1
|
Qiu L, Guo X, Shim H, Hao T, Liang Z, Wang S, Lu Z, Lu Q, He Z. Unveiling triclosan biodegradation: Novel metabolic pathways, genomic insights, and global environmental adaptability of Pseudomonas sp. strain W03. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137313. [PMID: 39862779 DOI: 10.1016/j.jhazmat.2025.137313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/12/2025] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
The polychlorinated aromatic antimicrobial agent triclosan (TCS) is widely used to indiscriminately and rapidly kill microorganisms. The global use of TCS has led to widespread environmental contamination, posing significant threats to ecosystem and human health. Here we reported a newly isolated Pseudomonas sp. W03 for degrading TCS metabolically at concentrations up to 10 mg/L. This strain exhibited optimal degradation activity at 30°C and pH 7.0, and retained substantial activity at pH 4.0, although it was sensitive to alkaline conditions. Genomic analysis of strain W03 revealed a circular chromosome comprising 6075,907 bp with a GC content of 65.08 %. A novel TCS degradation pathway, involving dechlorination, oxidation, ether bond fission, and reoxidation processes, was identified. Also, the study mapped the global distribution of analogous Pseudomonas using 16S rRNA gene sequences, revealing their widespread presence in diverse aquatic environments, with a significant abundance in wastewater systems. These findings indicated that these bacteria play a critical ecological role in both natural and engineered environments, particularly in the degradation of organic pollutants. This study enhances our understanding of microbial degradation of emerging contaminants and presents a promising candidate for bioremediation strategies aimed at mitigating TCS-related water pollution.
Collapse
Affiliation(s)
- Lan Qiu
- Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Science, Sun Yat-sen University, Zhuhai 519080, China; Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, 999078, Macao
| | - Xiaoyuan Guo
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, 999078, Macao
| | - Hojae Shim
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, 999078, Macao
| | - Tianwei Hao
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, 999078, Macao
| | - Zhiwei Liang
- Department of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Shanquan Wang
- Department of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhenmei Lu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qihong Lu
- Department of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China.
| | - Zhili He
- Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Science, Sun Yat-sen University, Zhuhai 519080, China.
| |
Collapse
|
2
|
Abstract
Here, the choice of the first coordination shell of the metal center is analyzed from the perspective of charge maintenance in a binary enzyme-substrate complex and an O2-bound ternary complex in the nonheme iron oxygenases. Comparing homogentisate 1,2-dioxygenase and gentisate dioxygenase highlights the significance of charge maintenance after substrate binding as an important factor that drives the reaction coordinate. We then extend the charge analysis to several common types of nonheme iron oxygenases containing either a 2-His-1-carboxylate facial triad or a 3-His or 4-His ligand motif, including extradiol and intradiol ring-cleavage dioxygenases, thiol dioxygenases, α-ketoglutarate-dependent oxygenases, and carotenoid cleavage oxygenases. After forming the productive enzyme-substrate complex, the overall charge of the iron complex at the 0, +1, or +2 state is maintained in the remaining catalytic steps. Hence, maintaining a constant charge is crucial to promote the reaction of the iron center beginning from the formation of the Michaelis or ternary complex. The charge compensation to the iron ion is tuned not only by protein-derived carboxylate ligands but also by substrates. Overall, these analyses indicate that charge maintenance at the iron center is significant when all the necessary components form a productive complex. This charge maintenance concept may apply to most oxygen-activating metalloenzymes systems that do not draw electrons and protons step-by-step from a separate reactant, such as NADH, via a reductase. The charge maintenance perception may also be useful in proposing catalytic pathways or designing prototypical reactions using artificial or engineered enzymes for biotechnological applications.
Collapse
Affiliation(s)
- Ephrahime S. Traore
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Aimin Liu
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| |
Collapse
|
3
|
Synthesis and Characterization of Catecholato Copper(II) Complexes with Sterically Hindered Neutral and Anionic N3 Type Ligands: Tris(3,5-diisopropyl-1-pyrazolyl)methane and Hydrotris(3,5-diisopropyl-1-pyrazolyl)borate. INORGANICS 2020. [DOI: 10.3390/inorganics8050037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Three catecholato copper(II) complexes, [Cu(catCl4)(L1′)], [Cu(catBr4)(L1′)], and [Cu(catCl4)(L1H)], supported by sterically hindered neutral and anionic N3 type ligands: tris(3,5-diisopropyl-1-pyrazolyl)methane (referred to as L1′) and hydrotris(3,5-diisopropyl-1-pyrazolyl)borate (referred to as L1−), are synthesized and characterized in detail. Their X-ray structures reveal that both [Cu(catCl4)(L1′)] and [Cu(catBr4)(L1′)] complexes have a five-coordinate square-pyramidal geometry and [Cu(catCl4)(L1H)] complex has a four-coordinate square-planar geometry. The L1H is unusual protonated ligand that controls its overall charge. For the three catecholato copper(II) complexes, the oxidation state of copper is divalent, and catechol exists in catecholate as two minus anion. This difference in coordination geometry affects their d-d and CT transitions energy and ESR parameters.
