratory of Functional Polymer Materials of Ministry Education, Institute of Polymer Chemistry, Nankai University, Tianjin 300071, China, and Metabolic Diseases Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Xinge Zhang
- Key Laboratory of Functional Polymer Materials of Ministry Education, Institute of Polymer Chemistry, Nankai University, Tianjin 300071, China, and Metabolic Diseases Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Zhongming Wu
- Key Laboratory of Functional Polymer Materials of Ministry Education, Institute of Polymer Chemistry, Nankai University, Tianjin 300071, China, and Metabolic Diseases Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Dayong Teng
- Key Laboratory of Functional Polymer Materials of Ministry Education, Institute of Polymer Chemistry, Nankai University, Tianjin 300071, China, and Metabolic Diseases Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Xuejiao Zhang
- Key Laboratory of Functional Polymer Materials of Ministry Education, Institute of Polymer Chemistry, Nankai University, Tianjin 300071, China, and Metabolic Diseases Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Yanxia Wang
- Key Laboratory of Functional Polymer Materials of Ministry Education, Institute of Polymer Chemistry, Nankai University, Tianjin 300071, China, and Metabolic Diseases Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Zhen Wang
- Key Laboratory of Functional Polymer Materials of Ministry Education, Institute of Polymer Chemistry, Nankai University, Tianjin 300071, China, and Metabolic Diseases Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Chaoxing Li
- Key Laboratory of Functional Polymer Materials of Ministry Education, Institute of Polymer Chemistry, Nankai University, Tianjin 300071, China, and Metabolic Diseases Hospital, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
50
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2003-2004. MASS SPECTROMETRY REVIEWS 2009; 28:273-361. [PMID: 18825656 PMCID: PMC7168468 DOI: 10.1002/mas.20192] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2008] [Revised: 07/07/2008] [Accepted: 07/07/2008] [Indexed: 05/13/2023]
Abstract
This review is the third update of the original review, published in 1999, on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings the topic to the end of 2004. Both fundamental studies and applications are covered. The main topics include methodological developments, matrices, fragmentation of carbohydrates and applications to large polymeric carbohydrates from plants, glycans from glycoproteins and those from various glycolipids. Other topics include the use of MALDI MS to study enzymes related to carbohydrate biosynthesis and degradation, its use in industrial processes, particularly biopharmaceuticals and its use to monitor products of chemical synthesis where glycodendrimers and carbohydrate-protein complexes are highlighted.
Collapse
Affiliation(s)
- David J Harvey
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, Oxford OX1 3QU, UK.
| |
Collapse
|