1
|
Chen F, Zhang C, Zhang S, Zhang W, Su H, Sheng X. Computational Modeling of the Enzymatic Achmatowicz Rearrangement by Heme-Dependent Chloroperoxidase: Reaction Mechanism, Enantiopreference, Regioselectivity, and Substrate Specificity. J Chem Inf Model 2025; 65:1928-1939. [PMID: 39887186 DOI: 10.1021/acs.jcim.4c01658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
The chloroperoxidase from Caldariomyces fumago (CfCPO) catalyzes the oxidative ring expansion of α-heterofunctionalized furans via the Achmatowicz rearrangement, providing an elegant tool to convert furan rings into complex-prefunctionalized scaffolds. However, the mechanism of this transformation remains unclear. Herein, the CfCPO-catalyzed reaction of rac-1-(2-furyl)ethanol (1a) is studied by quantum chemical calculations and molecular dynamics simulations. The calculations reveal that the conversion follows the general mechanism of the Achmatowicz reaction. Notably, the binding of 1a to the enzyme's active site influences the Compound I (Cpd I) formation, and the (R)-1a enantiomer binding results in a lower barrier compared to (S)-1a, explaining the observed (R)-enantiopreference toward a racemic substrate. Additionally, due to the weaker steric hindrance between the porphyrin ring and substrate, the nucleophilic attack of Cpd I on the furan core of 1a is preferred at the less-substituted C4=C5 bond, providing a rationale for the experimentally observed regioselectivity. Finally, the bottleneck residues in the substrate delivery channel and also the active site surroundings are proposed to be responsible for the substrate specificity of CfCPO. This study lays a theoretical foundation for the rational design of new CPOs that catalyze the Achmatowicz rearrangement with a broader substrate spectrum or specific stereopreference.
Collapse
Affiliation(s)
- Fuqiang Chen
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Haihe Laboratory of Synthetic Biology, Tianjin 300308, China
| | - Chenghua Zhang
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- School of Pharmacy, North Sichuan Medical College, Nanchong 637100, China
| | - Shiqing Zhang
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Haihe Laboratory of Synthetic Biology, Tianjin 300308, China
| | - Wuyuan Zhang
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Hao Su
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Xiang Sheng
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| |
Collapse
|
2
|
Yue D, Ng EWH, Hirao H. Hydrogen-Bond-Assisted Catalysis: Hydroxylation of Paclitaxel by Human CYP2C8. J Am Chem Soc 2024; 146:30117-30125. [PMID: 39441858 PMCID: PMC11544615 DOI: 10.1021/jacs.4c07937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024]
Abstract
Paclitaxel (PTX, or Taxol), a chemotherapeutic agent widely employed in the treatment of various cancers, undergoes metabolic transformations through the cytochrome P450 enzymes CYP3A4 and CYP2C8. CYP3A4 catalyzes the aromatic hydroxylation reaction of PTX, whereas CYP2C8 demonstrates a distinct reactivity pattern, producing 6α-hydroxypaclitaxel via alkane hydroxylation. Despite the significant impact of PTX metabolism on its anticancer efficacy, the detailed mechanisms underlying these transformations have remained largely unclear. In this study, we employed hybrid quantum mechanics and molecular mechanics (QM/MM) calculations to elucidate the mechanism of PTX metabolism by human CYP2C8. Our QM/MM results reveal that the hydroxylation of PTX by CYP2C8 follows an atypical rebound mechanism. Either of the two hydrogen atoms at the C6 position of PTX can be abstracted, leading to a common radical intermediate. Although the subsequent rebound barrier is unusually high, stereochemical scrambling is unlikely, as the rebound barrier for the formation of the 6α-hydroxylated PTX─the actual product─is significantly lower than that for the 6β-hydroxylated metabolite. Thus, product selectivity is determined by the non-rate-determining rebound step. Furthermore, the hydroxyl group at the C7 position of PTX plays a catalytic role by facilitating the hydrogen abstraction and rebound steps. Our study also confirms a pronounced stability of the transition state in the high-spin sextet spin state, enabled by the enzyme's specific substrate positioning.
Collapse
Affiliation(s)
- Dongxiao Yue
- Warshel
Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P. R. China
| | - Elvis Wang Hei Ng
- Department
of Pharmacology and Pharmacy, The University
of Hong Kong, Pokfulam 999077, Hong Kong SAR, P. R. China
| | - Hajime Hirao
- Warshel
Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P. R. China
| |
Collapse
|
3
|
Yue D, Hirao H. Enhancing the high-spin reactivity in C-H bond activation by Iron (IV)-Oxo species: insights from paclitaxel hydroxylation by CYP2C8. Front Chem 2024; 12:1471741. [PMID: 39345859 PMCID: PMC11427847 DOI: 10.3389/fchem.2024.1471741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 08/26/2024] [Indexed: 10/01/2024] Open
Abstract
Previous theoretical studies have revealed that high-spin states possess flatter potential energy surfaces than low-spin states in reactions involving iron(IV)-oxo species of cytochrome P450 enzymes (P450s), nonheme enzymes, or biomimetic complexes. Therefore, actively utilizing high-spin states to enhance challenging chemical transformations, such as C-H bond activation, represents an intriguing research avenue. However, the inherent instability of high-spin states relative to low-spin states in pre-reaction complexes often hinders their accessibility around the transition state, especially in heme systems with strong ligand fields. Counterintuitively, our investigation of the metabolic hydroxylation of paclitaxel by human CYP2C8 using a hybrid quantum mechanics and molecular mechanics (QM/MM) approach showed that the high-spin sextet state exhibits unusually high stability, when the reaction follows a secondary reaction pathway leading to 6β-hydroxypaclitaxel. We thoroughly analyzed the factors contributing to the enhanced stabilization of the high-spin state, and the knowledge obtained could be instrumental in designing competent biomimetic catalysts and biocatalysts for C-H bond activation.
Collapse
Affiliation(s)
| | - Hajime Hirao
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, China
| |
Collapse
|
4
|
Zhang E, Hirao H. Exploring the Bonding Nature of Iron(IV)-Oxo Species through Valence Bond Calculations and Electron Density Analysis. J Phys Chem A 2024; 128:7167-7176. [PMID: 39163412 DOI: 10.1021/acs.jpca.4c04335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Compound I (Cpd I) plays a pivotal role in substrate transformations within the catalytic cycle of cytochrome P450 enzymes (P450s). A key constituent of Cpd I is the iron(IV)-oxo unit, a structural motif also found in other heme enzymes and nonheme enzymes. In this study, we performed ab initio valence bond (VB) calculations, employing the valence bond self-consistent field (VBSCF) and breathing orbital valence bond (BOVB) methods, to unveil the bonding nature of this vital "Fe(IV)═O″ unit in bioinorganic chemistry. Comparisons were drawn with the triplet O2 molecule, which shares some electronic characteristics with iron(IV)-oxo. Additionally, Cpd I models of horseradish peroxidase (HRP) and catalase (CAT) were analyzed to assess the proximal ligand effect on the electronic structure of iron(IV)-oxo. Our VB analysis underscores the significant role of noncovalent resonance effects in shaping the iron(IV)-oxo bonding. The resonance stabilization within the π and σ frameworks occurs to comparable degrees, with additional stabilization resulting from resonance between VB structures from these frameworks. Furthermore, we elucidated the substantial influence of proximal and equatorial ligands in modulating the relative significance of different VB structures. Notably, in the presence of these ligands, iron(IV)-oxo is better described as iron(III)-oxyl or iron(II)-oxygen, displaying weak covalent character but enhanced by resonance effects. Although both species exhibit diradicaloid characters, resonance stabilization in iron(IV)-oxo is weaker than in O2. Further exploration using the Laplacian of electron density shows that, unlike O2, which exhibits a charge concentration region between its two oxygen atoms, iron(IV)-oxo species display a charge depletion region.
Collapse
Affiliation(s)
- Enhua Zhang
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P. R. China
| | - Hajime Hirao
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P. R. China
| |
Collapse
|
5
|
Bhardwaj A, Mondal B. Unraveling the Geometry-Driven C═C Epoxidation and C-H Hydroxylation Reactivity of Tetra-Coordinated Nonheme Iron(IV)-Oxo Complexes. Inorg Chem 2024; 63:14468-14481. [PMID: 39030661 DOI: 10.1021/acs.inorgchem.4c01708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
The electronic structure and reactivity of tetra-coordinated nonheme iron(IV)-oxo complexes have remained unexplored for years. The recent synthesis of a closed-shell iron(IV)-oxo complex [(quinisox)FeIV(O)]+ (1) has set up a platform to understand how such complexes compare with the celebrated open-shell iron-oxo chemistry. Herein, using density functional theory and ab initio calculations, we present an in-depth electronic structure investigation of the C═C epoxidation [oxygen atom transfer (OAT)] and C-H hydroxylation [hydrogen atom transfer (HAT)] reactivity of 1. Using a solvent-coordinated geometry of 1 (1') and other potential tetra-coordinated iron(IV)-oxo complexes bearing rigid ligands (2 and 3), we established the geometric origin of spin-state energetics and reactivity of 1. Complex 1 featuring a strong Fe-O bond exhibits OAT and HAT reactivity in its quintet state. The lowest quintet OAT pathway has a lower barrier by ∼4 kcal/mol than the quintet HAT pathway, corroborating the experimentally observed gas-phase OAT reactivity preference. A conventional HAT reactivity preference for 2 and a comparable OAT and HAT reactivity for 3 are observed. This further supports the geometry-driven reactivity preference for 1. Noncovalent interaction analyses reveal a pronounced π-π interaction between the substrate and ligand in the OAT transition state, rationalizing the origin of the observed reactivity preference for 1.