Collapse
|
4
|
Ségaud N, Drienovská I, Chen J, Browne WR, Roelfes G. Artificial Metalloproteins for Binding and Stabilization of a Semiquinone Radical. Inorg Chem 2018; 56:13293-13299. [PMID: 29027794 PMCID: PMC5676253 DOI: 10.1021/acs.inorgchem.7b02073] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
![]()
The interaction of a number of first-row
transition-metal ions with a 2,2′-bipyridyl alanine (bpyA)
unit incorporated into the lactococcal multidrug resistance regulator
(LmrR) scaffold is reported. The composition of the active site is
shown to influence binding affinities. In the case of Fe(II), we demonstrate
the need of additional ligating residues, in particular those containing
carboxylate groups, in the vicinity of the binding site. Moreover,
stabilization of di-tert-butylsemiquinone radical
(DTB-SQ) in water was achieved by binding to the designed
metalloproteins, which resulted in the radical being shielded from
the aqueous environment. This allowed the first characterization of
the radical semiquinone in water by resonance Raman spectroscopy. A coordination study of first-row transition-metal ions to bipyridine
alanine (bpyA) incorporated into the lactococcal multidrug resistance
regulator (LmrR) scaffold is reported. The designed metalloproteins
were shown to bind and stabilize the di-tert-butylsemiquinone
radical (DTB-SQ) in water, allowing for the first resonance
Raman characterization of this radical species in water.
Collapse
Affiliation(s)
- Nathalie Ségaud
- Stratingh Institute for Chemistry, University of Groningen , Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Ivana Drienovská
- Stratingh Institute for Chemistry, University of Groningen , Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Juan Chen
- Stratingh Institute for Chemistry, University of Groningen , Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Wesley R Browne
- Stratingh Institute for Chemistry, University of Groningen , Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Gerard Roelfes
- Stratingh Institute for Chemistry, University of Groningen , Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
5
|
Thermodynamics of substrate binding to the metal site in homoprotocatechuate 2,3-dioxygenase: Using ITC under anaerobic conditions to study enzyme–substrate interactions. Biochim Biophys Acta Gen Subj 2016; 1860:910-916. [DOI: 10.1016/j.bbagen.2015.07.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 07/17/2015] [Accepted: 07/24/2015] [Indexed: 11/24/2022]
|
6
|
Safaei E, Heidari S, Wojtczak A, Cotič P, Kozakiewicz A. 4-Nitrocatecholato iron(III) complexes of 2-aminomethyl pyridine-based bis(phenol) amine as structural models for catechol-bound 3,4-PCD. J Mol Struct 2016. [DOI: 10.1016/j.molstruc.2015.10.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Matin MA, Chitumalla RK, Lim M, Gao X, Jang J. Density Functional Theory Study on the Cross-Linking of Mussel Adhesive Proteins. J Phys Chem B 2015; 119:5496-504. [DOI: 10.1021/acs.jpcb.5b01152] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | | | | | - Xingfa Gao
- CAS Key Laboratory
for Biomedical Effects of Nanomaterials and Nanosafety, Institute
of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | | |
Collapse
|
8
|
Crystal structures of alkylperoxo and anhydride intermediates in an intradiol ring-cleaving dioxygenase. Proc Natl Acad Sci U S A 2014; 112:388-93. [PMID: 25548185 DOI: 10.1073/pnas.1419118112] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Intradiol aromatic ring-cleaving dioxygenases use an active site, nonheme Fe(3+) to activate O2 and catecholic substrates for reaction. The inability of Fe(3+) to directly bind O2 presents a mechanistic conundrum. The reaction mechanism of protocatechuate 3,4-dioxygenase is investigated here using the alternative substrate 4-fluorocatechol. This substrate is found to slow the reaction at several steps throughout the mechanistic cycle, allowing the intermediates to be detected in solution studies. When the reaction was initiated in an enzyme crystal, it was found to halt at one of two intermediates depending on the pH of the surrounding solution. The X-ray crystal structure of the intermediate at pH 6.5 revealed the key alkylperoxo-Fe(3+) species, and the anhydride-Fe(3+) intermediate was found for a crystal reacted at pH 8.5. Intermediates of these types have not been structurally characterized for intradiol dioxygenases, and they validate four decades of spectroscopic, kinetic, and computational studies. In contrast to our similar in crystallo crystallographic studies of an Fe(2+)-containing extradiol dioxygenase, no evidence for a superoxo or peroxo intermediate preceding the alkylperoxo was found. This observation and the lack of spectroscopic evidence for an Fe(2+) intermediate that could bind O2 are consistent with concerted formation of the alkylperoxo followed by Criegee rearrangement to yield the anhydride and ultimately ring-opened product. Structural comparison of the alkylperoxo intermediates from the intra- and extradiol dioxygenases provides a rationale for site specificity of ring cleavage.
