1
|
Yuan H, Mitchell CW, Ferenbach AT, Bonati MT, Feresin A, Benke PJ, Tan QKG, van Aalten DMF. Exploiting O-GlcNAc dyshomeostasis to screen O-GlcNAc transferase intellectual disability variants. Stem Cell Reports 2025; 20:102380. [PMID: 39706180 PMCID: PMC11784489 DOI: 10.1016/j.stemcr.2024.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 12/23/2024] Open
Abstract
O-GlcNAcylation is an essential protein modification catalyzed by O-GlcNAc transferase (OGT). Missense variants in OGT are linked to a novel intellectual disability syndrome known as OGT congenital disorder of glycosylation (OGT-CDG). The mechanisms by which OGT missense variants lead to this heterogeneous syndrome are not understood, and no unified method exists for dissecting pathogenic from non-pathogenic variants. Here, we develop a double-fluorescence strategy in mouse embryonic stem cells to measure disruption of O-GlcNAc homeostasis by quantifying the effects of variants on endogenous OGT expression. OGT-CDG variants generally elicited a lower feedback response than wild-type and Genome Aggregation Database (gnomAD) OGT variants. This approach was then used to dissect new putative OGT-CDG variants from pathogenic background variants in other disease-associated genes. Our work enables the prediction of pathogenicity for rapidly emerging de novo OGT-CDG variants and points to reduced disruption of O-GlcNAc homeostasis as a common mechanism underpinning OGT-CDG.
Collapse
Affiliation(s)
- Huijie Yuan
- Section for Neurobiology, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark; Danish Research Institute of Translational Neuroscience DANDRITE-Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus, Denmark; Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Conor W Mitchell
- Section for Neurobiology, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Andrew T Ferenbach
- Section for Neurobiology, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark; Danish Research Institute of Translational Neuroscience DANDRITE-Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus, Denmark
| | - Maria Teresa Bonati
- Institute for Maternal and Child Health IRCCS Burlo Garofolo, Trieste, Italy
| | - Agnese Feresin
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Paul J Benke
- Joe DiMaggio Children's Hospital, Hollywood, FL, USA
| | - Queenie K G Tan
- Department of Clinical Genomics, Mayo Clinic, Rochester, NY, USA
| | - Daan M F van Aalten
- Section for Neurobiology, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark; Danish Research Institute of Translational Neuroscience DANDRITE-Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus, Denmark; Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, UK.
| |
Collapse
|
2
|
Cheng SS, Mody AC, Woo CM. Opportunities for Therapeutic Modulation of O-GlcNAc. Chem Rev 2024; 124:12918-13019. [PMID: 39509538 DOI: 10.1021/acs.chemrev.4c00417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
O-Linked β-N-acetylglucosamine (O-GlcNAc) is an essential, dynamic monosaccharide post-translational modification (PTM) found on serine and threonine residues of thousands of nucleocytoplasmic proteins. The installation and removal of O-GlcNAc is controlled by a single pair of enzymes, O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), respectively. Since its discovery four decades ago, O-GlcNAc has been found on diverse classes of proteins, playing important functional roles in many cellular processes. Dysregulation of O-GlcNAc homeostasis has been implicated in the pathogenesis of disease, including neurodegeneration, X-linked intellectual disability (XLID), cancer, diabetes, and immunological disorders. These foundational studies of O-GlcNAc in disease biology have motivated efforts to target O-GlcNAc therapeutically, with multiple clinical candidates under evaluation. In this review, we describe the characterization and biochemistry of OGT and OGA, cellular O-GlcNAc regulation, development of OGT and OGA inhibitors, O-GlcNAc in pathophysiology, clinical progress of O-GlcNAc modulators, and emerging opportunities for targeting O-GlcNAc. This comprehensive resource should motivate further study into O-GlcNAc function and inspire strategies for therapeutic modulation of O-GlcNAc.
Collapse
Affiliation(s)
- Steven S Cheng
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Alison C Mody
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Christina M Woo
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
- Affiliate member of the Broad Institute, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
3
|
Gest AM, Sahan AZ, Zhong Y, Lin W, Mehta S, Zhang J. Molecular Spies in Action: Genetically Encoded Fluorescent Biosensors Light up Cellular Signals. Chem Rev 2024; 124:12573-12660. [PMID: 39535501 PMCID: PMC11613326 DOI: 10.1021/acs.chemrev.4c00293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 09/07/2024] [Accepted: 09/20/2024] [Indexed: 11/16/2024]
Abstract
Cellular function is controlled through intricate networks of signals, which lead to the myriad pathways governing cell fate. Fluorescent biosensors have enabled the study of these signaling pathways in living systems across temporal and spatial scales. Over the years there has been an explosion in the number of fluorescent biosensors, as they have become available for numerous targets, utilized across spectral space, and suited for various imaging techniques. To guide users through this extensive biosensor landscape, we discuss critical aspects of fluorescent proteins for consideration in biosensor development, smart tagging strategies, and the historical and recent biosensors of various types, grouped by target, and with a focus on the design and recent applications of these sensors in living systems.
Collapse
Affiliation(s)
- Anneliese
M. M. Gest
- Department
of Pharmacology, University of California,
San Diego, La Jolla, California 92093, United States
| | - Ayse Z. Sahan
- Department
of Pharmacology, University of California,
San Diego, La Jolla, California 92093, United States
- Biomedical
Sciences Graduate Program, University of
California, San Diego, La Jolla, California 92093, United States
| | - Yanghao Zhong
- Department
of Pharmacology, University of California,
San Diego, La Jolla, California 92093, United States
| | - Wei Lin
- Department
of Pharmacology, University of California,
San Diego, La Jolla, California 92093, United States
| | - Sohum Mehta
- Department
of Pharmacology, University of California,
San Diego, La Jolla, California 92093, United States
| | - Jin Zhang
- Department
of Pharmacology, University of California,
San Diego, La Jolla, California 92093, United States
- Shu
Chien-Gene Lay Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
4
|
Nelson ZM, Kadiri O, Fehl C. GlycoID Proximity Labeling to Identify O-GlcNAcylated Protein Interactomes in Live Cells. Curr Protoc 2024; 4:e1052. [PMID: 38752278 PMCID: PMC11101149 DOI: 10.1002/cpz1.1052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2024]
Abstract
Cells continuously remodel their intracellular proteins with the monosaccharide O-linked N-acetylglucosamine (O-GlcNAc) to regulate metabolism, signaling, and stress. This protocol describes the use of GlycoID tools to capture O-GlcNAc dynamics in live cells. GlycoID constructs contain an O-GlcNAc binding domain linked to a proximity labeling domain and a subcellular localization sequence. When expressed in mammalian cells, GlycoID tracks changes in O-GlcNAc-modified proteins and their interactomes in response to chemical induction with biotin over time. Pairing the subcellular localization of GlycoID with the chemical induction of activity enables spatiotemporal studies of O-GlcNAc biology during cellular events such as insulin signaling. However, optimizing intracellular labeling experiments requires attention to several variables. Here, we describe two protocols to adapt GlycoID methods to a cell line and biological process of interest. Next, we describe how to conduct a semiquantitative proteomic analysis of O-GlcNAcylated proteins and their interactomes using insulin versus glucagon signaling as a sample application. This articles aims to establish baseline GlycoID protocols for new users and set the stage for widespread use over diverse cellular applications for the functional study of O-GlcNAc glycobiology. © 2024 Wiley Periodicals LLC. Basic Protocol 1: Expression of targeted GlycoID constructs to verify subcellular location and labeling activity in mammalian cells Basic Protocol 2: GlycoID labeling in live HeLa cells for O-GlcNAc proteomic comparisons.