Collapse
Affiliation(s)
- Akhil Bhardwaj
- School of Chemical Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh 175075, India
| | - Bhaskar Mondal
- School of Chemical Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh 175075, India
| |
Collapse
|
6
|
Han X, Chen F, Li H, Ge R, Shen Q, Duan P, Sheng X, Zhang W. Reaction engineering blocks ether cleavage for synthesizing chiral cyclic hemiacetals catalyzed by unspecific peroxygenase. Nat Commun 2024; 15:1235. [PMID: 38336996 PMCID: PMC10858125 DOI: 10.1038/s41467-024-45545-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
Hemiacetal compounds are valuable building blocks in synthetic chemistry, but their enzymatic synthesis is limited and often hindered by the instability of hemiacetals in aqueous environments. Here, we show that this challenge can be addressed through reaction engineering by using immobilized peroxygenase from Agrocybe aegerita (AaeUPO) under neat reaction conditions, which allows for the selective C-H bond oxyfunctionalization of environmentally significant cyclic ethers to cyclic hemiacetals. A wide range of chiral cyclic hemiacetal products are prepared in >99% enantiomeric excess and 95170 turnover numbers of AaeUPO. Furthermore, by changing the reaction medium from pure organic solvent to alkaline aqueous conditions, cyclic hemiacetals are in situ transformed into lactones. Lactams are obtained under the applied conditions, albeit with low enzyme activity. These findings showcase the synthetic potential of AaeUPO and offer a practical enzymatic approach to produce chiral cyclic hemiacetals through C-H oxyfunctionalization under mild conditions.
Collapse
Affiliation(s)
- Xiaofeng Han
- College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao, 028000, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin, 300308, China
| | - Fuqiang Chen
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin, 300308, China
| | - Huanhuan Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin, 300308, China
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Ran Ge
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin, 300308, China
| | - Qianqian Shen
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin, 300308, China
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Peigao Duan
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Xiang Sheng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin, 300308, China.
- National Center of Technology Innovation for Synthetic Biology, 32 West 7th Avenue, Tianjin, 300308, China.
| | - Wuyuan Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin, 300308, China.
- National Center of Technology Innovation for Synthetic Biology, 32 West 7th Avenue, Tianjin, 300308, China.
| |
Collapse
|
7
|
Yue D, Hirao H. Mechanism of Selective Aromatic Hydroxylation in the Metabolic Transformation of Paclitaxel Catalyzed by Human CYP3A4. J Chem Inf Model 2023; 63:7826-7836. [PMID: 38039955 DOI: 10.1021/acs.jcim.3c01630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2023]
Abstract
Paclitaxel (PTX) is heralded as one of the most successful natural-product drugs for the treatment of refractory cancers. In humans, the hepatic metabolic transformation of PTX is primarily mediated by two cytochrome P450 enzymes (P450s): CYP3A4 and CYP2C8. The impact of P450 metabolism on the anticancer effectiveness of PTX is significant. However, the precise mechanism underlying selective P450-catalyzed reactions in PTX metabolism remains elusive. To address this knowledge gap, we conducted molecular docking and molecular dynamics simulations using multiple crystal structures of CYP3A4, which originally contained other ligands. These methods enabled us to determine the most plausible binding structure of PTX within the enzyme. By further employing hybrid quantum mechanics and molecular mechanics calculations, we successfully identified two primary pathways for the reaction between compound I (Cpd I) of CYP3A4 and PTX. One of these pathways involves the formation of an epoxide, while the other proceeds through a ketone intermediate.
Collapse
Affiliation(s)
- Dongxiao Yue
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P. R. China
| | - Hajime Hirao
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P. R. China
| |
Collapse
|
8
|
Yamaguchi K, Isobe H, Shoji M, Kawakami T, Miyagawa K. The Nature of the Chemical Bonds of High-Valent Transition-Metal Oxo (M=O) and Peroxo (MOO) Compounds: A Historical Perspective of the Metal Oxyl-Radical Character by the Classical to Quantum Computations. Molecules 2023; 28:7119. [PMID: 37894598 PMCID: PMC10609222 DOI: 10.3390/molecules28207119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/08/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
This review article describes a historical perspective of elucidation of the nature of the chemical bonds of the high-valent transition metal oxo (M=O) and peroxo (M-O-O) compounds in chemistry and biology. The basic concepts and theoretical backgrounds of the broken-symmetry (BS) method are revisited to explain orbital symmetry conservation and orbital symmetry breaking for the theoretical characterization of four different mechanisms of chemical reactions. Beyond BS methods using the natural orbitals (UNO) of the BS solutions, such as UNO CI (CC), are also revisited for the elucidation of the scope and applicability of the BS methods. Several chemical indices have been derived as the conceptual bridges between the BS and beyond BS methods. The BS molecular orbital models have been employed to explain the metal oxyl-radical character of the M=O and M-O-O bonds, which respond to their radical reactivity. The isolobal and isospin analogy between carbonyl oxide R2C-O-O and metal peroxide LFe-O-O has been applied to understand and explain the chameleonic chemical reactivity of these compounds. The isolobal and isospin analogy among Fe=O, O=O, and O have also provided the triplet atomic oxygen (3O) model for non-heme Fe(IV)=O species with strong radical reactivity. The chameleonic reactivity of the compounds I (Cpd I) and II (Cpd II) is also explained by this analogy. The early proposals obtained by these theoretical models have been examined based on recent computational results by hybrid DFT (UHDFT), DLPNO CCSD(T0), CASPT2, and UNO CI (CC) methods and quantum computing (QC).
Collapse
Affiliation(s)
- Kizashi Yamaguchi
- SANKEN, Osaka University, Ibaraki 567-0047, Osaka, Japan
- Center for Quantum Information and Quantum Biology (QIQB), Osaka University, Toyonaka 560-0043, Osaka, Japan
| | - Hiroshi Isobe
- Research Institute for Interdisciplinary Science, Okayama University, Okayama 700-8530, Okayama, Japan;
| | - Mitsuo Shoji
- Center for Computational Sciences, University of Tsukuba, Tsukuba 305-8577, Ibaraki, Japan; (M.S.); (K.M.)
| | - Takashi Kawakami
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka 560-0043, Osaka, Japan;
| | - Koichi Miyagawa
- Center for Computational Sciences, University of Tsukuba, Tsukuba 305-8577, Ibaraki, Japan; (M.S.); (K.M.)
| |
Collapse
|
9
|
Hirao H, Zhang E. Bidirectional Charge Transfer at the Heme Iron in Reversible and Quasi-irreversible Cytochrome P450 Inhibition. Inorg Chem 2023; 62:16599-16608. [PMID: 37737847 DOI: 10.1021/acs.inorgchem.3c02541] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
The coordination bonding between inhibitor ligands and heme iron plays a critical role in disrupting the essential catalytic functions of cytochrome P450 enzymes (P450s). Despite its intrinsic importance and consequential implications for human health, our current understanding of coordination bonding in P450 inhibition remains limited. To address this knowledge gap, we conducted a systematic theoretical analysis of the complexes between a ferric or a ferrous heme model and representative inhibitor ligands. Specifically, we evaluated the charge-transfer (CT) effect within these complexes by employing a series of theoretical methods based on density functional theory (DFT). Through a comprehensive analysis, we unveiled the relative significance of ligand-to-heme forward CT in the ferric and ferrous complexes of reversible inhibitors. In contrast, backward CT dominates over forward CT in the ferrous heme complexes of quasi-irreversible inhibitors. Further analysis using the compact frontier orbital method underscores the elevated electron-accepting abilities of quasi-irreversible inhibitors for π backdonation, which greatly amplifies their binding affinity for the ferrous heme. This study sheds light on the intricate mechanisms underlying P450 inhibition and provides valuable insights for future inhibitor design and development.
Collapse
Affiliation(s)
- Hajime Hirao
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen, Guangdong 518172, P. R. China
| | - Enhua Zhang
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen, Guangdong 518172, P. R. China
| |
Collapse
|
10
|
Mokkawes T, De Visser T, Cao Y, De Visser SP. Melatonin Activation by Human Cytochrome P450 Enzymes: A Comparison between Different Isozymes. Molecules 2023; 28:6961. [PMID: 37836804 PMCID: PMC10574541 DOI: 10.3390/molecules28196961] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/30/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023] Open
Abstract
Cytochrome P450 enzymes in the human body play a pivotal role in both the biosynthesis and the degradation of the hormone melatonin. Melatonin plays a key role in circadian rhythms in the body, but its concentration is also linked to mood fluctuations as well as emotional well-being. In the present study, we present a computational analysis of the binding and activation of melatonin by various P450 isozymes that are known to yield different products and product distributions. In particular, the P450 isozymes 1A1, 1A2, and 1B1 generally react with melatonin to provide dominant aromatic hydroxylation at the C6-position, whereas the P450 2C19 isozyme mostly provides O-demethylation products. To gain insight into the origin of these product distributions of the P450 isozymes, we performed a comprehensive computational study of P450 2C19 isozymes and compared our work with previous studies on alternative isozymes. The work covers molecular mechanics, molecular dynamics and quantum mechanics approaches. Our work highlights major differences in the size and shape of the substrate binding pocket amongst the different P450 isozymes. Consequently, substrate binding and positioning in the active site varies substantially within the P450 isozymes. Thus, in P450 2C19, the substrate is oriented with its methoxy group pointing towards the heme, and therefore reacts favorably through hydrogen atom abstraction, leading to the production of O-demethylation products. On the other hand, the substrate-binding pockets in P450 1A1, 1A2, and 1B1 are tighter, direct the methoxy group away from the heme, and consequently activate an alternative site and lead to aromatic hydroxylation instead.