Collapse
|
9
|
Lebedev AS, Orlov VY. Analysis of functionalized arenes degradation pathways in model water-organic media. APPL BIOCHEM MICRO+ 2014. [DOI: 10.1134/s0003683814040073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Barry KP, Taylor EA. Characterizing the promiscuity of LigAB, a lignin catabolite degrading extradiol dioxygenase from Sphingomonas paucimobilis SYK-6. Biochemistry 2013; 52:6724-36. [PMID: 23977959 DOI: 10.1021/bi400665t] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
LigAB from Sphingomonas paucimobilis SYK-6 is the only structurally characterized dioxygenase of the largely uncharacterized superfamily of Type II extradiol dioxygenases (EDO). This enzyme catalyzes the oxidative ring-opening of protocatechuate (3,4-dihydroxybenzoic acid or PCA) in a pathway allowing the degradation of lignin derived aromatic compounds (LDACs). LigAB has also been shown to utilize two other LDACs from the same metabolic pathway as substrates, gallate, and 3-O-methyl gallate; however, kcat/KM had not been reported for any of these compounds. In order to assess the catalytic efficiency and get insights into the observed promiscuity of this enzyme, steady-state kinetic analyses were performed for LigAB with these and a library of related compounds. The dioxygenation of PCA by LigAB was highly efficient, with a kcat of 51 s(-1) and a kcat/KM of 4.26 × 10(6) M(-1)s(-1). LigAB demonstrated the ability to use a variety of catecholic molecules as substrates beyond the previously identified gallate and 3-O-methyl gallate, including 3,4-dihydroxybenzamide, homoprotocatechuate, catechol, and 3,4-dihydroxybenzonitrile. Interestingly, 3,4-dihydroxybenzamide (DHBAm) behaves in a manner similar to that of the preferred benzoic acid substrates, with a kcat/Km value only ∼4-fold lower than that for gallate and ∼10-fold higher than that for 3-O-methyl gallate. All of these most active substrates demonstrate mechanistic inactivation of LigAB. Additionally, DHBAm exhibits potent product inhibition that leads to an inactive enzyme, being more highly deactivating at lower substrate concentration, a phenomena that, to our knowledge, has not been reported for another dioxygenase substrate/product pair. These results provide valuable catalytic insight into the reactions catalyzed by LigAB and make it the first Type II EDO that is fully characterized both structurally and kinetically.
Collapse
Affiliation(s)
- Kevin P Barry
- Department of Chemistry, Wesleyan University , 52 Lawn Avenue, Middletown, Connecticut 06459, United States
| | | |
Collapse
|
11
|
Li DF, Zhang JY, Hou YJ, Liu L, Hu Y, Liu SJ, Wang DC, Liu W. Structures of aminophenol dioxygenase in complex with intermediate, product and inhibitor. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2012; 69:32-43. [PMID: 23275161 DOI: 10.1107/s0907444912042072] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 10/08/2012] [Indexed: 11/10/2022]
Abstract
Dioxygen activation by nonhaem Fe(II) enzymes containing the 2-His-1-carboxylate facial triad has been extensively studied in recent years. Here, crystal structures of 2-aminophenol 1,6-dioxygenase, an enzyme that represents a minor group of extradiol dioxygenases and that catalyses the ring opening of 2-aminophenol, in complex with the lactone intermediate (4Z,6Z)-3-iminooxepin-2(3H)-one and the product 2-aminomuconic 6-semialdehyde and in complex with the suicide inhibitor 4-nitrocatechol are reported. The Fe-ligand binding schemes observed in these structures revealed some common geometrical characteristics that are shared by the published structures of extradiol dioxygenases, suggesting that enzymes that catalyse the oxidation of noncatecholic compounds are very likely to utilize a similar strategy for dioxygen activation and the fission of aromatic rings as the canonical mechanism. The Fe-ligation arrangement, however, is strikingly enantiomeric to that of all other 2-His-1-carboxylate enzymes apart from protocatechuate 4,5-dioxygenase. This structural variance leads to the generation of an uncommon O(-)-Fe(2+)-O(-) species prior to O(2) binding, which probably forms the structural basis on which APD distinguishes its specific substrate and inhibitor, which share an analogous molecular structure.
Collapse
Affiliation(s)
- De Feng Li
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
12
|
An EPR, thermostability and pH-dependence study of wild-type and mutant forms of catechol 1,2-dioxygenase from Acinetobacter radioresistens S13. Biometals 2012; 26:75-84. [PMID: 23224984 DOI: 10.1007/s10534-012-9595-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 10/29/2012] [Indexed: 10/27/2022]
Abstract
Intradiol dioxygenase are iron-containing enzymes involved in the bacterial degradation of natural and xenobiotic aromatic compounds. The wild-type and mutants forms of catechol 1,2-dioxygenase Iso B from Acinetobacter radioresistens LMG S13 have been investigated in order to get an insight on the structure-function relationships within this system. 4K CW-EPR spectroscopy highlighted different oxygen binding properties of some mutants with respect to the wild-type enzyme, suggesting that a fine tuning of the substrate-binding determinants in the active site pocket may indirectly result in variations of the iron reactivity. A thermostability investigation by optical spectroscopy, that reports on the state of the metal center, showed that the structural stability is more influenced by the type rather than by the position of the mutation. Finally, the influence of pH and temperature on the catalytic activity was monitored and discussed in terms of perturbations induced on the tertiary contact network of the enzyme.