Collapse
Affiliation(s)
- Zachary M. Nelson
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI, United States
| | - Oseni Kadiri
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI, United States
| | - Charlie Fehl
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI, United States
| |
Collapse
|
5
|
Nelson ZM, Leonard GD, Fehl C. Tools for investigating O-GlcNAc in signaling and other fundamental biological pathways. J Biol Chem 2024; 300:105615. [PMID: 38159850 PMCID: PMC10831167 DOI: 10.1016/j.jbc.2023.105615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 12/10/2023] [Accepted: 12/13/2023] [Indexed: 01/03/2024] Open
Abstract
Cells continuously fine-tune signaling pathway proteins to match nutrient and stress levels in their local environment by modifying intracellular proteins with O-linked N-acetylglucosamine (O-GlcNAc) sugars, an essential process for cell survival and growth. The small size of these monosaccharide modifications poses a challenge for functional determination, but the chemistry and biology communities have together created a collection of precision tools to study these dynamic sugars. This review presents the major themes by which O-GlcNAc influences signaling pathway proteins, including G-protein coupled receptors, growth factor signaling, mitogen-activated protein kinase (MAPK) pathways, lipid sensing, and cytokine signaling pathways. Along the way, we describe in detail key chemical biology tools that have been developed and applied to determine specific O-GlcNAc roles in these pathways. These tools include metabolic labeling, O-GlcNAc-enhancing RNA aptamers, fluorescent biosensors, proximity labeling tools, nanobody targeting tools, O-GlcNAc cycling inhibitors, light-activated systems, chemoenzymatic labeling, and nutrient reporter assays. An emergent feature of this signaling pathway meta-analysis is the intricate interplay between O-GlcNAc modifications across different signaling systems, underscoring the importance of O-GlcNAc in regulating cellular processes. We highlight the significance of O-GlcNAc in signaling and the role of chemical and biochemical tools in unraveling distinct glycobiological regulatory mechanisms. Collectively, our field has determined effective strategies to probe O-GlcNAc roles in biology. At the same time, this survey of what we do not yet know presents a clear roadmap for the field to use these powerful chemical tools to explore cross-pathway O-GlcNAc interactions in signaling and other major biological pathways.
Collapse
Affiliation(s)
- Zachary M Nelson
- Department of Chemistry, Wayne State University, Detroit, Michigan, USA
| | - Garry D Leonard
- Department of Chemistry, Wayne State University, Detroit, Michigan, USA
| | - Charlie Fehl
- Department of Chemistry, Wayne State University, Detroit, Michigan, USA.
| |
Collapse
|
6
|
Dupas T, Betus C, Blangy-Letheule A, Pelé T, Persello A, Denis M, Lauzier B. An overview of tools to decipher O-GlcNAcylation from historical approaches to new insights. Int J Biochem Cell Biol 2022; 151:106289. [PMID: 36031106 DOI: 10.1016/j.biocel.2022.106289] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/21/2022] [Accepted: 08/23/2022] [Indexed: 11/19/2022]
Abstract
O-GlcNAcylation is a post-translational modification which affects approximately 5000 human proteins. Its involvement has been shown in many if not all biological processes. Variations in O-GlcNAcylation levels can be associated with the development of diseases. Deciphering the role of O-GlcNAcylation is an important issue to (i) understand its involvement in pathophysiological development and (ii) develop new therapeutic strategies to modulate O-GlcNAc levels. Over the past 30 years, despite the development of several approaches, knowledge of its role and regulation have remained limited. This review proposes an overview of the currently available tools to study O-GlcNAcylation and identify O-GlcNAcylated proteins. Briefly, we discuss pharmacological modulators, methods to study O-GlcNAcylation levels and approaches for O-GlcNAcylomic profiling. This review aims to contribute to a better understanding of the methods used to study O-GlcNAcylation and to promote efforts in the development of new strategies to explore this promising modification.
Collapse
Affiliation(s)
- Thomas Dupas
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, France.
| | - Charlotte Betus
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, France; Department of Pharmacology and Physiology, University of Montreal, Montreal, QC H3T 1C5, Canada; CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada
| | | | - Thomas Pelé
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, France
| | - Antoine Persello
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, France
| | - Manon Denis
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, France; Department of Pharmacology and Physiology, University of Montreal, Montreal, QC H3T 1C5, Canada; CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada
| | - Benjamin Lauzier
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, France
| |
Collapse
|
7
|
Liu Y, Nelson ZM, Reda A, Fehl C. Spatiotemporal Proximity Labeling Tools to Track GlcNAc Sugar-Modified Functional Protein Hubs during Cellular Signaling. ACS Chem Biol 2022; 17:2153-2164. [PMID: 35819414 DOI: 10.1021/acschembio.2c00282] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A fundamental mechanism that all eukaryotic cells use to adapt to their environment is dynamic protein modification with monosaccharide sugars. In humans, O-linked N-acetylglucosamine (O-GlcNAc) is rapidly added to and removed from diverse protein sites as a response to fluctuating nutrient levels, stressors, and signaling cues. Two aspects remain challenging for tracking functional O-GlcNAc events with chemical strategies: spatial control over subcellular locations and time control during labeling. The objective of this study was to create intracellular proximity labeling tools to identify functional changes in O-GlcNAc patterns with spatiotemporal control. We developed a labeling strategy based on the TurboID proximity labeling system for rapid protein biotin conjugation directed to O-GlcNAc protein modifications inside cells, a set of tools called "GlycoID." Localized variants to the nucleus and cytosol, nuc-GlycoID and cyt-GlycoID, labeled O-GlcNAc proteins and their interactomes in subcellular space. Labeling during insulin and serum stimulation revealed functional changes in O-GlcNAc proteins as soon as 30 min following signal initiation. We demonstrated using proteomic analysis that the GlycoID strategy captured O-GlcNAcylated "activity hubs" consisting of O-GlcNAc proteins and their associated protein-protein interactions. The ability to follow changes in O-GlcNAc hubs during physiological events such as insulin signaling allows these tools to determine the mechanisms of glycobiological cell regulation. Our functional O-GlcNAc data sets in human cells will be a valuable resource for O-GlcNAc-driven mechanisms.