Collapse
Affiliation(s)
| | | | | | - Sam P. De Visser
- Department of Chemical Engineering, Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| |
Collapse
|
11
|
Rana TRK, Swain A, Rajaraman G. The role of agostic interaction in the mechanism of ethylene polymerisation using Cr(III) half-sandwich complexes: What dictates the reactivity? Dalton Trans 2023; 52:11826-11834. [PMID: 37555755 DOI: 10.1039/d3dt02032k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Chromium-based catalysts play a significant role in the production of ultra-high molecular weight polyethylene, and half-sandwich functionalised-metallocene complexes were proven to be one of the most suitable candidates as catalysts for generating such large polymeric-length olefins. Earlier experimental studies on olefin polymerisation using a series of catalysts such as [L1-2CrCl2] (where L1 = 1-((pyridin-2-yl)methyl)indenyl (1) and L2 = 2-methyl-1-{[4-(yridinene-1-yl)yridine-2-yl]methyl}-1H-indenyl (2)) reveal significant variation where peripheral substitution on the ligand was found to influence the reactivity significantly. However, the specific ligand position that affects the reactivity has not been established. As these reactions are fast and robust, it is challenging to establish reactive intermediates via experiments, and therefore, mechanistic clues for such reactions are elusive. Here we have undertaken a detailed computational study by employing an array of DFT (uB3LYP-D3/def2-TZVP, CASSCF/NEVPT2, and DLPNO-CCSD(T) methods to explore the substituted and non-substituted pyridine-cyclo-pentadienyl chromium complexes and their influence on the catalytic activity in ethylene polymerisation. Our study not only unravels the catalytic pathway for olefin polymerisation for such Cr(III)-half-sandwich complexes but also reveals that the energetics of the formation of pseudo-three-coordinate alkyl intermediates is key to the variation in the reactivity observed. A detailed examination using MO and NBO analysis unveils the presence of a C-H⋯Cr agostic interaction that is found to significantly stabilise this intermediate when the pyridine ligand has strong electron-donating groups at its para position. The other substitutions, such as on the cyclopentadienyl ligand, neither yield the desired stability nor the desired interaction. Further studies on models support this proposal. In order to improve the efficiency and selectivity of catalytic systems in olefin polymerisation, we strongly advocate for the integration of agostic interactions as a crucial criterion in the design of future catalysts. Considering the prevalence of electron-deficient metal centres in successful olefin polymerisation catalysts, this research prompts a broader mechanistic inquiry to propose a unified approach for this industrially crucial reaction.
Collapse
Affiliation(s)
| | - Abinash Swain
- Department of Chemistry, Indian Institute of Technology, Powai, Mumbai, India.
| | - Gopalan Rajaraman
- Department of Chemistry, Indian Institute of Technology, Powai, Mumbai, India.
| |
Collapse
|
12
|
Follmer AH, Borovik AS. The role of basicity in selective C-H bond activation by transition metal-oxidos. Dalton Trans 2023; 52:11005-11016. [PMID: 37497779 PMCID: PMC10619463 DOI: 10.1039/d3dt01781h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
The development of (bio)catalysts capable of selectively activating strong C-H bonds is a continuing challenge in modern chemistry. In both metalloenzymes and synthetic systems capable of activating C-H bonds, transition metal-oxido intermediates serve as the active species for reactivity whose thermodynamic properties influence the bond strengths they are capable of activating. In this Frontier article, we present current ideas of how the basicity of transition metal-oxidos impacts their reactivity with C-H bonds and present new opportunities within this field. We highlight recent insights into the role basicity plays in the activation process and its influence on mechanism, as well as the important role that secondary coordination sphere effects, such as hydrogen bonds, in tuning the basicity of the metal-oxido species is discussed.
Collapse
Affiliation(s)
- Alec H Follmer
- Department of Chemistry, University of California-Irvine, Irvine, CA 92697-3900, USA.
| | - A S Borovik
- Department of Chemistry, University of California-Irvine, Irvine, CA 92697-3900, USA.
| |
Collapse
|
13
|
Mai BK, Neris NM, Yang Y, Liu P. C-N Bond Forming Radical Rebound Is the Enantioselectivity-Determining Step in P411-Catalyzed Enantioselective C(sp 3)-H Amination: A Combined Computational and Experimental Investigation. J Am Chem Soc 2022; 144:11215-11225. [PMID: 35583461 DOI: 10.1021/jacs.2c02283] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Engineered metalloenzymes represent promising catalysts for stereoselective C-H functionalization reactions. Recently, P450 enzymes have been evolved to allow for new-to-nature intramolecular C(sp3)-H amination reactions via a nitrene transfer mechanism, giving rise to diamine derivatives with excellent enantiocontrol. To shed light on the origin of enantioselectivity, a combined computational and experimental study was carried out. Hybrid quantum mechanics/molecular mechanics calculations were performed to investigate the activation energies and enantioselectivities of both the hydrogen atom transfer (HAT) and the subsequent C-N bond forming radical rebound steps. Contrary to previously hypothesized enantioinduction mechanisms, our calculations show that the radical rebound step is enantioselectivity-determining, whereas the preceding HAT step is only moderately stereoselective. Furthermore, the selectivity in the initial HAT is ablated by rapid conformational change of the radical intermediate prior to C-N bond formation. This finding is corroborated by our experimental study using a set of enantiomerically pure, monodeuterated substrates. Furthermore, classical and ab initio molecular dynamics simulations were carried out to investigate the conformational flexibility of the carbon-centered radical intermediate. This key radical species undergoes a facile conformational change in the enzyme active site from the pro-(R) to the pro-(S) configuration, whereas the radical rebound is slower due to the spin-state change and ring strain of the cyclization process, thereby allowing stereoablative C-N bond formation. Together, these studies revealed an underappreciated enantioinduction mechanism in biocatalytic C(sp3)-H functionalizations involving radical intermediates, opening up new avenues for the development of other challenging asymmetric C(sp3)-H functionalizations.
Collapse
Affiliation(s)
- Binh Khanh Mai
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Natalia M Neris
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Yang Yang
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
- Biomolecular Science and Engineering (BMSE) Program, University of California, Santa Barbara, California 93106, United States
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
14
|
Gingrich PW, Siegel JB, Tantillo DJ. Assessing Alkene Reactivity toward Cytochrome P450-Mediated Epoxidation through Localized Descriptors and Regression Modeling. J Chem Inf Model 2022; 62:1979-1987. [PMID: 35421306 DOI: 10.1021/acs.jcim.1c01567] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The prediction of sites of epoxidation by cytochrome P450s during metabolism is particularly important in drug design, as epoxides are capable of alkylating biological macromolecules. Reliable methods are needed to quantitatively predict P450-mediated epoxidation barriers for inclusion in high-throughput screening campaigns alongside protein-ligand docking. Utilizing the fractional occupation number weighted density (FOD) and orbital-weighted Fukui index (fw+) as descriptors of local reactivity and a data set of 36 alkene epoxidation barriers computed with density functional theory (DFT), we developed and validated a multiple linear regression model for the reliable estimation of epoxidation barriers using only substrate structures as input. Using our recommended level of theory (GFN2-xTB//GFN-FF), mean absolute errors in the training and test sets were found to be 0.66 and 0.70 kcal/mol, respectively, with coefficients of determination of ca. 0.80. We demonstrate the utility of this approach on three known substrates of CYP101A1 and further show that this approach is inappropriate for particularly electron-rich alkenes. By employing a modern semiempirical method on force-field-generated geometries, the required descriptors can be calculated on the millisecond timescale per structure, making the approach well suited for incorporation into high-throughput methodologies alongside docking.
Collapse
Affiliation(s)
- Phillip W Gingrich
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Justin B Siegel
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Dean J Tantillo
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
15
|
Kaviani S, Shahab S, Sheikhi M, Khaleghian M, Al Saud S. Characterization of the binding affinity between some anti-Parkinson agents and Mn2+, Fe3+ and Zn2+ metal ions: A DFT insight. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
16
|
Si NT, Nhung NTA, Bui TQ, Nguyen MT, Nhat PV. Gold nanoclusters as prospective carriers and detectors of pramipexole. RSC Adv 2021; 11:16619-16632. [PMID: 35479146 PMCID: PMC9031969 DOI: 10.1039/d1ra02172a] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 04/27/2021] [Indexed: 02/06/2023] Open
Abstract
Pramipexole (PPX) is known in the treatment of Parkinson's disease and restless legs syndrome. We carried out a theoretical investigation on pramipexole-Au cluster interactions for the applications of drug delivery and detection. Three Au N clusters with sizes N = 6, 8 and 20 were used as reactant models to simulate the metallic nanostructured surfaces. Quantum chemical computations were performed in both gas phase and aqueous environments using density functional theory (DFT) with the PBE functional and the cc-pVDZ-PP/cc-pVTZ basis set. The PPX drug is mainly adsorbed on gold clusters via its nitrogen atom of the thiazole ring with binding energies of ca. -22 to -28 kcal mol-1 in vacuum and ca. -18 to -24 kcal mol-1 in aqueous solution. In addition to such Au-N covalent bonding, the metal-drug interactions are further stabilized by electrostatic effects, namely hydrogen-bond NH⋯Au contributions. Surface-enhanced Raman scattering (SERS) of PPX adsorbed on the Au surfaces and its desorption process were also examined. In comparison to Au8, both Au6 and Au20 clusters undergo a shorter recovery time and a larger change of energy gap, being possibly conducive to electrical conversion, thus signaling for detection of the drug. A chemical enhancement mechanism for SERS procedure was again established in view of the formation of nonconventional hydrogen interactions Au⋯H-N. The binding of PPX to a gold cluster is expected to be reversible and triggered by the presence of cysteine residues in protein matrices or lower-shifted alteration of environment pH. These findings would encourage either further theoretical probes to reach more accurate views on the efficiency of pramipexole-Au interactions, or experimental attempts to build appropriate gold nanostructures for practical trials, harnessing their potentiality for applications.