Collapse
|
13
|
Li DF, Zhang JY, Hou Y, Liu L, Liu SJ, Liu W. Crystallization and preliminary crystallographic analysis of 2-aminophenol 1,6-dioxygenase complexed with substrate and with an inhibitor. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:1337-40. [PMID: 23143244 PMCID: PMC3515376 DOI: 10.1107/s1744309112038705] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 09/10/2012] [Indexed: 11/10/2022]
Abstract
Dioxygen activation implemented by nonhaem Fe(II) enzymes containing the 2-His-1-carboxylate facial triad has been extensively studied in recent years. Extradiol dioxygenase is the archetypal member of this superfamily and catalyzes the oxygenolytic ring opening of catechol analogues. Here, the crystallization and preliminary X-ray analysis of 2-aminophenol 1,6-dioxygenase, an enzyme representing a minor subset of extradiol dioxygenases that catalyze the fission of 2-aminophenol rather than catecholic compounds, is reported. Crystals of the holoenzyme with FeII and of complexes with the substrate 2-aminophenol and the suicide inhibitor 4-nitrocatechol were grown using the cocrystallization method under the same conditions as used for the crystallization of the apoenzyme. The crystals belonged to space group C2 and diffracted to 2.3-2.7 Å resolution; the crystal that diffracted to the highest resolution had unit-cell parameters a=270.24, b=48.39, c=108.55 Å, β=109.57°. All X-ray data sets collected from diffraction-quality crystals were suitable for structure determination.
Collapse
Affiliation(s)
- De-Feng Li
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
| | - Jia-Yue Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
| | - Yanjie Hou
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
| | - Lei Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
| | - Shuang-Jiang Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
| | - Wei Liu
- Institute of Immunology, The Third Military Medical University, Chongqing 400038, People’s Republic of China
| |
Collapse
|
14
|
Abstract
Ring-cleaving dioxygenases catalyze key reactions in the aerobic microbial degradation of aromatic compounds. Many pathways converge to catecholic intermediates, which are subject to ortho or meta cleavage by intradiol or extradiol dioxygenases, respectively. However, a number of degradation pathways proceed via noncatecholic hydroxy-substituted aromatic carboxylic acids like gentisate, salicylate, 1-hydroxy-2-naphthoate, or aminohydroxybenzoates. The ring-cleaving dioxygenases active toward these compounds belong to the cupin superfamily, which is characterized by a six-stranded β-barrel fold and conserved amino acid motifs that provide the 3His or 2- or 3His-1Glu ligand environment of a divalent metal ion. Most cupin-type ring cleavage dioxygenases use an Fe(II) center for catalysis, and the proposed mechanism is very similar to that of the canonical (type I) extradiol dioxygenases. The metal ion is presumed to act as an electron conduit for single electron transfer from the metal-bound substrate anion to O(2), resulting in activation of both substrates to radical species. The family of cupin-type dioxygenases also involves quercetinase (flavonol 2,4-dioxygenase), which opens up two C-C bonds of the heterocyclic ring of quercetin, a wide-spread plant flavonol. Remarkably, bacterial quercetinases are capable of using different divalent metal ions for catalysis, suggesting that the redox properties of the metal are relatively unimportant for the catalytic reaction. The major role of the active-site metal ion could be to correctly position the substrate and to stabilize transition states and intermediates rather than to mediate electron transfer. The tentative hypothesis that quercetinase catalysis involves direct electron transfer from metal-bound flavonolate to O(2) is supported by model chemistry.
Collapse
|
15
|
Wójcik A, Borowski T, Broclawik E. The mechanism of the reaction of intradiol dioxygenase with hydroperoxy probe. Catal Today 2011. [DOI: 10.1016/j.cattod.2010.08.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
16
|
Jha PK, Halada GP. The catalytic role of uranyl in formation of polycatechol complexes. Chem Cent J 2011; 5:12. [PMID: 21396112 PMCID: PMC3063190 DOI: 10.1186/1752-153x-5-12] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Accepted: 03/11/2011] [Indexed: 11/10/2022] Open
Abstract
To better understand the association of contaminant uranium with natural organic matter (NOM) and the fate of uranium in ground water, spectroscopic studies of uranium complexation with catechol were conducted. Catechol provides a model for ubiquitous functional groups present in NOM. Liquid samples were analyzed using Raman, FTIR, and UV-Vis spectroscopy. Catechol was found to polymerize in presence of uranyl ions. Polymerization in presence of uranyl was compared to reactions in the presence of molybdate, another oxyion, and self polymerization of catechol at high pH. The effect of time and dissolved oxygen were also studied. It was found that oxygen was required for self-polymerization at elevated pH. The potential formation of phenoxy radicals as well as quinones was monitored. The benzene ring was found to be intact after polymerization. No evidence for formation of ether bonds was found, suggesting polymerization was due to formation of C-C bonds between catechol ligands. Uranyl was found to form outer sphere complexes with catechol at initial stages but over time (six months) polycatechol complexes were formed and precipitated from solution (forming humic-like material) while uranyl ions remained in solution. Our studies show that uranyl acts as a catalyst in catechol-polymerization.