Collapse
Affiliation(s)
- Yimin Liu
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Zachary M Nelson
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Ali Reda
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Charlie Fehl
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| |
Collapse
|
8
|
Tools, tactics and objectives to interrogate cellular roles of O-GlcNAc in disease. Nat Chem Biol 2022; 18:8-17. [PMID: 34934185 PMCID: PMC8712397 DOI: 10.1038/s41589-021-00903-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/21/2021] [Indexed: 12/15/2022]
Abstract
The vast array of cell types of multicellular organisms must individually fine-tune their internal metabolism. One important metabolic and stress regulatory mechanism is the dynamic attachment/removal of glucose-derived sugar N-acetylglucosamine on proteins (O-GlcNAcylation). The number of proteins modified by O-GlcNAc is bewildering, with at least 7,000 sites in human cells. The outstanding challenge is determining how key O-GlcNAc sites regulate a target pathway amidst thousands of potential global sites. Innovative solutions are required to address this challenge in cell models and disease therapy. This Perspective shares critical suggestions for the O-GlcNAc field gleaned from the international O-GlcNAc community. Further, we summarize critical tools and tactics to enable newcomers to O-GlcNAc biology to drive innovation at the interface of metabolism and disease. The growing pace of O-GlcNAc research makes this a timely juncture to involve a wide array of scientists and new toolmakers to selectively approach the regulatory roles of O-GlcNAc in disease.
Collapse
|
9
|
Ma J, Wu C, Hart GW. Analytical and Biochemical Perspectives of Protein O-GlcNAcylation. Chem Rev 2021; 121:1513-1581. [DOI: 10.1021/acs.chemrev.0c00884] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Junfeng Ma
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington D.C. 20057, United States
| | - Ci Wu
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington D.C. 20057, United States
| | - Gerald W. Hart
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
10
|
Hu CW, Worth M, Li H, Jiang J. Chemical and Biochemical Strategies To Explore the Substrate Recognition of O-GlcNAc-Cycling Enzymes. Chembiochem 2019; 20:312-318. [PMID: 30199580 PMCID: PMC6433133 DOI: 10.1002/cbic.201800481] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Indexed: 12/11/2022]
Abstract
The O-linked N-acetylglucosamine (O-GlcNAc) modification is an essential component in cell regulation. A single pair of human enzymes conducts this modification dynamically on a broad variety of proteins: O-GlcNAc transferase (OGT) adds the GlcNAc residue and O-GlcNAcase (OGA) hydrolyzes it. This modification is dysregulated in many diseases, but its exact effect on particular substrates remains unclear. In addition, no apparent sequence motif has been found in the modified proteins, and the factors controlling the substrate specificity of OGT and OGA are largely unknown. In this minireview, we will discuss recent developments in chemical and biochemical methods toward addressing the challenge of OGT and OGA substrate recognition. We hope that the new concepts and knowledge from these studies will promote research in this area to advance understanding of O-GlcNAc regulation in health and disease.
Collapse
Affiliation(s)
- Chia-Wei Hu
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin–Madison, 777 Highland Avenue, Madison, WI 53705 (USA)
| | - Matthew Worth
- Department of Chemistry, University of Wisconsin–Madison, 101 University Avenue, Madison, WI 53706 (USA)
| | - Hao Li
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin–Madison, 777 Highland Avenue, Madison, WI 53705 (USA)
| | - Jiaoyang Jiang
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin–Madison, 777 Highland Avenue, Madison, WI 53705 (USA)
| |
Collapse
|
11
|
Greenwald EC, Mehta S, Zhang J. Genetically Encoded Fluorescent Biosensors Illuminate the Spatiotemporal Regulation of Signaling Networks. Chem Rev 2018; 118:11707-11794. [PMID: 30550275 PMCID: PMC7462118 DOI: 10.1021/acs.chemrev.8b00333] [Citation(s) in RCA: 359] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cellular signaling networks are the foundation which determines the fate and function of cells as they respond to various cues and stimuli. The discovery of fluorescent proteins over 25 years ago enabled the development of a diverse array of genetically encodable fluorescent biosensors that are capable of measuring the spatiotemporal dynamics of signal transduction pathways in live cells. In an effort to encapsulate the breadth over which fluorescent biosensors have expanded, we endeavored to assemble a comprehensive list of published engineered biosensors, and we discuss many of the molecular designs utilized in their development. Then, we review how the high temporal and spatial resolution afforded by fluorescent biosensors has aided our understanding of the spatiotemporal regulation of signaling networks at the cellular and subcellular level. Finally, we highlight some emerging areas of research in both biosensor design and applications that are on the forefront of biosensor development.
Collapse
Affiliation(s)
- Eric C Greenwald
- University of California , San Diego, 9500 Gilman Drive, BRFII , La Jolla , CA 92093-0702 , United States
| | - Sohum Mehta
- University of California , San Diego, 9500 Gilman Drive, BRFII , La Jolla , CA 92093-0702 , United States
| | - Jin Zhang
- University of California , San Diego, 9500 Gilman Drive, BRFII , La Jolla , CA 92093-0702 , United States
| |
Collapse
|
12
|
Soleja N, Manzoor O, Khan I, Ahmad A, Mohsin M. Role of green fluorescent proteins and their variants in development of FRET-based sensors. J Biosci 2018. [DOI: 10.1007/s12038-018-9783-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
13
|
Abstract
O-GlcNAcylation is the modification of serine and threonine residues with β-N-acetylglucosamine (O-GlcNAc) on intracellular proteins. This dynamic modification is attached by O-GlcNAc transferase (OGT) and removed by O-GlcNAcase (OGA) and is a critical regulator of various cellular processes. Furthermore, O-GlcNAcylation is dysregulated in many diseases, such as diabetes, cancer, and Alzheimer's disease. However, the precise role of this modification and its cycling enzymes (OGT and OGA) in normal and disease states remains elusive. This is partially due to the difficulty in studying O-GlcNAcylation with traditional genetic and biochemical techniques. In this review, we will summarize recent progress in chemical approaches to overcome these obstacles. We will cover new inhibitors of OGT and OGA, advances in metabolic labeling and cellular imaging, synthetic approaches to access homogeneous O-GlcNAcylated proteins, and cross-linking methods to identify O-GlcNAc-protein interactions. We will also discuss remaining gaps in our toolbox for studying O-GlcNAcylation and questions of high interest that are yet to be answered.
Collapse
Affiliation(s)
- Matthew Worth
- Department of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
| | - Hao Li
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
| | - Jiaoyang Jiang
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
| |
Collapse
|
14
|
Liang X, Bonizzoni M. Boronic acid-modified poly(amidoamine) dendrimers as sugar-sensing materials in water. J Mater Chem B 2016; 4:3094-3103. [DOI: 10.1039/c5tb02530c] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
High-affinity carbohydrate receptors were developed by appending boronic acids to the surface of PAMAM dendrimers. These multivalent hosts were used to discriminate simple sugars in neat water using pattern recognition and optical spectroscopy techniques.