Collapse
Affiliation(s)
- Nguyen Thanh Si
- Computational Chemistry Research Group, Ton Duc Thang University Ho Chi Minh City Vietnam
- Faculty of Applied Sciences, Ton Duc Thang University Ho Chi Minh City Vietnam
| | | | - Thanh Q Bui
- Department of Chemistry, University of Sciences, Hue University Hue Vietnam
| | - Minh Tho Nguyen
- Institute for Computational Science and Technology (ICST) Ho Chi Minh City Vietnam
| | - Pham Vu Nhat
- Department of Chemistry, Can Tho University Can Tho Vietnam
| |
Collapse
|
17
|
Jaladanki CK, Khatun S, Gohlke H, Bharatam PV. Reactive Metabolites from Thiazole-Containing Drugs: Quantum Chemical Insights into Biotransformation and Toxicity. Chem Res Toxicol 2021; 34:1503-1517. [PMID: 33900062 DOI: 10.1021/acs.chemrestox.0c00450] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Drugs containing thiazole and aminothiazole groups are known to generate reactive metabolites (RMs) catalyzed by cytochrome P450s (CYPs). These RMs can covalently modify essential cellular macromolecules and lead to toxicity and induce idiosyncratic adverse drug reactions. Molecular docking and quantum chemical hybrid DFT study were carried out to explore the molecular mechanisms involved in the biotransformation of thiazole (TZ) and aminothiazole (ATZ) groups leading to RM epoxide, S-oxide, N-oxide, and oxaziridine. The energy barrier required for the epoxidation is 13.63 kcal/mol, that is lower than that of S-oxidation, N-oxidation, and oxaziridine formation (14.56, 17.90, and 20.20, kcal/mol respectively). The presence of the amino group in ATZ further facilitates all the metabolic pathways, for example, the barrier for the epoxidation reaction is reduced by ∼2.5 kcal/mol. Some of the RMs/their isomers are highly electrophilic and tend to form covalent bonds with nucleophilic amino acids, finally leading to the formation of metabolic intermediate complexes (MICs). The energy profiles of these competitive pathways have also been explored.
Collapse
Affiliation(s)
- Chaitanya K Jaladanki
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector -67, S. A. S. Nagar (Mohali), 160 062 Punjab, India
| | - Samima Khatun
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector -67, S. A. S. Nagar (Mohali), 160 062 Punjab, India
| | - Holger Gohlke
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany.,Forschungszentrum Jülich GmbH, John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), and Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Wilhelm-Johnen-Straße, 52425 Jülich, Germany
| | - Prasad V Bharatam
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector -67, S. A. S. Nagar (Mohali), 160 062 Punjab, India
| |
Collapse
|
18
|
Das A, Ren Y, Hessin C, Desage-El Murr M. Copper catalysis with redox-active ligands. Beilstein J Org Chem 2020; 16:858-870. [PMID: 32461767 PMCID: PMC7214867 DOI: 10.3762/bjoc.16.77] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/08/2020] [Indexed: 01/15/2023] Open
Abstract
Copper catalysis finds applications in various synthetic fields by utilizing the ability of copper to sustain mono- and bielectronic elementary steps. Further to the development of well-defined copper complexes with classical ligands such as phosphines and N-heterocyclic carbenes, a new and fast-expanding area of research is exploring the possibility of a complementing metal-centered reactivity with electronic participation by the coordination sphere. To achieve this electronic flexibility, redox-active ligands can be used to engage in a fruitful “electronic dialogue” with the metal center, and provide additional venues for electron transfer. This review aims to present the latest results in the area of copper-based cooperative catalysis with redox-active ligands.
Collapse
Affiliation(s)
- Agnideep Das
- Université de Strasbourg, Institut de Chimie, UMR CNRS 7177, 67000 Strasbourg, France
| | - Yufeng Ren
- Sorbonne Université, Institut Parisien de Chimie Moléculaire, UMR CNRS 8232, 75005 Paris, France
| | - Cheriehan Hessin
- Université de Strasbourg, Institut de Chimie, UMR CNRS 7177, 67000 Strasbourg, France
| | - Marine Desage-El Murr
- Université de Strasbourg, Institut de Chimie, UMR CNRS 7177, 67000 Strasbourg, France
| |
Collapse
|
19
|
The oxidation of cyclo-olefin by the S = 2 ground-state complex [Fe IV(O)(TQA)(NCMe)] 2. J Biol Inorg Chem 2020; 25:371-382. [PMID: 32133579 DOI: 10.1007/s00775-020-01768-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 02/16/2020] [Indexed: 10/24/2022]
Abstract
Density functional theory calculation is used to investigate the oxidation of cyclo-olefin (cyclobutene, cyclopentene, cyclohexene, cycloheptene, and cyclo-octene) by the complex [FeIV(O)(TQA)(NCMe)]2+, which has S = 2 ground state, and the effect of electronic factors and steric hindrance on reaction barriers. Our results suggest that the oxo-iron(IV) complex can oxidise C-H and C = C bonds via a single-state mechanism, and two different ways of electron transport exist. The energy barriers initially decrease with increasing substrate size, and the trend then reverses. Comparison of the energy barrier in different systems reveals that except for the reaction between [FeIV(O)(TQA)(NCMe)]2+ and cycloheptene, oxo-iron(IV) complexes prefer epoxidation to hydroxylation. However, the hydroxylated product is more stable than the corresponding epoxidated product. This result indicates that the products of epoxidation tend to decompose first. The energy barrier of hydroxylation and epoxidation originates from the balance of orbital interaction and Pauli repulsion from the equatorial ligand and protons on the approaching substrate. In this regard, we calculate the weak interaction between two fragments (oxo-iron complex and substrates) using the independent gradient model and drawn the corresponding 3D isosurface representations of reactants.
Collapse
|
20
|
Monika, Ansari A. Mechanistic insights into the allylic oxidation of aliphatic compounds by tetraamido iron( v) species: A C–H vs. O–H bond activation. NEW J CHEM 2020. [DOI: 10.1039/d0nj03095c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This work is based on a deep insight into a comparative study of C–H vs. O–H bond activation of allylic compound by the high valent iron complex. Our theoretical findings can help to design catalysts with better efficiency for catalytic reactions.
Collapse
Affiliation(s)
- Monika
- Department of Chemistry
- Central University of Haryana
- Mahendergarh-123031
- India
| | - Azaj Ansari
- Department of Chemistry
- Central University of Haryana
- Mahendergarh-123031
- India
| |
Collapse
|
21
|
Fukuzumi S, Cho KB, Lee YM, Hong S, Nam W. Mechanistic dichotomies in redox reactions of mononuclear metal–oxygen intermediates. Chem Soc Rev 2020; 49:8988-9027. [DOI: 10.1039/d0cs01251c] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This review article focuses on various mechanistic dichotomies in redox reactions of metal–oxygen intermediates with the emphasis on understanding and controlling their redox reactivity from experimental and theoretical points of view.
Collapse
Affiliation(s)
- Shunichi Fukuzumi
- Department of Chemistry and Nano Science
- Ewha Womans University
- Seoul 03760
- Korea
- Graduate School of Science and Engineering
| | - Kyung-Bin Cho
- Department of Chemistry
- Jeonbuk National University
- Jeonju 54896
- Korea
| | - Yong-Min Lee
- Department of Chemistry and Nano Science
- Ewha Womans University
- Seoul 03760
- Korea
| | - Seungwoo Hong
- Department of Chemistry
- Sookmyung Women's University
- Seoul 04310
- Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science
- Ewha Womans University
- Seoul 03760
- Korea
- School of Chemistry and Chemical Engineering
| |
Collapse
|
22
|
Wang Q, Chen X, Li G, Chen Q, Yang YF, She YB. Computational Exploration of Chiral Iron Porphyrin-Catalyzed Asymmetric Hydroxylation of Ethylbenzene Where Stereoselectivity Arises from π-π Stacking Interaction. J Org Chem 2019; 84:13755-13763. [PMID: 31599588 DOI: 10.1021/acs.joc.9b01989] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The mechanism and origins of stereoselectivity of chiral iron porphyrin-catalyzed asymmetric hydroxylation of ethylbenzene were explored with density functional theory. The hydrogen atom abstraction is the rate- and stereoselectivity-determining step. In good agreement with experimental results, the formation of the (R)-1-phenylethanol product is found to be the most favorable pathway. The transition state of hydrogen atom abstraction which leads to the (S)-1-phenylethanol product is unfavorable by 1.7 kcal/mol compared to the corresponding transition state which leads to the (R)-1-phenylethanol product. Enantioselectivity arises from an attractive π-π stacking interaction between the phenyl group of ethylbenzene substrate and the naphthyl group of the porphyrin ligand.
Collapse
Affiliation(s)
- Qunmin Wang
- College of Chemical Engineering , Zhejiang University of Technology , Hangzhou , Zhejiang 310014 , China
| | - Xiahe Chen
- College of Chemical Engineering , Zhejiang University of Technology , Hangzhou , Zhejiang 310014 , China
| | - Guijie Li
- College of Chemical Engineering , Zhejiang University of Technology , Hangzhou , Zhejiang 310014 , China
| | - Qidong Chen
- College of Chemical Engineering , Zhejiang University of Technology , Hangzhou , Zhejiang 310014 , China
| | - Yun-Fang Yang
- College of Chemical Engineering , Zhejiang University of Technology , Hangzhou , Zhejiang 310014 , China
| | - Yuan-Bin She
- College of Chemical Engineering , Zhejiang University of Technology , Hangzhou , Zhejiang 310014 , China
| |
Collapse
|
23
|
Terencio T, Andris E, Gamba I, Srnec M, Costas M, Roithová J. Chemoselectivity in the Oxidation of Cycloalkenes with a Non-Heme Iron(IV)-Oxo-Chloride Complex: Epoxidation vs. Hydroxylation Selectivity. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:1923-1933. [PMID: 31399940 PMCID: PMC6805805 DOI: 10.1007/s13361-019-02251-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/15/2019] [Accepted: 05/15/2019] [Indexed: 06/10/2023]
Abstract
We report and analyze chemoselectivity in the gas phase reactions of cycloalkenes (cyclohexene, cycloheptene, cis-cyclooctene, 1,4-cyclohexadiene) with a non-heme iron(IV)-oxo complex [(PyTACN)Fe(O)(Cl)]+, which models the active species in iron-dependent halogenases. Unlike in the halogenases, we did not observe any chlorination of the substrate. However, we observed two other reaction pathways: allylic hydrogen atom transfer (HAT) and alkene epoxidation. The HAT is clearly preferred in the case of 1,4-cyclohexadiene, both pathways have comparable reaction rates in reaction with cyclohexene, and epoxidation is strongly favored in reactions with cycloheptene and cis-cyclooctene. This preference for epoxidation differs from the reactivity of iron(IV)-oxo complexes in the condensed phase, where HAT usually prevails. To understand the observed selectivity, we analyze effects of the substrate, spin state, and solvation. Our DFT and CASPT2 calculations suggest that all the reactions occur on the quintet potential energy surface. The DFT-calculated energies of the transition states for the epoxidation and hydroxylation pathways explain the observed chemoselectivity. The SMD implicit solvation model predicts the relative increase of the epoxidation barriers with solvent polarity, which explains the clear preference of HAT in the condensed phase.