Collapse
Affiliation(s)
- Prashant Kumar Jha
- Department of Materials Science and Engineering and the Center for Environmental Molecular Science Stony Brook University, Stony Brook, New York 11794-2275, USA.
| | | |
Collapse
|
17
|
Cable ML, Levine DJ, Kirby JP, Gray HB, Ponce A. Luminescent lanthanide sensors. ADVANCES IN INORGANIC CHEMISTRY 2011. [DOI: 10.1016/b978-0-12-385904-4.00010-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
18
|
Micalella C, Martignon S, Bruno S, Pioselli B, Caglio R, Valetti F, Pessione E, Giunta C, Rizzi M. X-ray crystallography, mass spectrometry and single crystal microspectrophotometry: a multidisciplinary characterization of catechol 1,2 dioxygenase. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1814:817-23. [PMID: 20869471 DOI: 10.1016/j.bbapap.2010.09.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 09/06/2010] [Accepted: 09/09/2010] [Indexed: 10/19/2022]
Abstract
Intradiol-cleaving catechol 1,2 dioxygenases are Fe(III) dependent enzymes that act on catechol and substituted catechols, including chlorocatechols pollutants, by inserting molecular oxygen in the aromatic ring. Members of this class are the object of intense biochemical investigations aimed at the understanding of their catalytic mechanism, particularly for designing mutants with selected catalytic properties. We report here an in depth investigation of catechol 1,2 dioxygenase IsoB from Acinetobacter radioresistens LMG S13 and its A72G and L69A mutants. By applying a multidisciplinary approach that includes high resolution X-rays crystallography, mass spectrometry and single crystal microspectrophotometry, we characterised the phospholipid bound to the enzyme and provided a structural framework to understand the inversion of substrate specificity showed by the mutants. Our results might be of help for the rational design of enzyme mutants showing a biotechnologically relevant substrate specificity, particularly to be used in bioremediation. This article is part of a Special Issue entitled: Protein Structure and Function in the Crystalline State.
Collapse
Affiliation(s)
- Chiara Micalella
- Department of Biochemistry and Molecular Biology, University of Parma, Viale GP. Usberti 23/A, 43100 Parma, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Karabencheva T, Christov C. Mechanisms of protein circular dichroism: insights from computational modeling. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2010; 80:85-115. [DOI: 10.1016/b978-0-12-381264-3.00003-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
20
|
Hu B, Zhang J. Theoretical investigation on the white-light emission from a single-polymer system with simultaneous blue and orange emission. POLYMER 2009. [DOI: 10.1016/j.polymer.2009.10.034] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Functional model for catecholase-like activity: Synthesis, structure, spectra, and catalytic activity of iron(III) complexes with substituted-salicylaldimine ligands. Inorganica Chim Acta 2009. [DOI: 10.1016/j.ica.2009.06.038] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Mayilmurugan R, Visvaganesan K, Suresh E, Palaniandavar M. Iron(III) Complexes of Tripodal Monophenolate Ligands as Models for Non-Heme Catechol Dioxygenase Enzymes: Correlation of Dioxygenase Activity with Ligand Stereoelectronic Properties. Inorg Chem 2009; 48:8771-83. [DOI: 10.1021/ic900969n] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | | | - Eringathodi Suresh
- Analytical Science Discipline, Central Salt and Marine Chemicals Research Institute, Bhavnagar − 364 002, India
| | | |
Collapse
|
23
|
A study of the aerobic reaction between dopamine and Fe(III) in the presence of S2O3 2−. TRANSIT METAL CHEM 2009. [DOI: 10.1007/s11243-009-9247-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
24
|
Panda MK, John A, Shaikh MM, Ghosh P. Mimicking the Intradiol Catechol Cleavage Activity of Catechol Dioxygenase by High-Spin Iron(III) Complexes of a New Class of a Facially Bound [N2O] Ligand. Inorg Chem 2008; 47:11847-56. [DOI: 10.1021/ic801576f] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Manas K. Panda
- Department of Chemistry and National Single Crystal X-ray Diffraction Facility, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India
| | - Alex John
- Department of Chemistry and National Single Crystal X-ray Diffraction Facility, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India
| | - Mobin M. Shaikh
- Department of Chemistry and National Single Crystal X-ray Diffraction Facility, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India
| | - Prasenjit Ghosh
- Department of Chemistry and National Single Crystal X-ray Diffraction Facility, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India
| |
Collapse
|
25
|
Abstract
Ring-cleaving dioxygenases catalyze the oxygenolytic fission of catecholic compounds, a critical step in the aerobic degradation of aromatic compounds by bacteria. Two classes of these enzymes have been identified, based on the mode of ring cleavage: intradiol dioxygenases utilize non-heme Fe(III) to cleave the aromatic nucleus ortho to the hydroxyl substituents; and extradiol dioxygenases utilize non-heme Fe(II) or other divalent metal ions to cleave the aromatic nucleus meta to the hydroxyl substituents. Recent genomic, structural, spectroscopic, and kinetic studies have increased our understanding of the distribution, evolution, and mechanisms of these enzymes. Overall, extradiol dioxygenases appear to be more versatile than their intradiol counterparts. Thus, the former cleave a wider variety of substrates, have evolved on a larger number of structural scaffolds, and occur in a wider variety of pathways, including biosynthetic pathways and pathways that degrade non-aromatic compounds. The catalytic mechanisms of the two enzymes proceed via similar iron-alkylperoxo intermediates. The ability of extradiol enzymes to act on a variety of non-catecholic compounds is consistent with proposed differences in the breakdown of this iron-alkylperoxo intermediate in the two enzymes, involving alkenyl migration in extradiol enzymes and acyl migration in intradiol enzymes. Nevertheless, despite recent advances in our understanding of these fascinating enzymes, the major determinant of the mode of ring cleavage remains unknown.