Collapse
Affiliation(s)
- X. Liang
- Department of Chemistry
- The University of Alabama
- Tuscaloosa
- USA
| | - M. Bonizzoni
- Department of Chemistry
- The University of Alabama
- Tuscaloosa
- USA
| |
Collapse
|
15
|
Bao L, Ding L, Yang M, Ju H. Noninvasive imaging of sialyltransferase activity in living cells by chemoselective recognition. Sci Rep 2015; 5:10947. [PMID: 26046317 PMCID: PMC4456940 DOI: 10.1038/srep10947] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 05/11/2015] [Indexed: 12/28/2022] Open
Abstract
To elucidate the biological and pathological functions of sialyltransferases (STs), intracellular ST activity evaluation is necessary. Focusing on the lack of noninvasive methods for obtaining the dynamic activity information, this work designs a sensing platform for in situ FRET imaging of intracellular ST activity and tracing of sialylation process. The system uses tetramethylrhodamine isothiocyanate labeled asialofetuin (TRITC-AF) as a ST substrate and fluorescein isothiocyanate labeled 3-aminophenylboronic acid (FITC-APBA) as the chemoselective recognition probe of sialylation product, both of which are encapsulated in a liposome vesicle for cellular delivery. The recognition of FITC-APBA to sialylated TRITC-AF leads to the FRET signal that is analyzed by FRET efficiency images. This strategy has been used to evaluate the correlation of ST activity with malignancy and cell surface sialylation, and the sialylation inhibition activity of inhibitors. This work provides a powerful noninvasive tool for glycan biosynthesis mechanism research, cancer diagnostics and drug development.
Collapse
Affiliation(s)
- Lei Bao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P.R. China
| | - Lin Ding
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P.R. China
| | - Min Yang
- Department of Pharmaceutical &Biological Chemistry, UCL School of Pharmacy, University College London, London WC1N 1AX, UK
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P.R. China
| |
Collapse
|
16
|
Affiliation(s)
| | - Philip A. Cole
- Department
of Pharmacology
and Molecular Sciences, The Johns Hopkins
University School of Medicine, 725 North Wolfe Street, Hunterian 316, Baltimore, Maryland 21205, United States
| |
Collapse
|
17
|
Elbaum MB, Zondlo NJ. OGlcNAcylation and phosphorylation have similar structural effects in α-helices: post-translational modifications as inducible start and stop signals in α-helices, with greater structural effects on threonine modification. Biochemistry 2014; 53:2242-60. [PMID: 24641765 PMCID: PMC4004263 DOI: 10.1021/bi500117c] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
![]()
OGlcNAcylation
and phosphorylation are the major competing intracellular
post-translational modifications of serine and threonine residues.
The structural effects of both post-translational modifications on
serine and threonine were examined within Baldwin model α-helical
peptides (Ac-AKAAAAKAAAAKAAGY-NH2 or Ac-YGAKAAAAKAAAAKAA-NH2). At the N-terminus of an α-helix, both phosphorylation
and OGlcNAcylation stabilized the α-helix relative to the free
hydroxyls, with a larger induced structure for phosphorylation than
for OGlcNAcylation, for the dianionic phosphate than for the monoanionic
phosphate, and for modifications on threonine than for modifications
on serine. Both phosphoserine and phosphothreonine resulted in peptides
more α-helical than alanine at the N-terminus, with dianionic
phosphothreonine the most α-helix-stabilizing residue here.
In contrast, in the interior of the α-helix, both post-translational
modifications were destabilizing with respect to the α-helix,
with the greatest destabilization seen for threonine OGlcNAcylation
at residue 5 and threonine phosphorylation at residue 10, with peptides
containing either post-translational modification existing as random
coils. At the C-terminus, both OGlcNAcylation and phosphorylation
were destabilizing with respect to the α-helix, though the induced
structural changes were less than in the interior of the α-helix.
In general, the structural effects of modifications on threonine were
greater than the effects on serine, because of both the lower α-helical
propensity of Thr and the more defined induced structures upon modification
of threonine than serine, suggesting threonine residues are particularly
important loci for structural effects of post-translational modifications.
The effects of serine and threonine post-translational modifications
are analogous to the effects of proline on α-helices, with the
effects of phosphothreonine being greater than those of proline throughout
the α-helix. These results provide a basis for understanding
the context-dependent structural effects of these competing protein
post-translational modifications.
Collapse
Affiliation(s)
- Michael B Elbaum
- Department of Chemistry and Biochemistry, University of Delaware , Newark, Delaware 19716, United States
| | | |
Collapse
|
18
|
Semba RD, Huang H, Lutty GA, Van Eyk JE, Hart GW. The role of O-GlcNAc signaling in the pathogenesis of diabetic retinopathy. Proteomics Clin Appl 2014; 8:218-31. [PMID: 24550151 DOI: 10.1002/prca.201300076] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 09/24/2013] [Accepted: 10/04/2013] [Indexed: 12/14/2022]
Abstract
Diabetic retinopathy is a leading cause of blindness worldwide. Despite laser and surgical treatments, antiangiogenic and other therapies, and strict metabolic control, many patients progress to visual impairment and blindness. New insights are needed into the pathophysiology of diabetic retinopathy in order to develop new methods to improve the detection and treatment of disease and the prevention of blindness. Hyperglycemia and diabetes result in increased flux through the hexosamine biosynthetic pathway, which, in turn, results in increased PTM of Ser/Thr residues of proteins by O-linked β-N-acetylglucosamine (O-GlcNAc). O-GlcNAcylation is involved in regulation of many nuclear and cytoplasmic proteins in a manner similar to protein phosphorylation. Altered O-GlcNAc signaling has been implicated in the pathogenesis of diabetes and may play an important role in the pathogenesis of diabetic retinopathy. The goal of this review is to summarize the biology of the hexosamine biosynthesis pathway and O-GlcNAc signaling, to present the current evidence for the role of O-GlcNAc signaling in diabetes and diabetic retinopathy, and to discuss future directions for research on O-GlcNAc in the pathogenesis of diabetic retinopathy.
Collapse
Affiliation(s)
- Richard D Semba
- Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | | | |
Collapse
|
19
|
Hertel F, Zhang J. Monitoring of post-translational modification dynamics with genetically encoded fluorescent reporters. Biopolymers 2014; 101:180-7. [PMID: 23576192 PMCID: PMC3883948 DOI: 10.1002/bip.22254] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 04/01/2013] [Indexed: 11/06/2022]
Abstract
Post-translational modifications (PTMs) of proteins are essential mechanisms for virtually all dynamic processes within cellular signaling networks. Genetically encoded reporters based on fluorescent proteins (FPs) are powerful tools for spatiotemporal visualization of cellular parameters. Consequently, commonly used modular biosensor designs have been adapted to generate several protein-based indicators for monitoring various PTMs or the activity of corresponding enzymes in living cells, providing new biological insights into dynamics and regulatory functions of individual PTMs. In this review, we describe the application of general design strategies focusing on PTMs and discuss important considerations for engineering feasible indicators depending on the purpose. Moreover, we present developments and enhancements of PTM biosensors from selected studies and give an outlook on future perspectives of this versatile approach.