Collapse
Affiliation(s)
- Thibault Terencio
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 2030/8, 128 43, Prague 2, Czech Republic
- School of Chemical Science and Engineering, Yachay Tech University, 100650, Yachay City of Knowledge, Urcuqui, Ecuador
| | - Erik Andris
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 2030/8, 128 43, Prague 2, Czech Republic
| | - Ilaria Gamba
- Departament de Quimica and Institute of Computational Chemistry and Catalysis (IQCC), University of Girona, Campus Montilivi, 17071, Girona, Spain
| | - Martin Srnec
- J. Heyrovsky Institute of Physical Chemistry of the CAS, v. v. i., Dolejškova 2155/3, 182 23, Prague 8, Czech Republic.
| | - Miquel Costas
- Departament de Quimica and Institute of Computational Chemistry and Catalysis (IQCC), University of Girona, Campus Montilivi, 17071, Girona, Spain.
| | - Jana Roithová
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 2030/8, 128 43, Prague 2, Czech Republic.
- Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ, Nijmegen, Netherlands.
| |
Collapse
|
24
|
Yu MJ, Chen SL. From Alkane to Alkene: The Inert Aliphatic C–H Bond Activation Presented by Binuclear Iron Stearoyl-CoA Desaturase with a Long di-Fe Distance of 6 Å. ACS Catal 2019. [DOI: 10.1021/acscatal.9b00456] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Ming-Jia Yu
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People’s Republic of China
| | - Shi-Lu Chen
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People’s Republic of China
| |
Collapse
|
25
|
Fan T, Sun G, Zhao L, Cui X, Zhong R. Metabolic Activation and Carcinogenesis of Tobacco-Specific Nitrosamine N'-Nitrosonornicotine (NNN): A Density Function Theory and Molecular Docking Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:178. [PMID: 30634532 PMCID: PMC6352179 DOI: 10.3390/ijerph16020178] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/20/2018] [Accepted: 01/03/2019] [Indexed: 12/13/2022]
Abstract
N'-nitrosonornicotine (NNN) is one of the tobacco-specific nitrosamines (TSNAs) that exists widely in smoke and smokeless tobacco products. NNN can induce tumors in various laboratory animal models and has been identified by International Agency for Research on Cancer (IARC) as a human carcinogen. Metabolic activation of NNN is primarily initiated by cytochrome P450 enzymes (CYP450s) via 2'-hydroxylation or 5'-hydroxylation. Subsequently, the hydroxylating intermediates undergo spontaneous decomposition to generate diazohydroxides, which can be further converted to alkyldiazonium ions, followed by attacking DNA to form various DNA damages, such as pyridyloxobutyl (POB)-DNA adducts and pyridyl-N-pyrrolidinyl (py-py)-DNA adducts. If not repaired correctly, these lesions would lead to tumor formation. In the present study, we performed density functional theory (DFT) computations and molecular docking studies to understand the mechanism of metabolic activation and carcinogenesis of NNN. DFT calculations were performed to explore the 2'- or 5'- hydroxylation reaction of (R)-NNN and (S)-NNN. The results indicated that NNN catalyzed by the ferric porphyrin (Compound I, Cpd I) at the active center of CYP450 included two steps, hydrogen abstraction and rebound reactions. The free energy barriers of the 2'- and 5'-hydroxylation of NNN are 9.82/8.44 kcal/mol (R/S) and 7.99/9.19 kcal/mol (R/S), respectively, suggesting that the 2'-(S) and 5'-(R) pathways have a slight advantage. The free energy barriers of the decomposition occurred at the 2'-position and 5'-position of NNN are 18.04/18.02 kcal/mol (R/S) and 18.33/19.53 kcal/mol (R/S), respectively. Moreover, we calculated the alkylation reactions occurred at ten DNA base sites induced by the 2'-hydroxylation product of NNN, generating the free energy barriers ranging from 0.86 to 4.72 kcal/mol, which indicated that these reactions occurred easily. The docking study showed that (S)-NNN had better affinity with CYP450s than that of (R)-NNN, which was consistent with the experimental results. Overall, the combined results of the DFT calculations and the docking obtained in this study provide an insight into the understanding of the carcinogenesis of NNN and other TSNAs.
Collapse
Affiliation(s)
- Tengjiao Fan
- Beijing Key Laboratory of Environmental & Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China.
| | - Guohui Sun
- Beijing Key Laboratory of Environmental & Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China.
| | - Lijiao Zhao
- Beijing Key Laboratory of Environmental & Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China.
| | - Xin Cui
- Beijing Key Laboratory of Environmental & Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China.
| | - Rugang Zhong
- Beijing Key Laboratory of Environmental & Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
26
|
Gheidi M, Safari N, Zahedi M. Density functional theory studies on the conversion of hydroxyheme to iron-verdoheme in the presence of dioxygen. Dalton Trans 2018; 46:2146-2158. [PMID: 28120965 DOI: 10.1039/c6dt04250c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Detailed insight into the second step of heme degradation by heme oxygenase, oxophlorin to verdoheme and biliverdin, is presented. Density functional theory methods are reported for the conversion of oxophlorin to verdoheme. Since it is currently unclear whether dioxygen binding to iron oxophlorin is followed by a reduction or not, in this work we have focused on the difference in reactivity between [(Im)(O2˙)FeIII(PO˙)] (PO˙ is the oxophlorin dianion radical) and [(Im)(O2˙)FeIII(PO)]- (PO is the oxophlorin trianion). Thus, we have shown that in [(Im)(O2˙)FeIII(PO˙)] and [(Im)(O2˙)FeIII(PO)]-, the mechanisms are stepwise with an initial C-O bond activation to form a ring-structure where the oxophlorin is distorted from planarity. This is followed by homolytic dioxygen bond breaking that directly leads to iron-oxo verdoheme products. The [(Im)(O2˙)FeIII(PO˙)] mechanism proceeds via two-state-reactivity patterns on the adjacent doublet and quartet spin state surfaces, whereas the [(Im)(O2˙)FeIII(PO)]- route shows single-state-reactivity on a triplet spin state surface. In both, the rate determining step is the C-O bond activation, with substantially lower barriers on the [(Im)(O2˙)FeIII(PO˙)] surface of 12.15 kcal mol-1 in the gas phase compared to 22.55 kcal mol-1 for the intermediate-spin of [(Im)(O2˙)FeIII(PO)]-. The complete active space self-consistent-field wave functions with second-order multi-reference perturbation theory were also studied. Finally, the effects of the solvent and the medium on the reaction barriers were tested and shown to be considerable.
Collapse
Affiliation(s)
- Mahin Gheidi
- Department of Chemistry, Faculty of Sciences, Shahid Beheshti University, G. C., Evin, 19839-63113, Tehran, Iran.
| | - Nasser Safari
- Department of Chemistry, Faculty of Sciences, Shahid Beheshti University, G. C., Evin, 19839-63113, Tehran, Iran.
| | - Mansour Zahedi
- Department of Chemistry, Faculty of Sciences, Shahid Beheshti University, G. C., Evin, 19839-63113, Tehran, Iran.
| |
Collapse
|
27
|
Timmins A, Quesne MG, Borowski T, de Visser SP. Group Transfer to an Aliphatic Bond: A Biomimetic Study Inspired by Nonheme Iron Halogenases. ACS Catal 2018. [DOI: 10.1021/acscatal.8b01673] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Amy Timmins
- The Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Matthew G. Quesne
- The Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
| | - Tomasz Borowski
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland
| | - Sam P. de Visser
- The Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| |
Collapse
|
28
|
The possibility of iron chelation therapy in the presence of different HPOs; a molecular approach to the non-covalent interactions and binding energies. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2018.04.065] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
29
|
Ren Y, Cheaib K, Jacquet J, Vezin H, Fensterbank L, Orio M, Blanchard S, Desage-El Murr M. Copper-Catalyzed Aziridination with Redox-Active Ligands: Molecular Spin Catalysis. Chemistry 2018; 24:5086-5090. [PMID: 29356131 DOI: 10.1002/chem.201705649] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Indexed: 12/22/2022]
Abstract
Small-molecule catalysts as mimics of biological systems illustrate the chemists' attempts at emulating the tantalizing abilities displayed by nature's metalloenzymes. Among these innate behaviors, spin multistate reactivity is used by biological systems as it offers thermodynamic leverage towards challenging chemical reactivity but this concept is difficult to translate into the realm of synthetic organometallic catalysis. Here, we report a rare example of molecular spin catalysis involving multistate reactivity in a small-molecule biomimetic copper catalyst applied to aziridination. This behavior is supported by spin state flexibility enabled by the redox-active ligand.