Collapse
Affiliation(s)
- Frédéric H Vaillancourt
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | | | | |
Collapse
|
26
|
Christov C, Karabencheva T, Lodola A. Aromatic interactions and rotational strengths within protein environment: An electronic structural study on β-lactamases from class A. Chem Phys Lett 2008. [DOI: 10.1016/j.cplett.2008.03.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
27
|
A novel hexanuclear iron(III) complex containing three-coordination symmetries with two bridging μ-alkoxo groups, two μ3-oxo and four μ-catecholato bridges. INORG CHEM COMMUN 2008. [DOI: 10.1016/j.inoche.2007.12.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
28
|
Guerra KP, Delgado R. Homo-and heterodinuclear complexes of the tris(catecholamide) derivative of a tetraazamacrocycle with Fe3+, Cu2+and Zn2+metal ions. Dalton Trans 2008:539-50. [DOI: 10.1039/b712916e] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
29
|
Substrate activation for O2 reactions by oxidized metal centers in biology. Proc Natl Acad Sci U S A 2007; 104:18355-62. [PMID: 18003930 DOI: 10.1073/pnas.0704191104] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The uncatalyzed reactions of O(2) (S = 1) with organic substrates (S = 0) are thermodynamically favorable but kinetically slow because they are spin-forbidden and the one-electron reduction potential of O(2) is unfavorable. In nature, many of these important O(2) reactions are catalyzed by metalloenzymes. In the case of mononuclear non-heme iron enzymes, either Fe(II) or Fe(III) can play the catalytic role in these spin-forbidden reactions. Whereas the ferrous enzymes activate O(2) directly for reaction, the ferric enzymes activate the substrate for O(2) attack. The enzyme-substrate complex of the ferric intradiol dioxygenases exhibits a low-energy catecholate to Fe(III) charge transfer transition that provides a mechanism by which both the Fe center and the catecholic substrate are activated for the reaction with O(2). In this Perspective, we evaluate how the coupling between this experimentally observed charge transfer and the change in geometry and ligand field of the oxidized metal center along the reaction coordinate can overcome the spin-forbidden nature of the O(2) reaction.
Collapse
|
30
|
Barreto WJ, Ando RA, Santos PS, Silva WP. Preparation, UV-vis, IR, EPR and resonance Raman study of Fe, Ni, Co and Zn dioxolene complexes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2007; 68:612-8. [PMID: 17482865 DOI: 10.1016/j.saa.2006.12.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2006] [Revised: 12/12/2006] [Accepted: 12/16/2006] [Indexed: 05/15/2023]
Abstract
An UV-vis, Raman, IR and EPR spectroscopic study was performed for the water soluble complexes of Fe(III), Ni(II), Co(II) and Zn(II) coordinated to dioxolene ligands derived from oxidized dopamine. The complexes were obtained and stabilized at neutral pH by the strong reducing agent sodium thiosulfate. Iron(III) stabilizes the ligand in catecholate form as [Fe(III)(Cat)2]1-, Cat=dopacatecholate, and the divalent metals as dopasemiquinone (SQ): [Ni(SQ)3]1-, [Co(SQ)3]1- and [Zn(SQ)3]1-. The resonance Raman spectra of the solid complexes as [CAT][Ni(SQ)3], [CTA][Co(SQ)3] and [CTA][Zn(SQ)3], CTA is the cetyltrimethylammonium, are very similar to the spectra of the complexes in solution, while the Fe(III) complex is a mixture of two iron complexes, with catecholate or dopasemiquinone ligands.