Collapse
Affiliation(s)
- Fabian Hertel
- The Johns Hopkins University School of Medicine, Department of Pharmacology and Molecular Sciences, Baltimore, MD 21205, USA
| | - Jin Zhang
- The Johns Hopkins University School of Medicine, Department of Pharmacology and Molecular Sciences, Baltimore, MD 21205, USA
| |
Collapse
|
20
|
Ueda Y, Kwok S, Hayashi Y. Application of FRET probes in the analysis of neuronal plasticity. Front Neural Circuits 2013; 7:163. [PMID: 24133415 PMCID: PMC3794420 DOI: 10.3389/fncir.2013.00163] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 09/23/2013] [Indexed: 12/12/2022] Open
Abstract
Breakthroughs in imaging techniques and optical probes in recent years have revolutionized the field of life sciences in ways that traditional methods could never match. The spatial and temporal regulation of molecular events can now be studied with great precision. There have been several key discoveries that have made this possible. Since green fluorescent protein (GFP) was cloned in 1992, it has become the dominant tracer of proteins in living cells. Then the evolution of color variants of GFP opened the door to the application of Förster resonance energy transfer (FRET), which is now widely recognized as a powerful tool to study complicated signal transduction events and interactions between molecules. Employment of fluorescent lifetime imaging microscopy (FLIM) allows the precise detection of FRET in small subcellular structures such as dendritic spines. In this review, we provide an overview of the basic and practical aspects of FRET imaging and discuss how different FRET probes have revealed insights into the molecular mechanisms of synaptic plasticity and enabled visualization of neuronal network activity both in vitro and in vivo.
Collapse
|
21
|
Groves JA, Lee A, Yildirir G, Zachara NE. Dynamic O-GlcNAcylation and its roles in the cellular stress response and homeostasis. Cell Stress Chaperones 2013; 18:535-58. [PMID: 23620203 PMCID: PMC3745259 DOI: 10.1007/s12192-013-0426-y] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 03/29/2013] [Accepted: 04/01/2013] [Indexed: 12/15/2022] Open
Abstract
O-linked N-acetyl-β-D-glucosamine (O-GlcNAc) is a ubiquitous and dynamic post-translational modification known to modify over 3,000 nuclear, cytoplasmic, and mitochondrial eukaryotic proteins. Addition of O-GlcNAc to proteins is catalyzed by the O-GlcNAc transferase and is removed by a neutral-N-acetyl-β-glucosaminidase (O-GlcNAcase). O-GlcNAc is thought to regulate proteins in a manner analogous to protein phosphorylation, and the cycling of this carbohydrate modification regulates many cellular functions such as the cellular stress response. Diverse forms of cellular stress and tissue injury result in enhanced O-GlcNAc modification, or O-GlcNAcylation, of numerous intracellular proteins. Stress-induced O-GlcNAcylation appears to promote cell/tissue survival by regulating a multitude of biological processes including: the phosphoinositide 3-kinase/Akt pathway, heat shock protein expression, calcium homeostasis, levels of reactive oxygen species, ER stress, protein stability, mitochondrial dynamics, and inflammation. Here, we will discuss the regulation of these processes by O-GlcNAc and the impact of such regulation on survival in models of ischemia reperfusion injury and trauma hemorrhage. We will also discuss the misregulation of O-GlcNAc in diseases commonly associated with the stress response, namely Alzheimer's and Parkinson's diseases. Finally, we will highlight recent advancements in the tools and technologies used to study the O-GlcNAc modification.
Collapse
Affiliation(s)
- Jennifer A. Groves
- The Department of Biological Chemistry, The Johns Hopkins University School of Medicine, 725 N. Wolfe St, Baltimore, MD 21205-2185 USA
| | - Albert Lee
- The Department of Biological Chemistry, The Johns Hopkins University School of Medicine, 725 N. Wolfe St, Baltimore, MD 21205-2185 USA
| | - Gokben Yildirir
- The Department of Biological Chemistry, The Johns Hopkins University School of Medicine, 725 N. Wolfe St, Baltimore, MD 21205-2185 USA
| | - Natasha E. Zachara
- The Department of Biological Chemistry, The Johns Hopkins University School of Medicine, 725 N. Wolfe St, Baltimore, MD 21205-2185 USA
| |
Collapse
|
22
|
Cecioni S, Vocadlo DJ. Tools for probing and perturbing O-GlcNAc in cells and in vivo. Curr Opin Chem Biol 2013; 17:719-28. [PMID: 23906602 DOI: 10.1016/j.cbpa.2013.06.030] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 06/20/2013] [Accepted: 06/26/2013] [Indexed: 02/06/2023]
Abstract
Intracellular glycosylation of nuclear and cytoplasmic proteins involves the addition of N-acetylglucosamine (O-GlcNAc) to serine and threonine residues. This dynamic modification occurs on hundreds of proteins and is involved in various essential biological processes. Because O-GlcNAc is substoichiometric and labile, identifying proteins and sites of modification has been challenging and generally requires proteome enrichment. Here we review recent advances on the implementation of chemical tools to perturb, to detect, and to map O-GlcNAc in living systems. Metabolic and chemoenzymatic labels along with bioorthogonal reactions and quantitative proteomics are enabling investigation of the role of O-GlcNAc in various processes including transcriptional regulation, neurodegeneration, and cell signaling.
Collapse
Affiliation(s)
- Samy Cecioni
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | | |
Collapse
|
23
|
Abstract
The enzymatic addition of a single β-D-N-acetylglucosamine sugar molecule on serine and/or threonine residues of protein chains is referred to as O-GlcNAcylation. This novel form of post-translational modification, first reported in 1984, is extremely abundant on nuclear and cytoplasmic proteins and has site specific cycling dynamics comparable to that of protein-phosphorylation. A nutrient and stress sensor, O-GlcNAc abnormalities underlie insulin resistance and glucose toxicity in diabetes, neurodegenerative disorders and dysregulation of tumor suppressors and oncogenic proteins in cancer. Recent advances have helped understand the biochemical mechanisms of GlcNAc addition and removal and have opened the door to developing key inhibitors towards this type of protein modification. Advanced methods in detecting and measuring O-GlcNAcylation have assisted in delineating its biological roles in a variety of cellular processes and diseased states. Availability of facile glycomic techniques are allowing for the exponential growth in the study of protein O-GlcNAcylation and are helping to elucidate key biological roles of this novel PTM.