Collapse
Affiliation(s)
- Yufeng Ren
- Sorbonne Universités, UPMC, Université Paris 06, UMR CNRS 8232, Institut Parisien de Chimie Moléculaire, France
| | - Khaled Cheaib
- Sorbonne Universités, UPMC, Université Paris 06, UMR CNRS 8232, Institut Parisien de Chimie Moléculaire, France
| | - Jérémy Jacquet
- Sorbonne Universités, UPMC, Université Paris 06, UMR CNRS 8232, Institut Parisien de Chimie Moléculaire, France
| | - Hervé Vezin
- Laboratoire de Spectrochimie Infrarouge et Raman, Univ. Lille, CNRS UMR 8516, 59000, Lille, France
| | - Louis Fensterbank
- Sorbonne Universités, UPMC, Université Paris 06, UMR CNRS 8232, Institut Parisien de Chimie Moléculaire, France
| | - Maylis Orio
- Aix Marseille Université, CNRS, Centrale Marseille, iSm2 UMR 7313, 13397, Marseille cedex 20, France
| | - Sébastien Blanchard
- Sorbonne Universités, UPMC, Université Paris 06, UMR CNRS 8232, Institut Parisien de Chimie Moléculaire, France
| | - Marine Desage-El Murr
- Sorbonne Universités, UPMC, Université Paris 06, UMR CNRS 8232, Institut Parisien de Chimie Moléculaire, France.,Institut de Chimie, Université de Strasbourg, 1 rue Blaise Pascal, 67000, Strasbourg, France
| |
Collapse
|
30
|
Wang XY, Yan HM, Han YL, Zhang ZX, Zhang XY, Yang WJ, Guo Z, Li YR. Do two oxidants (ferric-peroxo and ferryl-oxo species) act in the biosynthesis of estrogens? A DFT calculation. RSC Adv 2018; 8:15196-15201. [PMID: 35541322 PMCID: PMC9080039 DOI: 10.1039/c8ra01252k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 04/06/2018] [Indexed: 11/21/2022] Open
Abstract
Density functional theory calculations were performed in order to reveal the mysterious catalytic step of the biosynthesis of estrogens. The results indicated two reactive oxidants, ferric-peroxo and ferryl-oxo (compound I) species, to participate in the conversion of androgens to estrogens. The ferric-peroxo species was determined, according to our derived mechanism, to act in the oxidation of 19-OH androgen to yield the 19,19-gem-diol intermediate and generate the ferryl-oxo (compound I) species. This species was then modeled to effect, in the final step, an abstraction of H from an O–H group of 19,19-gem-diol to give the experimentally observed products. We considered our new mechanistic scenario to reasonably explain the latest experimental observations and to provide deep insight complementing the newly accepted compound I (Cpd I) mechanism. Density functional theory calculations were performed in order to reveal the mysterious catalytic step of the biosynthesis of estrogens.![]()
Collapse
Affiliation(s)
- Xiang-Yun Wang
- College of Material Science & Engineering
- Key Laboratory of Interface Science and Engineering in Advanced Materials
- Ministry of Education
- Taiyuan University of Technology
- P. R. China
| | - Hui-Min Yan
- College of Material Science & Engineering
- Key Laboratory of Interface Science and Engineering in Advanced Materials
- Ministry of Education
- Taiyuan University of Technology
- P. R. China
| | - Yan-Li Han
- College of Material Science & Engineering
- Key Laboratory of Interface Science and Engineering in Advanced Materials
- Ministry of Education
- Taiyuan University of Technology
- P. R. China
| | - Zhu-Xia Zhang
- College of Material Science & Engineering
- Key Laboratory of Interface Science and Engineering in Advanced Materials
- Ministry of Education
- Taiyuan University of Technology
- P. R. China
| | - Xiao-Yun Zhang
- College of Material Science & Engineering
- Key Laboratory of Interface Science and Engineering in Advanced Materials
- Ministry of Education
- Taiyuan University of Technology
- P. R. China
| | - Wen-Jing Yang
- College of Material Science & Engineering
- Key Laboratory of Interface Science and Engineering in Advanced Materials
- Ministry of Education
- Taiyuan University of Technology
- P. R. China
| | - Zhen Guo
- College of Material Science & Engineering
- Key Laboratory of Interface Science and Engineering in Advanced Materials
- Ministry of Education
- Taiyuan University of Technology
- P. R. China
| | - Yan-Rong Li
- Department of Earth Sciences and Engineering
- Taiyuan University of Technology
- P. R. China
| |
Collapse
|
31
|
Su H, Sheng X, Zhu W, Ma G, Liu Y. Mechanistic Insights into the Decoupled Desaturation and Epoxidation Catalyzed by Dioxygenase AsqJ Involved in the Biosynthesis of Quinolone Alkaloids. ACS Catal 2017. [DOI: 10.1021/acscatal.7b01606] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Hao Su
- School of Chemistry and Chemical
Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Xiang Sheng
- School of Chemistry and Chemical
Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Wenyou Zhu
- School of Chemistry and Chemical
Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Guangcai Ma
- School of Chemistry and Chemical
Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Yongjun Liu
- School of Chemistry and Chemical
Engineering, Shandong University, Jinan, Shandong 250100, China
| |
Collapse
|
32
|
Hybrid computational approaches for deriving quantum mechanical insights into metal–organic frameworks. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.04.088] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
33
|
|
34
|
Kim Y, Mai BK, Park S. VTST/MT studies of the catalytic mechanism of C-H activation by transition metal complexes with [Cu 2(μ-O 2)], [Fe 2(μ-O 2)] and Fe(IV)-O cores based on DFT potential energy surfaces. J Biol Inorg Chem 2017; 22:321-338. [PMID: 28091753 DOI: 10.1007/s00775-017-1441-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 01/04/2017] [Indexed: 01/21/2023]
Abstract
High-valent Cu and Fe species, which are generated from dioxygen activation in metalloenzymes, carry out the functionalization of strong C-H bonds. Understanding the atomic details of the catalytic mechanism has long been one of the main objectives of bioinorganic chemistry. Large H/D kinetic isotope effects (KIEs) were observed in the C-H activation by high-valent non-heme Cu or Fe complexes in enzymes and their synthetic models. The H/D KIE depends significantly on the transition state properties, such as structure, energies, frequencies, and shape of the potential energy surface, when the tunneling effect is large. Therefore, theoretical predictions of kinetic parameters such as rate constants and KIEs can provide a reliable link between atomic-level quantum mechanical mechanisms and experiments. The accurate prediction of the tunneling effect is essential to reproduce the kinetic parameters. The rate constants and HD/KIE have been calculated using the variational transition-state theory including multidimensional tunneling based on DFT potential energy surfaces along the reaction coordinate. Excellent agreement was observed between the predicted and experimental results, which assures the validity of the DFT potential energy surfaces and, therefore, the proposed atomic-level mechanisms. The [Cu2(μ-O)2], [Fe2(μ-O)2], and Fe(IV)-oxo species were employed for C-H activation, and their role as catalysts was discussed at an atomic level.
Collapse
Affiliation(s)
- Yongho Kim
- Department of Applied Chemistry and Institute of Natural Sciences, Kyung Hee University, 1 Seochun-Dong, Giheung-Gu, Yongin-Si, Gyeonggi-Do, 446-701, Korea.
| | - Binh Khanh Mai
- Department of Applied Chemistry and Institute of Natural Sciences, Kyung Hee University, 1 Seochun-Dong, Giheung-Gu, Yongin-Si, Gyeonggi-Do, 446-701, Korea
| | - Sumin Park
- Department of Applied Chemistry and Institute of Natural Sciences, Kyung Hee University, 1 Seochun-Dong, Giheung-Gu, Yongin-Si, Gyeonggi-Do, 446-701, Korea
| |
Collapse
|
35
|
Verma P, Varga Z, Klein JEMN, Cramer CJ, Que L, Truhlar DG. Assessment of electronic structure methods for the determination of the ground spin states of Fe(ii), Fe(iii) and Fe(iv) complexes. Phys Chem Chem Phys 2017; 19:13049-13069. [DOI: 10.1039/c7cp01263b] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We studied spin states of Fe2+ ion, gaseous FeO, and 14 Fe(ii), Fe(iii) and Fe(iv) complexes using density functional theory.
Collapse
Affiliation(s)
- Pragya Verma
- Department of Chemistry
- University of Minnesota
- Minneapolis
- USA
- Chemical Theory Center and Minnesota Supercomputing Institute
| | - Zoltan Varga
- Department of Chemistry
- University of Minnesota
- Minneapolis
- USA
- Chemical Theory Center and Minnesota Supercomputing Institute
| | - Johannes E. M. N. Klein
- Department of Chemistry
- University of Minnesota
- Minneapolis
- USA
- Center for Metals in Biocatalysis
| | - Christopher J. Cramer
- Department of Chemistry
- University of Minnesota
- Minneapolis
- USA
- Chemical Theory Center and Minnesota Supercomputing Institute
| | - Lawrence Que
- Department of Chemistry
- University of Minnesota
- Minneapolis
- USA
- Center for Metals in Biocatalysis
| | - Donald G. Truhlar
- Department of Chemistry
- University of Minnesota
- Minneapolis
- USA
- Chemical Theory Center and Minnesota Supercomputing Institute
| |
Collapse
|
36
|
Wang J, Zhao YY, Lee PH. Computational analysis of site differences in selective aliphatic C–H hydroxylation by nonheme iron–oxo complexes. Phys Chem Chem Phys 2017; 19:13924-13930. [DOI: 10.1039/c7cp01479a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The CH3CN-solvent influences selective C–H hydroxylation by nonheme iron complexes due to interactions in the H-bonding formation in H-abstraction.
Collapse
Affiliation(s)
- Jian Wang
- Department of Civil and Environmental Engineering
- The Hong Kong Polytechnic University
- Hong Kong
- China
| | - Yuan-yuan Zhao
- Frankfurt Institute for Advanced Studies (FIAS)
- Goethe-University
- D-60438 Frankfurt am Main
- Germany
| | - Po-Heng Lee
- Department of Civil and Environmental Engineering
- The Hong Kong Polytechnic University
- Hong Kong
- China
| |
Collapse
|
37
|
Strengths, Weaknesses, Opportunities and Threats: Computational Studies of Mn- and Fe-Catalyzed Epoxidations. Catalysts 2016. [DOI: 10.3390/catal7010002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
38
|
Cho KB, Hirao H, Shaik S, Nam W. To rebound or dissociate? This is the mechanistic question in C-H hydroxylation by heme and nonheme metal-oxo complexes. Chem Soc Rev 2016; 45:1197-210. [PMID: 26690848 DOI: 10.1039/c5cs00566c] [Citation(s) in RCA: 156] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Enzymatic reactions that involve C-H bond activation of alkanes by high-valent iron-oxo species can be explained by the rebound mechanism (RM). Hydroxylation reactions of alkane substrates effected by the reactive compound I (Cpd I) species of cytochrome P450 enzymes are good examples. There was initially little doubt that the rebound paradigm could be carried over in the same form to the arena of synthetic nonheme high-valent iron-oxo or other metal-oxo complexes. However, the active reaction centres of these synthetic systems are not well-caged, in contrast to the active sites of enzymes; therefore, the relative importance of the radical dissociation pathway can become prominent. Indeed, accumulating experimental and theoretical evidence shows that introduction of the non-rebound mechanism (non-RM) is necessary to rationalise the different reactivity patterns observed for synthetic nonheme complexes. In this tutorial review, we discuss several specific examples involving the non-RM while making frequent comparisons to the RM, mainly from the perspective of computational chemistry. We also provide a technical guide to DFT calculations of RM and non-RM and to the interpretations of computational outcomes.