Collapse
Affiliation(s)
- Wagner J Barreto
- Laboratory of Environmental Physical Chemistry, Department of Chemistry, CCE, Londrina State University, Londrina, PR, Brazil.
| | | | | | | |
Collapse
|
31
|
Bruijnincx PCA, Lutz M, Spek AL, Hagen WR, van Koten G, Gebbink RJMK. Iron(III)-catecholato complexes as structural and functional models of the intradiol-cleaving catechol dioxygenases. Inorg Chem 2007; 46:8391-402. [PMID: 17722878 DOI: 10.1021/ic700741v] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The structural and spectroscopic characterization of mononuclear iron(III)-catecholato complexes of ligand L4 (methyl bis(1-methylimidazol-2-yl)(2-hydroxyphenyl)methyl ether, HL4) are described, which closely mimic the enzyme-substrate complex of the intradiol-cleaving catechol dioxygenases. The tridentate, tripodal monoanionic ligand framework of L4 incorporates one phenolato and two imidazole donor groups and thus well reproduces the His2Tyr endogenous donor set. In fact, regarding the structural features of [FeIII(L4)(tcc)(H2O)] (5.H2O, tcc = tetrachlorocatechol) in the solid state, the complex constitutes the closest structural model reported to date. The iron(III)-catecholato complexes mimic both the structural features of the active site and its spectroscopic characteristics. As part of its spectroscopic characterization, the electron paramagnetic resonance (EPR) spectra were successfully simulated using a simple model that accounts for D strain. The simulation procedure showed that the observed g = 4.3 line is an intrinsic part of the EPR envelope of the studied complexes and should not necessarily be attributed to a highly rhombic impurity. [FeIII(L4)(dtbc)(H2O)] (dtbc = 3,5-di-tert-butylcatechol) was studied with respect to its dioxygen reactivity, and oxidative cleavage of the substrate was observed. Intradiol- and extradiol-type cleavage products were found in roughly equal amounts. This shows that an accurate structural model of the first-coordination sphere of the active site is not sufficient for obtaining regioselectivity.
Collapse
Affiliation(s)
- Pieter C A Bruijnincx
- Chemical Biology & Organic Chemistry, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
32
|
Hu B, Gahungu G, Zhang J. Optical Properties of the Phosphorescent Trinuclear Copper(I) Complexes of Pyrazolates: Insights from Theory. J Phys Chem A 2007; 111:4965-73. [PMID: 17511429 DOI: 10.1021/jp0689215] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Theoretical investigations have been performed to explore the optical properties of {[3,5-(CF3)(2)Pz]Cu}3 in monomeric and dimeric forms using TD-DFT approaches. The emission of all complexes originates from the lowest triplet excited-states (T1), and the corresponding emissive states are assigned as the mixture of the metal-centered charge transfer and ligand-to-metal charge transfer. The features of the emission spectrum are clarified in detail. The bulk emission spectrum of complex is mainly determined by the stacked dimers rather than the individual monomers. The predicted maximum emission wavelength (lambda(em)) are in good agreement with experimental values, indicating that the phosphorescence bands can be assigned to two different conformations for the neighboring stacked dimers sharing the same monomer in the complex. Energy transfer from T1 of one stacked dimer to the neighboring one is responsible for the disappearance of the shoulder, leaving only the main peak upon heating. With the aim to reveal the conformational dependence for the triplet excited-state emission spectrum, the optical properties of various stacked dimers with different conformations are investigated by varying the relative arrangements through changing inter-monomer distance or rotational angles for the dimer which is responsible for the main peak emission. Calculation results suggest that the shortest intermolecular Cu...Cu distance plays an important role in the emission spectra of the vertical- and tilting-movement dimers, which is ascribed to the variation of the energy gap for the frontier molecular orbitals involved in the main emitting transition. The blue shift of lambda(em) in parallel-movement and rotational dimers can be traced back to the variation of the mutual spatial orientation. Therefore, the modulation of the extent of movement or rotational angles for stacked dimers by external perturbations creates new possibilities for the design of molecular light-emitting devices.
Collapse
Affiliation(s)
- Bo Hu
- Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | | | | |
Collapse
|
33
|
Pau MYM, Davis MI, Orville AM, Lipscomb JD, Solomon EI. Spectroscopic and electronic structure study of the enzyme-substrate complex of intradiol dioxygenases: substrate activation by a high-spin ferric non-heme iron site. J Am Chem Soc 2007; 129:1944-58. [PMID: 17256852 PMCID: PMC2536531 DOI: 10.1021/ja065671x] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Various mechanisms have been proposed for the initial O(2) attack in intradiol dioxygenases based on different electronic descriptions of the enzyme-substrate (ES) complex. We have examined the geometric and electronic structure of the high-spin ferric ES complex of protocatechuate 3,4-dioxygenase (3,4-PCD) with UV/visible absorption, circular dichroism (CD), magnetic CD (MCD), and variable-temperature variable-field (VTVH) MCD spectroscopies. The experimental data were coupled with DFT and INDO/S-CI calculations, and an experimentally calibrated bonding description was obtained. The broad absorption spectrum for the ES complex in the 6000-31000 cm(-1) region was resolved into at least five individual transitions, assigned as ligand-to-metal charge transfer (LMCT) from the protocatechuate (PCA) substrate and Tyr408. From our DFT calculations, all five LMCT transitions originate from the PCA and Tyr piop orbitals to the ferric dpi orbitals. The strong pi covalent donor interactions dominate the bonding in the ES complex. Using hypothetical Ga(3+)-catecholate/semiquinone complexes as references, 3,4-PCD-PCA was found to be best described as a highly covalent Fe(3+)-catecholate complex. The covalency is distributed unevenly among the four PCA valence orbitals, with the strongest interaction between the piop-sym and Fe dxz orbitals. This strong pi interaction, as reflected in the lowest energy PCA-to-Fe(3+) LMCT transition, is responsible for substrate activation for the O(2) reaction of intradiol dioxygenases. This involves a multi-electron-transfer (one beta and two alpha) mechanism, with Fe3+ acting as a buffer for the spin-forbidden two-electron redox process between PCA and O(2) in the formation of the peroxy-bridged ESO2 intermediate. The Fe ligand field overcomes the spin-forbidden nature of the triplet O(2) reaction, which potentially results in an intermediate spin state (S = 3/2) on the Fe(3+) center which is stabilized by a change in coordination along the reaction coordinate.