Collapse
Affiliation(s)
- Partha S Banerjee
- Department of Biological Chemistry, Johns Hopkins University, School of Medicine, Baltimore 21205-2185, USA
| | | | | |
Collapse
|
24
|
O-GlcNAcylation and oxidation of proteins: is signalling in the cardiovascular system becoming sweeter? Clin Sci (Lond) 2012; 123:473-86. [PMID: 22757958 PMCID: PMC3389386 DOI: 10.1042/cs20110638] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
O-GlcNAcylation is an unusual form of protein glycosylation, where a single-sugar [GlcNAc (N-acetylglucosamine)] is added (via β-attachment) to the hydroxyl moiety of serine and threonine residues of nuclear and cytoplasmic proteins. A complex and extensive interplay exists between O-GlcNAcylation and phosphorylation. Many phosphorylation sites are also known glycosylation sites, and this reciprocal occupancy may produce different activities or alter the stability in a target protein. The interplay between these two post-translational modifications is not always reciprocal, as some proteins can be concomitantly phosphorylated and O-GlcNAcylated, and the adjacent phosphorylation or O-GlcNAcylation can regulate the addition of either moiety. Increased cardiovascular production of ROS (reactive oxygen species), termed oxidative stress, has been consistently reported in various chronic diseases and in conditions where O-GlcNAcylation has been implicated as a contributing mechanism for the associated organ injury/protection (for example, diabetes, Alzheimer's disease, arterial hypertension, aging and ischaemia). In the present review, we will briefly comment on general aspects of O-GlcNAcylation and provide an overview of what has been reported for this post-translational modification in the cardiovascular system. We will then specifically address whether signalling molecules involved in redox signalling can be modified by O-GlcNAc (O-linked GlcNAc) and will discuss the critical interplay between O-GlcNAcylation and ROS generation. Experimental evidence indicates that the interactions between O-GlcNAcylation and oxidation of proteins are important not only for cell regulation in physiological conditions, but also under pathological states where the interplay may become dysfunctional and thereby exacerbate cellular injury.
Collapse
|
25
|
Abstract
Imaging technologies developed in the early 20th century achieved contrast solely by relying on macroscopic and morphological differences between the tissues of interest and the surrounding tissues. Since then, there has been a movement toward imaging at the cellular and molecular level in order to visualize biological processes. This rapidly growing field is known as molecular imaging. In the last decade, many methodologies for imaging proteins have emerged. However, most of these approaches cannot be extended to imaging beyond the proteome. Here, we highlight some of the recently developed technologies that enable imaging of non-proteinaceous molecules in the cell: lipids, signalling molecules, inorganic ions, glycans, nucleic acids, small-molecule metabolites, and protein post-translational modifications such as phosphorylation and methylation.
Collapse
Affiliation(s)
- Pamela V. Chang
- Department of Chemistry, University of California, Berkeley, 94720, USA
| | - Carolyn R. Bertozzi
- Department of Chemistry, University of California, Berkeley, 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, U.S.A
- Howard Hughes Medical Institute, University of California, Berkeley, U.S.A
| |
Collapse
|
26
|
Zachara NE. The roles of O-linked β-N-acetylglucosamine in cardiovascular physiology and disease. Am J Physiol Heart Circ Physiol 2012; 302:H1905-18. [PMID: 22287582 DOI: 10.1152/ajpheart.00445.2011] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
More than 1,000 proteins of the nucleus, cytoplasm, and mitochondria are dynamically modified by O-linked β-N-acetylglucosamine (O-GlcNAc), an essential post-translational modification of metazoans. O-GlcNAc, which modifies Ser/Thr residues, is thought to regulate protein function in a manner analogous to protein phosphorylation and, on a subset of proteins, appears to have a reciprocal relationship with phosphorylation. Like phosphorylation, O-GlcNAc levels change dynamically in response to numerous signals including hyperglycemia and cellular injury. Recent data suggests that O-GlcNAc appears to be a key regulator of the cellular stress response, the augmentation of which is protective in models of acute vascular injury, trauma hemorrhage, and ischemia-reperfusion injury. In contrast to these studies, O-GlcNAc has also been implicated in the development of hypertension and type II diabetes, leading to vascular and cardiac dysfunction. Here we summarize the current understanding of the roles of O-GlcNAc in the heart and vasculature.
Collapse
Affiliation(s)
- Natasha E Zachara
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
27
|
Zhou X, Herbst-Robinson KJ, Zhang J. Visualizing dynamic activities of signaling enzymes using genetically encodable FRET-based biosensors from designs to applications. Methods Enzymol 2012; 504:317-40. [PMID: 22264542 PMCID: PMC4384881 DOI: 10.1016/b978-0-12-391857-4.00016-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Living cells respond to various environmental cues and process them into a series of spatially and temporally regulated signaling events, which can be tracked in real time with an expanding repertoire of genetically encodable FRET-based biosensors. A series of these biosensors, designed to track dynamic activities of signaling enzymes such as protein kinases and small GTPases, have yielded invaluable information regarding the spatiotemporal regulation of these enzymes, shedding light on the orchestration of signaling pathways within the native cellular context. In this chapter, we first review the generalizable modular designs of FRET-based biosensors, followed by a detailed discussion about biosensors for reporting protein kinase activities and GTPase activation. Two general designs, uni- and bimolecular reporters, will be discussed with an analysis of their strengths and limitations. Finally, an example of using both uni- and bimolecular kinase activity reporters to visualize PKA activity in living cells will be presented to provide practical tips for using these biosensors to explore specific biological systems.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | |
Collapse
|
28
|
Reuel NF, Ahn JH, Kim JH, Zhang J, Boghossian AA, Mahal LK, Strano MS. Transduction of Glycan–Lectin Binding Using Near-Infrared Fluorescent Single-Walled Carbon Nanotubes for Glycan Profiling. J Am Chem Soc 2011; 133:17923-33. [DOI: 10.1021/ja2074938] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Nigel F. Reuel
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jin-Ho Ahn
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jong-Ho Kim
- Department of Chemical Engineering, Hanyang University, Ansan 426-791, Republic of Korea
| | - Jingqing Zhang
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Ardemis A. Boghossian
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Lara K. Mahal
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Michael S. Strano
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
29
|
Newman RH, Fosbrink MD, Zhang J. Genetically encodable fluorescent biosensors for tracking signaling dynamics in living cells. Chem Rev 2011; 111:3614-66. [PMID: 21456512 PMCID: PMC3092831 DOI: 10.1021/cr100002u] [Citation(s) in RCA: 267] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Robert H. Newman
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Matthew D. Fosbrink
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Jin Zhang
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
30
|
Carrillo LD, Froemming JA, Mahal LK. Targeted in vivo O-GlcNAc sensors reveal discrete compartment-specific dynamics during signal transduction. J Biol Chem 2010; 286:6650-8. [PMID: 21138847 DOI: 10.1074/jbc.m110.191627] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
β-O-N-acetyl-D-glucosamine (O-GlcNAc) is a post-translational modification involved in a plethora of biological systems ranging from cellular stress to insulin signaling. This modification shares many hallmarks with phosphorylation, including its dynamic cycling onto a host of proteins such as transcription factors, kinases, and phosphatases, and regulation of cellular functions, including cell signaling. Herein, we report the development of an improved genetically based O-GlcNAc FRET sensor and compartmentalized targeted variants for the characterization of the spatiotemporal dynamics of O-GlcNAc. During serum-stimulated signal transduction, rapid increases in O-GlcNAc activity were observed at both the plasma membrane and the nucleus, with a concomitant decrease detected in the cytoplasm. These findings suggest the existence of compartment specific dynamics for O-GlcNAc in response to signal-inducing stimuli, pointing to complex regulation of this modification. In addition, inhibition of the PI3K pathway by wortmannin abolished the O-GlcNAc response, suggesting that the activity observed is modulated downstream of the PI3K pathway. Taken together, our data argues that O-GlcNAc is a rapidly induced component of signaling and that the interplay between O-GlcNAc and kinase signaling may be more akin to the complex relationship between kinase pathways.