Collapse
Affiliation(s)
- Kyung-Bin Cho
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea.
| | - Hajime Hirao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Republic of Singapore.
| | - Sason Shaik
- Institute of Chemistry and The Lise Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel.
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea.
| |
Collapse
|
39
|
Ricciardi G, Baerends EJ, Rosa A. Charge Effects on the Reactivity of Oxoiron(IV) Porphyrin Species: A DFT Analysis of Methane Hydroxylation by Polycationic Compound I and Compound II Mimics. ACS Catal 2015. [DOI: 10.1021/acscatal.5b02357] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Giampaolo Ricciardi
- Dipartimento di Scienze, Università della Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Potenza, Italy
| | - Evert Jan Baerends
- Theoretical Chemistry, FEW, VU University Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Angela Rosa
- Dipartimento di Scienze, Università della Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Potenza, Italy
| |
Collapse
|
40
|
Hunter AC, Patel S, Dedi C, Dodd HT, Bryce RA. Metabolic fate of 3α,5-cycloandrostanes in the endogenous lactonization pathway of Aspergillus tamarii KITA. PHYTOCHEMISTRY 2015; 119:19-25. [PMID: 26372080 DOI: 10.1016/j.phytochem.2015.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 08/27/2015] [Accepted: 09/08/2015] [Indexed: 06/05/2023]
Abstract
A series of 3α,5-cycloandrostane analogues with a range of functionality (6α and 6β alcohols and ketone) at carbon 6 were tested in the endogenous lactonization pathway in Aspergillus tamarii KITA. This metabolic route converts progesterone to testololactone in high yield through a four step enzymatic pathway. To date, no studies have looked at the effect of steroids devoid of polar functionality at carbon 3 and their subsequent metabolic fate by fungi which contain Baeyer-Villiger monooxygenases. Incubation of all of the cycloandrostane analogues resulted in lactonization of ring-D irrespective of C-6 stereochemistry or absence of C-3 functionality. Presence of 6β-hydroxy group and the C-17 ketone was required in order for these analogues to undergo hydroxylation at C-15β position. All metabolites were isolated by column chromatography and were identified by (1)H, (13)C NMR, DEPT analysis and other spectroscopic data.
Collapse
Affiliation(s)
- A Christy Hunter
- Manchester Pharmacy School, University of Manchester, Stopford Building, Oxford Road, Manchester M13 9PT, United Kingdom.
| | - Shreyal Patel
- University of Brighton, School of Pharmacy and Biomolecular Sciences, Huxley Building, Lewes Road, Brighton BN2 4GJ, United Kingdom
| | - Cinzia Dedi
- University of Brighton, School of Pharmacy and Biomolecular Sciences, Huxley Building, Lewes Road, Brighton BN2 4GJ, United Kingdom
| | - Howard T Dodd
- University of Brighton, School of Pharmacy and Biomolecular Sciences, Huxley Building, Lewes Road, Brighton BN2 4GJ, United Kingdom
| | - Richard A Bryce
- Manchester Pharmacy School, University of Manchester, Stopford Building, Oxford Road, Manchester M13 9PT, United Kingdom
| |
Collapse
|
41
|
Yi W, Yuan L, Kun Y, Zhengwen H, Jing T, Xu F, Hong G, Yong W. What factors influence the reactivity of C-H hydroxylation and C=C epoxidation by [Fe(IV)(L(ax))(1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane)(O)](n+). J Biol Inorg Chem 2015; 20:1123-34. [PMID: 26345158 DOI: 10.1007/s00775-015-1294-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 08/26/2015] [Indexed: 11/26/2022]
Abstract
Density functional theory is used to investigate geometric structures and mechanisms for hydroxylation and epoxidation from propene for four non-heme iron complexes, [Fe(IV)(L(ax))(TMC)(O)](n+), which are the inverted isomers of [Fe(IV)(O)(TMC)(Lax)](n+) (Lax = acetonitrile (AN), monoanionic trifluoroacetate (TF), azide (N3), thiolate (SR)). The Fe(IV)O unit is found to be sterically less hindered in [Fe(IV)(L(ax))(TMC)(O)](n+) than that in [Fe(IV)(O)(TMC)(L(ax))](n+). Becke, three-parameter, Lee-Yang-Parr (B3LYP) calculations show that hydroxylation and epoxidation proceed via a two-state-reactivity on competing triplet and quintet spin surfaces; and the reactions have been invariably mediated by the S = 2 state. The reaction pathways computed reveal that 2-AN is the most reactive in the four [Fe(IV)(L(ax))(TMC)(O)](n+) complexes; along the reaction pathway, the axial ligand moves away from the iron center, and thus, the energy of the LUMO decreases. The anionic axial ligand, which is more electron releasing than neutral AN, shows a strong overlap of iron orbitals. Thus, the anionic ligand does not move away from the iron center. The H-abstraction is affected by the tunneling contribution, the more electron donation power of the axial ligand, the more effect of the tunneling contribution. Adding the tunneling correction, the relative reactivity of the hydroxylation follows the trend: 2-AN > 2-SR ≈ 2-N3 > 2-TF. However, for the epoxidation, the reactivity is in the following order of 2-AN > 2-TF > 2-N3 > 2-SR. Except for 2-AN, 2-X (L(ax) = TF, N3, SR) complexes chemoselectively hydroxylate even in the presence of a C=C double bond.
Collapse
Affiliation(s)
- Wang Yi
- School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, China.
| | - Liu Yuan
- School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Yang Kun
- Department of Physics, Dalian Maritime University, 1 Linghai Road, Dalian, 116026, China
| | - He Zhengwen
- School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Tian Jing
- School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Fei Xu
- School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Guo Hong
- School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Wang Yong
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.
| |
Collapse
|
42
|
Mitra M, Nimir H, Demeshko S, Bhat SS, Malinkin SO, Haukka M, Lloret-Fillol J, Lisensky GC, Meyer F, Shteinman AA, Browne WR, Hrovat DA, Richmond MG, Costas M, Nordlander E. Nonheme Fe(IV) Oxo Complexes of Two New Pentadentate Ligands and Their Hydrogen-Atom and Oxygen-Atom Transfer Reactions. Inorg Chem 2015. [PMID: 26198840 DOI: 10.1021/ic5029564] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Two new pentadentate {N5} donor ligands based on the N4Py (N4Py = N,N-bis(2-pyridylmethyl)-N-bis(2-pyridyl)methylamine) framework have been synthesized, viz. [N-(1-methyl-2-benzimidazolyl)methyl-N-(2-pyridyl)methyl-N-(bis-2-pyridyl methyl)amine] (L(1)) and [N-bis(1-methyl-2-benzimidazolyl)methyl-N-(bis-2-pyridylmethyl)amine] (L(2)), where one or two pyridyl arms of N4Py have been replaced by corresponding (N-methyl)benzimidazolyl-containing arms. The complexes [Fe(II)(CH3CN)(L)](2+) (L = L(1) (1); L(2) (2)) were synthesized, and reaction of these ferrous complexes with iodosylbenzene led to the formation of the ferryl complexes [Fe(IV)(O)(L)](2+) (L = L(1) (3); L(2) (4)), which were characterized by UV-vis spectroscopy, high resolution mass spectrometry, and Mössbauer spectroscopy. Complexes 3 and 4 are relatively stable with half-lives at room temperature of 40 h (L = L(1)) and 2.5 h (L = L(2)). The redox potentials of 1 and 2, as well as the visible spectra of 3 and 4, indicate that the ligand field weakens as ligand pyridyl substituents are progressively substituted by (N-methyl)benzimidazolyl moieties. The reactivities of 3 and 4 in hydrogen-atom transfer (HAT) and oxygen-atom transfer (OAT) reactions show that both complexes exhibit enhanced reactivities when compared to the analogous N4Py complex ([Fe(IV)(O)(N4Py)](2+)), and that the normalized HAT rates increase by approximately 1 order of magnitude for each replacement of a pyridyl moiety; i.e., [Fe(IV)(O)(L(2))](2+) exhibits the highest rates. The second-order HAT rate constants can be directly related to the substrate C-H bond dissociation energies. Computational modeling of the HAT reactions indicates that the reaction proceeds via a high spin transition state.