Collapse
Affiliation(s)
- Monita Y M Pau
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, USA
| | | | | | | | | |
Collapse
|
34
|
Bruijnincx PCA, Lutz M, Spek AL, Hagen WR, Weckhuysen BM, van Koten G, Gebbink RJMK. Modeling the 2-His-1-Carboxylate Facial Triad: Iron−Catecholato Complexes as Structural and Functional Models of the Extradiol Cleaving Dioxygenases. J Am Chem Soc 2007; 129:2275-86. [PMID: 17266307 DOI: 10.1021/ja064816x] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mononuclear iron(II)- and iron(III)-catecholato complexes with three members of a new 3,3-bis(1-alkylimidazol-2-yl)propionate ligand family have been synthesized as models of the active sites of the extradiol cleaving catechol dioxygenases. These enzymes are part of the superfamily of dioxygen-activating mononuclear non-heme iron enzymes that feature the so-called 2-His-1-carboxylate facial triad. The tridentate, tripodal, and monoanionic ligands used in this study include the biologically relevant carboxylate and imidazole donor groups. The structure of the mononuclear iron(III)-tetrachlorocatecholato complex [Fe(L3)(tcc)(H2O)] was determined by single-crystal X-ray diffraction, which shows a facial N,N,O capping mode of the ligand. For the first time, a mononuclear iron complex has been synthesized, which is facially capped by a ligand offering a tridentate Nim,Nim,Ocarb donor set, identical to the endogenous ligands of the 2-His-1-carboxylate facial triad. The iron complexes are five-coordinate in noncoordinating media, and the vacant coordination site is accessible for Lewis bases, e.g., pyridine, or small molecules such as dioxygen. The iron(II)-catecholato complexes react with dioxygen in two steps. In the first reaction the iron(II)-catecholato complexes rapidly convert to the corresponding iron(III) complexes, which then, in a second slow reaction, exhibit both oxidative cleavage and auto-oxidation of the substrate. Extradiol and intradiol cleavage are observed in noncoordinating solvents. The addition of a proton donor results in an increase in extradiol cleavage. The complexes add a new example to the small group of synthetic iron complexes capable of eliciting extradiol-type cleavage and provide more insight into the factors determining the regioselectivity of the enzymes.
Collapse
Affiliation(s)
- Pieter C A Bruijnincx
- Organic Chemistry and Catalysis Group, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
35
|
Borowski T, Siegbahn PEM. Mechanism for Catechol Ring Cleavage by Non-Heme Iron Intradiol Dioxygenases: A Hybrid DFT Study. J Am Chem Soc 2006; 128:12941-53. [PMID: 17002391 DOI: 10.1021/ja0641251] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The mechanism of the catalytic reaction of protocatechuate 3,4-dioxygenase (3,4-PCD), a representative intradiol dioxygenase, was studied with the hybrid density functional method B3LYP. First, a smaller model involving only the iron first-shell ligands (His460, His462, and Tyr408) and the substrates (catechol and dioxygen) was used to probe various a priori plausible reaction mechanisms. Then, an extended model involving also the most important second-shell groups (Arg457, Gln477, and Tyr479) was used for the refinement of the preselected mechanisms. The computational results suggest that the chemical reactions constituting the catalytic cycle of intradiol dioxygenases involve: (1) binding of the substrate as a dianion, in agreement with experimental suggestions, (2) binding of dioxygen to the metal aided by an electron transfer from the substrate to O(2), (3) formation of a bridging peroxo intermediate and its conformational change, which opens the coordination site trans to His462, (4) binding of a neutral XOH ligand (H(2)O or Tyr447) at the open site, (5) proton transfer from XOH to the neighboring peroxo ligand yielding the hydroperoxo intermediate, (6) a Criegee rearrangement leading to the anhydride intermediate, and (7) hydrolysis of the anhydride to the final acyclic product. One of the most important results obtained is that the Criegee mechanism requires an in-plane orientation of the four atoms (two oxygen and two carbon atoms) mainly involved in the reaction. This orientation yields a good overlap between the two sigma orbitals involved, C-C sigma and O-O sigma, allowing an efficient electron flow between them. Another interesting result is that under some conditions, a homolytic O-O bond cleavage might compete with the Criegee rearrangement. The role of the second-shell residues and the substituent effects are also discussed.
Collapse
Affiliation(s)
- Tomasz Borowski
- Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, ul. Niezapominajek 8, 30-239 Cracow, Poland.
| | | |
Collapse
|