Collapse
Affiliation(s)
- Luz D Carrillo
- Department of Chemistry and Biochemistry, University of Texas, Austin, Texas 78712, USA
| | | | | |
Collapse
|
31
|
Hong Lim K, Hsu CK, Park S. Flow cytometric analysis of genetic FRET detectors containing variable substrate sequences. Biotechnol Prog 2010; 26:1765-71. [PMID: 20574990 DOI: 10.1002/btpr.468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A genetic Fluorescence Resonance Energy Transfer (FRET) detector undergoes a post-translational modification (PTM)-induced conformational change that results in increased FRET. To test if the PTM-dependent FRET change can be quantified by flow cytometry, we purified and immobilized a genetic detector on microbeads and used flow cytometry to measure its FRET efficiency before and after Erk-2-mediated phosphorylation. The fluorescence ratio R between the acceptor and donor fluorescence, which was obtained by fitting a straight line through the data points in linear space, increases following phosphorylation, thus demonstrating that flow cytometry is capable of detecting a PTM-dependent FRET response. Furthermore, when Erk-2 and a genetic detector are coexpressed in bacteria, the measured R value changes with the substrate sequence with near single residue resolution. Similarly, the cells coexpressing the glycosylating enzyme O-GlcNAc transferase (OGT) and a genetic detector specific for OGT exhibit a PTM-induced change in FRET efficiency. Therefore, the combination of flow cytometry and a genetic detector may be useful to characterize the substrate specificity of a PTM enzyme and identify the sequences that are preferentially targeted for PTM in vivo.
Collapse
Affiliation(s)
- Kok Hong Lim
- Dept. of Chemical and Biological Engineering, University at Buffalo, Buffalo, NY 14260, USA
| | | | | |
Collapse
|
32
|
A Modified Coupled Enzyme Method for O-linked GlcNAc Transferase Activity Assay. Biol Proced Online 2009; 11:170-83. [PMID: 19957065 PMCID: PMC3056017 DOI: 10.1007/s12575-009-9016-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2009] [Accepted: 08/13/2009] [Indexed: 11/21/2022] Open
Abstract
In order to determine the activity of O-linked GlcNAc transferase (OGT), a modified coupled enzyme method was proposed. This method was based on the measurement of uridine 5'-(trihydrogen diphosphate) (UDP), a product generated in transglycosylation reaction. In the assay, UDP was coupled to the conversion of phosphoenolpyruvate to pyruvate using pyruvate kinase. Using a commercial pyruvate assay kit, the pyruvate was converted to a red terminal product, which could be photometrically measured at 570 nm or fluorometrically measured at 587 nm (Em = 535 nm) on a microplate reader. Kinetic study of a truncated recombinant mOGT and quantitative analysis of OGT in two biological samples indicated that this method was practical and competitive for quantitative analysis of OGT.
Collapse
|
33
|
Lima VV, Rigsby CS, Hardy DM, Webb RC, Tostes RC. O-GlcNAcylation: a novel post-translational mechanism to alter vascular cellular signaling in health and disease: focus on hypertension. JOURNAL OF THE AMERICAN SOCIETY OF HYPERTENSION : JASH 2009; 3:374-87. [PMID: 20409980 PMCID: PMC3022480 DOI: 10.1016/j.jash.2009.09.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Revised: 09/26/2009] [Accepted: 09/28/2009] [Indexed: 12/21/2022]
Abstract
O-Linked attachment of beta-N-acetyl-glucosamine (O-GlcNAc) on serine and threonine residues of nuclear and cytoplasmic proteins is a highly dynamic posttranslational modification that plays a key role in signal transduction pathways. Preliminary data show that O-GlcNAcylation may represent a key regulatory mechanism in the vasculature, modulating contractile and relaxant responses. Proteins with an important role in vascular function, such as endothelial nitric oxide synthase, sarcoplasmic reticulum Ca(2+)-ATPase, protein kinase C, mitogen-activated protein kinases, and proteins involved in cytoskeleton regulation and microtubule assembly are targets for O-GlcNAcylation, indicating that this posttranslational modification may play an important role in vascular reactivity. Here, we will focus on a few specific pathways that contribute to vascular function and cardiovascular disease-associated vascular dysfunction, and the implications of their modification by O-GlcNAc. New chemical tools have been developed to detect and study O-GlcNAcylation, including inhibitors of O-GlcNAc enzymes, chemoenzymatic tagging methods, and quantitative proteomics strategies; these will also be briefly addressed. An exciting challenge in the future will be to better understand the cellular dynamics of this posttranslational modification, as well as the signaling pathways and mechanisms by which O-GlcNAc is regulated on specific proteins in the vasculature in health and disease.
Collapse
Affiliation(s)
- Victor V. Lima
- Department of Physiology, Medical College of Georgia, Augusta, GA, USA
- Department of Pharmacology, University of Sao Paulo, Sao Paulo, SP, Brazil
| | | | - David M. Hardy
- Department of Physiology, Medical College of Georgia, Augusta, GA, USA
- Department of Surgery, Medical College of Georgia, Augusta, GA, USA
| | - R. Clinton Webb
- Department of Physiology, Medical College of Georgia, Augusta, GA, USA
| | - Rita C. Tostes
- Department of Physiology, Medical College of Georgia, Augusta, GA, USA
- Department of Pharmacology, University of Sao Paulo, Sao Paulo, SP, Brazil
| |
Collapse
|
34
|
Aye-Han NN, Ni Q, Zhang J. Fluorescent biosensors for real-time tracking of post-translational modification dynamics. Curr Opin Chem Biol 2009; 13:392-7. [PMID: 19682946 PMCID: PMC2757776 DOI: 10.1016/j.cbpa.2009.07.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Revised: 07/07/2009] [Accepted: 07/13/2009] [Indexed: 11/20/2022]
Abstract
Dynamic post-translational modifications (PTMs) regulate and diversify protein properties and cellular behaviors. Real-time monitoring of these modifications has been made possible with biosensors based on fluorescent proteins (FPs) and fluorescence resonance energy transfer (FRET), which can provide spatiotemporal information of PTMs with little perturbation to the cellular environment. In this review, we highlight available fluorescent biosensors applicable to detect PTMs in living cells and how they have shed light on biological questions that have been difficult to address otherwise. In addition, we also provide discussions about various engineering strategies for overcoming potential challenges associated with the development and application of such biosensors.