Collapse
Affiliation(s)
- Mainak Mitra
- †Chemical Physics, Department of Chemistry, Lund University, Box 124, SE-221 00, Lund, Sweden
| | - Hassan Nimir
- ‡Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, State of Qatar
| | - Serhiy Demeshko
- §Institute of Inorganic Chemistry, Georg-August-University Göttingen, Tammanstrasse 4, D-37077 Göttingen, Germany
| | - Satish S Bhat
- †Chemical Physics, Department of Chemistry, Lund University, Box 124, SE-221 00, Lund, Sweden
| | - Sergey O Malinkin
- †Chemical Physics, Department of Chemistry, Lund University, Box 124, SE-221 00, Lund, Sweden
| | - Matti Haukka
- ⊥Department of Chemistry, University of Jyväskylä, P.O. Box-35, Jyväskylä, FI-40014, Finland
| | - Julio Lloret-Fillol
- ¶QBIS, Department of Chemistry, University de Girona, Campus Montilivi, E-17071 Girona, Spain
| | - George C Lisensky
- ∥Department of Chemistry, Beloit College, 700 College Street, Beloit, Wisconsin 53511, United States
| | - Franc Meyer
- §Institute of Inorganic Chemistry, Georg-August-University Göttingen, Tammanstrasse 4, D-37077 Göttingen, Germany
| | - Albert A Shteinman
- #Institute of Problems of Chemical Physics, Chernogolovka, Moscow District, 142432, Russian Federation
| | - Wesley R Browne
- ∇Stratingh Institute for Chemistry, Faculty of Mathematics and Natural Sciences, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands
| | - David A Hrovat
- ○Center for Advanced Scientific Computing and Modeling, University of North Texas, Denton, Texas 76203, United States.,◆Department of Chemistry, University of North Texas, Denton, Texas 76203, United States
| | - Michael G Richmond
- ◆Department of Chemistry, University of North Texas, Denton, Texas 76203, United States
| | - Miquel Costas
- ¶QBIS, Department of Chemistry, University de Girona, Campus Montilivi, E-17071 Girona, Spain
| | - Ebbe Nordlander
- †Chemical Physics, Department of Chemistry, Lund University, Box 124, SE-221 00, Lund, Sweden
| |
Collapse
|
43
|
Ansari A, Rajaraman G. ortho-Hydroxylation of aromatic acids by a non-heme Fe(V)=O species: how important is the ligand design? Phys Chem Chem Phys 2015; 16:14601-13. [PMID: 24812659 DOI: 10.1039/c3cp55430a] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
There is a growing interest in probing the mechanism of catalytic transformations effected by non-heme iron-oxo complexes as these reactions set a platform for understanding the relevant enzymatic reactions. The ortho-hydroxylation of aromatic compounds is one such reaction catalysed by iron-oxo complexes. Experimentally [Fe(II)(BPMEN)(CH3CN)2](2+) (1) and [Fe(II)(TPA)(CH3CN)2](2+) (2) (where TPA = tris(2-pyridylmethyl)amine and BPMEN = N,N′-dimethyl-N,N′-bis(2-pyridylmethyl)ethane-1,2-diamine) complexes containing amino pyridine ligands along with H2O2 are employed to carry out these transformations where complex 1 is found to be more reactive than complex 2. Herein, using density functional methods employing B3LYP and dispersion corrected B3LYP (B3LYP-D) functionals, we have explored the mechanism of this reaction to reason out the importance of ligand design in fine-tuning the reactivity of such catalytic transformations. Dispersion corrected B3LYP is found to be superior to B3LYP in predicting the correct ground state of these species and also yields lower barrier heights than the B3LYP functional. Starting the reaction from the Fe(III)–OOH species, both homolytic and heterolytic cleavage of the O···O bond is explored leading to the formation of the transient Fe(IV)=O and Fe(V)=O species. For both the ligand systems, heterolytic cleavage was energetically preferable and our calculations suggest that both the reactions are catalyzed by an elusive high-valent Fe(V)=O species. The Fe(V)=O species undergoes the reaction via an electrophilic attack of the benzene ring to effect the ortho-hydroxylation reaction. The reactivity pattern observed for 1 and 2 are reflected in the computed barrier heights for the ortho-hydroxylation reaction. Electronic structure analysis reveals that the difference in reactivity between the ligand architectures described in complex 1 and 2 arise due to orientation of the pyridine ring(s) parallel or perpendicular to the Fe(V)=O bond. The parallel orientation of the pyridine ring is found to mix with the (πFe(dyz)–O(py))* orbital of the Fe-oxo bond leading to a reduction in the electrophilicity of the ferryl oxygen atom. Our calculations highlight the importance of ligand design in this chemistry and suggest that this concept can be used to (i) stabilize high-valent intermediates which can be trapped and thoroughly characterized (ii) enhance the reactivity and efficiency of the oxidants by increasing the electrophilicity of the ferryl oxygen containing FeVO species. Our computed results are in general agreement with the experimental results.
Collapse
Affiliation(s)
- Azaj Ansari
- Department of Chemistry, Indian Institute of Technology-Bombay, Powai, Mumbai, India.
| | | |
Collapse
|
44
|
Hirao H, Ng WKH, Moeljadi AMP, Bureekaew S. Multiscale Model for a Metal–Organic Framework: High-Spin Rebound Mechanism in the Reaction of the Oxoiron(IV) Species of Fe-MOF-74. ACS Catal 2015. [DOI: 10.1021/acscatal.5b00475] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hajime Hirao
- Division of Chemistry and
Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Wilson Kwok Hung Ng
- Division of Chemistry and
Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Adhitya Mangala Putra Moeljadi
- Division of Chemistry and
Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Sareeya Bureekaew
- Division of Chemistry and
Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| |
Collapse
|
45
|
Li XX, Zhang X, Zheng QC, Wang Y. Bio-activation of 4-alkyl analogs of 1,4-dihydropyridine mediated by cytochrome P450 enzymes. J Biol Inorg Chem 2015; 20:665-73. [DOI: 10.1007/s00775-015-1252-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 02/25/2015] [Indexed: 10/23/2022]
|
46
|
Elenewski JE, Hackett JC. Ab initio dynamics of the cytochrome P450 hydroxylation reaction. J Chem Phys 2015; 142:064307. [PMID: 25681906 PMCID: PMC4367892 DOI: 10.1063/1.4907733] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 01/27/2015] [Indexed: 01/01/2023] Open
Abstract
The iron(IV)-oxo porphyrin π-cation radical known as Compound I is the primary oxidant within the cytochromes P450, allowing these enzymes to affect the substrate hydroxylation. In the course of this reaction, a hydrogen atom is abstracted from the substrate to generate hydroxyiron(IV) porphyrin and a substrate-centered radical. The hydroxy radical then rebounds from the iron to the substrate, yielding the hydroxylated product. While Compound I has succumbed to theoretical and spectroscopic characterization, the associated hydroxyiron species is elusive as a consequence of its very short lifetime, for which there are no quantitative estimates. To ascertain the physical mechanism underlying substrate hydroxylation and probe this timescale, ab initio molecular dynamics simulations and free energy calculations are performed for a model of Compound I catalysis. Semiclassical estimates based on these calculations reveal the hydrogen atom abstraction step to be extremely fast, kinetically comparable to enzymes such as carbonic anhydrase. Using an ensemble of ab initio simulations, the resultant hydroxyiron species is found to have a similarly short lifetime, ranging between 300 fs and 3600 fs, putatively depending on the enzyme active site architecture. The addition of tunneling corrections to these rates suggests a strong contribution from nuclear quantum effects, which should accelerate every step of substrate hydroxylation by an order of magnitude. These observations have strong implications for the detection of individual hydroxylation intermediates during P450 catalysis.
Collapse
Affiliation(s)
- Justin E Elenewski
- Department of Physiology and Biophysics and The Massey Cancer Center, School of Medicine, Virginia Commonwealth University, 401 College Street, Richmond, Virginia 23219-1540, USA
| | - John C Hackett
- Department of Physiology and Biophysics and The Massey Cancer Center, School of Medicine, Virginia Commonwealth University, 401 College Street, Richmond, Virginia 23219-1540, USA
| |
Collapse
|
47
|
Kazaryan A, Baerends EJ. Ligand Field Effects and the High Spin–High Reactivity Correlation in the H Abstraction by Non-Heme Iron(IV)–Oxo Complexes: A DFT Frontier Orbital Perspective. ACS Catal 2015. [DOI: 10.1021/cs501721y] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Andranik Kazaryan
- VU University Amsterdam, Theoretical Chemistry,
FEW, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Evert Jan Baerends
- VU University Amsterdam, Theoretical Chemistry,
FEW, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
48
|
Abstract
In order to address how diverse metalloprotein active sites, in particular those containing iron and copper, guide O₂binding and activation processes to perform diverse functions, studies of synthetic models of the active sites have been performed. These studies have led to deep, fundamental chemical insights into how O₂coordinates to mono- and multinuclear Fe and Cu centers and is reduced to superoxo, peroxo, hydroperoxo, and, after O-O bond scission, oxo species relevant to proposed intermediates in catalysis. Recent advances in understanding the various factors that influence the course of O₂activation by Fe and Cu complexes are surveyed, with an emphasis on evaluating the structure, bonding, and reactivity of intermediates involved. The discussion is guided by an overarching mechanistic paradigm, with differences in detail due to the involvement of disparate metal ions, nuclearities, geometries, and supporting ligands providing a rich tapestry of reaction pathways by which O₂is activated at Fe and Cu sites.
Collapse
|
49
|
Fang D, Cisneros GA. Alternative Pathway for the Reaction Catalyzed by DNA Dealkylase AlkB from Ab Initio QM/MM Calculations. J Chem Theory Comput 2014; 10:5136-5148. [PMID: 25400523 PMCID: PMC4230374 DOI: 10.1021/ct500572t] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Indexed: 12/14/2022]
Abstract
AlkB is the title enzyme of a family of DNA dealkylases that catalyze the direct oxidative dealkylation of nucleobases. The conventional mechanism for the dealkylation of N1-methyl adenine (1-meA) catalyzed by AlkB after the formation of FeIV-oxo is comprised by a reorientation of the oxo moiety, hydrogen abstraction, OH rebound from the Fe atom to the methyl adduct, and the dissociation of the resulting methoxide to obtain the repaired adenine base and formaldehyde. An alternative pathway with hydroxide as a ligand bound to the iron atom is proposed and investigated by QM/MM simulations. The results show OH- has a small impact on the barriers for the hydrogen abstraction and OH rebound steps. The effects of the enzyme and the OH- ligand on the hydrogen abstraction by the FeIV-oxo moiety are discussed in detail. The new OH rebound step is coupled with a proton transfer to the OH- ligand and results in a novel zwitterion intermediate. This zwitterion structure can also be characterized as Fe-O-C complex and facilitates the formation of formaldehyde. In contrast, for the pathway with H2O bound to iron, the hydroxyl product of the OH rebound step first needs to unbind from the metal center before transferring a proton to Glu136 or other residue/substrate. The consistency between our theoretical results and experimental findings is discussed. This study provides new insights into the oxidative repair mechanism of DNA repair by nonheme FeII and α-ketoglutarate (α-KG) dependent dioxygenases and a possible explanation for the substrate preference of AlkB.
Collapse
Affiliation(s)
- Dong Fang
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - G. Andrés Cisneros
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|
50
|
Surducan M, Makarov SV, Silaghi-Dumitrescu R. O-S Bond Activation in Structures Isoelectronic with Ferric Peroxide Species Known in O-O-Activating Enzymes: Relevance for Sulfide Activation and Sulfite Reductases. Eur J Inorg Chem 2014. [DOI: 10.1002/ejic.201402657] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|