Collapse
Affiliation(s)
- Nwe-Nwe Aye-Han
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine Baltimore, MD 21205
| | - Qiang Ni
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine Baltimore, MD 21205
| | - Jin Zhang
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine Baltimore, MD 21205
- The Solomon H. Snyder Department of Neuroscience and Department of Oncology The Johns Hopkins University School of Medicine Baltimore, MD 21205
| |
Collapse
|
35
|
Macauley MS, Vocadlo DJ. Increasing O-GlcNAc levels: An overview of small-molecule inhibitors of O-GlcNAcase. Biochim Biophys Acta Gen Subj 2009; 1800:107-21. [PMID: 19664691 DOI: 10.1016/j.bbagen.2009.07.028] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 07/17/2009] [Accepted: 07/28/2009] [Indexed: 11/25/2022]
Abstract
The O-GlcNAc modification is found on many nucleocytoplasmic proteins. The dynamic nature of O-GlcNAc, which in some ways is reminiscent of phosphorylation, has enabled investigators to modulate the stoichiometry of O-GlcNAc on proteins in order to study its function. Although several genetic and pharmacological methods for manipulating O-GlcNAc levels have been described, one of the most direct approaches of increasing global O-GlcNAc levels is by using small-molecule inhibitors of O-GlcNAcase (OGA). As the interest in increasing O-GlcNAc levels has grown, so too has the number of OGA inhibitors. This review provides an overview of the available methods of increasing O-GlcNAc levels, with a special emphasis on inhibition of OGA by small molecules. Known inhibitors of OGA are discussed with particular attention on those most suitable for cell-based biological studies. Several examples in which OGA inhibitors have been used to study the functional role of the O-GlcNAc modification in biological systems are discussed, highlighting the pros and cons of different inhibitors.
Collapse
Affiliation(s)
- Matthew S Macauley
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | | |
Collapse
|
36
|
Clark PM, Dweck JF, Mason DE, Hart CR, Buck SB, Peters EC, Agnew BJ, Hsieh-Wilson LC. Direct in-gel fluorescence detection and cellular imaging of O-GlcNAc-modified proteins. J Am Chem Soc 2008; 130:11576-7. [PMID: 18683930 PMCID: PMC2649877 DOI: 10.1021/ja8030467] [Citation(s) in RCA: 200] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report an advanced chemoenzymatic strategy for the direct fluorescence detection, proteomic analysis, and cellular imaging of O-GlcNAc-modified proteins. O-GlcNAc residues are selectively labeled with fluorescent or biotin tags using an engineered galactosyltransferase enzyme and [3 + 2] azide-alkyne cycloaddition chemistry. We demonstrate that this approach can be used for direct in-gel detection and mass spectrometric identification of O-GlcNAc proteins, identifying 146 novel glycoproteins from the mammalian brain. Furthermore, we show that the method can be exploited to quantify dynamic changes in cellular O-GlcNAc levels and to image O-GlcNAc-glycosylated proteins within cells. As such, this strategy enables studies of O-GlcNAc glycosylation that were previously inaccessible and provides a new tool for uncovering the physiological functions of O-GlcNAc.
Collapse
Affiliation(s)
- Peter M. Clark
- Division of Chemistry and Chemical Engineering and Howard Hughes Medical Institute, California Institute of Technology, Pasadena, California 91125
| | - Jessica F. Dweck
- Division of Chemistry and Chemical Engineering and Howard Hughes Medical Institute, California Institute of Technology, Pasadena, California 91125
| | - Daniel E. Mason
- Genomics Institute of the Novartis Research Foundation, San Diego, California 92121
| | | | | | - Eric C. Peters
- Genomics Institute of the Novartis Research Foundation, San Diego, California 92121
| | | | - Linda C. Hsieh-Wilson
- Division of Chemistry and Chemical Engineering and Howard Hughes Medical Institute, California Institute of Technology, Pasadena, California 91125
| |
Collapse
|
37
|
Hsu KL, Gildersleeve JC, Mahal LK. A simple strategy for the creation of a recombinant lectin microarray. MOLECULAR BIOSYSTEMS 2008; 4:654-62. [PMID: 18493664 PMCID: PMC8375558 DOI: 10.1039/b800725j] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Glycomics, i.e. the high-throughput analysis of carbohydrates, has yet to reach the level of ease and import of its counterparts, genomics and proteomics, due to the difficulties inherent in carbohydrate analysis. The advent of lectin microarray technology addresses many of these problems, providing a straightforward approach for glycomic analysis. However, current microarrays are limited to the available lectin set, which consists mainly of plant lectins isolated from natural sources. These lectins have inherent problems including inconsistent activity and availability. Also, many plant lectins are glycosylated, complicating glycomic evaluation of complex samples, which may contain carbohydrate-binding proteins. The creation of a recombinant, well-defined lectin set would resolve many of these issues. Herein, we describe an efficient strategy for the systematic creation of recombinant lectins for use in microarray technology. We present a small panel of simple-to-purify bacterially-derived lectins that show reliable activity and define their binding specificities by both carbohydrate microarray and ELISA. We utilize this panel to create a recombinant lectin microarray that is able to distinguish glycopatterns for both proteins and cell samples. This work opens the door to the establishment of a vast set of defined lectins via high-throughout approaches, advancing lectin microarray technology for glycomic analysis.
Collapse
Affiliation(s)
- Ku-Lung Hsu
- Department of Chemistry and Biochemistry, University of Texas at Austin, 1 University Station, A5300, Austin, TX 78712-0265, USA
| | | | | |
Collapse
|
38
|
Affiliation(s)
- Heather E. Murrey
- Division of Chemistry and Chemical Engineering and Howard Hughes Medical Institute, California Institute of Technology, Pasadena, California 91125
| | - Linda C. Hsieh-Wilson
- Division of Chemistry and Chemical Engineering and Howard Hughes Medical Institute, California Institute of Technology, Pasadena, California 91125
| |
Collapse
|
39
|
Rexach JE, Clark PM, Hsieh-Wilson LC. Chemical approaches to understanding O-GlcNAc glycosylation in the brain. Nat Chem Biol 2008; 4:97-106. [PMID: 18202679 PMCID: PMC3250351 DOI: 10.1038/nchembio.68] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
O-GlcNAc glycosylation is a unique, dynamic form of glycosylation found on intracellular proteins of all multicellular organisms. Studies suggest that O-GlcNAc represents a key regulatory modification in the brain, contributing to transcriptional regulation, neuronal communication and neurodegenerative disease. Recently, several new chemical tools have been developed to detect and study the modification, including chemoenzymatic tagging methods, quantitative proteomics strategies and small-molecule inhibitors of O-GlcNAc enzymes. Here we highlight some of the emerging roles for O-GlcNAc in the nervous system and describe how chemical tools have significantly advanced our understanding of the scope, functional significance and cellular dynamics of this modification.
Collapse
Affiliation(s)
- Jessica E Rexach
- Division of Chemistry and Chemical Engineering, and Howard Hughes Medical Institute, California Institute of Technology, Pasadena, California 91125, USA
| | | | | |
Collapse
|