1
|
Mao L, Hou S, Shi L, Guo J, Zhu B, Sun Y, Chang J, Xin P. Synthetic anion channels: achieving precise mimicry of the ion permeation pathway of CFTR in an artificial system. Chem Sci 2024; 16:371-377. [PMID: 39620072 PMCID: PMC11605520 DOI: 10.1039/d4sc06893a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 11/24/2024] [Indexed: 12/20/2024] Open
Abstract
CFTR (Cystic Fibrosis Transmembrane Conductance Regulator), a naturally occurring anion channel essential for numerous biological processes, possesses a positively charged ion conduction pathway within its transmembrane domain, which serves as the core module for promoting the movement of anions across cell membranes. In this study, we developed novel artificial anion channels by rebuilding the positively charged ion permeation pathway of the CFTR in artificial systems. These synthetic molecules can be efficiently inserted into lipid bilayers to form artificial ion channels, which exhibit a preference for anions during the transmembrane transport process. More importantly, the positively charged amino acid residues located in the ion permeation pathway of these artificial channels can promote the transmembrane transport of anions through electrostatic interactions, which is consistent with the mechanism of anion transmembrane transport achieved by CFTR.
Collapse
Affiliation(s)
- Linlin Mao
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University 46 Jianshe Road Xinxiang 453007 Henan China +86 373 3328652
| | - Shuaimin Hou
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University 46 Jianshe Road Xinxiang 453007 Henan China +86 373 3328652
| | - Linlin Shi
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University 46 Jianshe Road Xinxiang 453007 Henan China +86 373 3328652
| | - Jingjing Guo
- Centre in Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University Macao 999078 China
| | - Bo Zhu
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University 46 Jianshe Road Xinxiang 453007 Henan China +86 373 3328652
| | - Yonghui Sun
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University 46 Jianshe Road Xinxiang 453007 Henan China +86 373 3328652
| | - Junbiao Chang
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University 46 Jianshe Road Xinxiang 453007 Henan China +86 373 3328652
| | - Pengyang Xin
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University 46 Jianshe Road Xinxiang 453007 Henan China +86 373 3328652
| |
Collapse
|
2
|
Ren B, Sun Y, Xin P. Recent Advances in Artificial Anion Channels and Their Selectivity. Chempluschem 2024; 89:e202400466. [PMID: 39212532 DOI: 10.1002/cplu.202400466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/30/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
Nature performs critical physiological functions using a series of structurally and functionally diverse membrane proteins embedded in cell membranes, in which native ion protein channels modify the electrical potential inside and outside the cell membrane through charged ion movements. Consequently, the cell responds to external stimuli, playing an essential role in various life activities, such as nerve excitation conduction, neurotransmitter release, muscle movement, and control of cell differentiation. Supramolecular artificial channels, which mimic native protein channels in structure and function, adopt unimolecular or self-assembled structures, such as crown ethers, cyclodextrins, cucurbiturils, column arenes, cyclic peptide nanotubes, and metal-organic artificial channels, in channel construction strategies. Owing to the various driving forces involved, artificial synthetic ion channels can be divided into artificial cation and anion channels in terms of ion selectivity. Cation selectivity usually originates from ion coordination, whereas anion selectivity is related to hydrogen bonding, ion pairing, and anion-dipole interactions. Several studies have been conducted on artificial cation channels, and several reviews have summarized them in detail; however, the research on anions is still in the initial stages, and related reviews have rarely been reported. Hence, this article primarily focuses on the recent research on anion channels.
Collapse
Affiliation(s)
- Bowen Ren
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Yonghui Sun
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Pengyang Xin
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| |
Collapse
|
3
|
Leake Gebresilassie F, Ji Kim M, Castellanos D, Broderick CH, Ngo SM, Young VG, Cao DD. Bisphosphonium Benzene Diimides. Chemistry 2024; 30:e202402791. [PMID: 39078697 DOI: 10.1002/chem.202402791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 07/31/2024]
Abstract
The incorporation of cationic groups onto electron-poor compounds is a viable strategy for achieving potent electron acceptors, as evidenced by reports of air-stable radical forms of large aromatic diimides such as naphthalene and perylene diimides. These ions have also been observed to exhibit anion-π interaction tendencies of interest in molecular recognition applications. The benefits of phosphonium incorporation, however, have not yet been extended to the smallest benzene diimides. Here, we report that dibrominated pyromellitic diimide and mellophanic diimide both readily undergo substitution reactions with phosphine sources to yield bisphosphonium compounds. In the single crystalline form, these dications display anion-π interactions and, in the case of mellophanic diimide, the stabilization of a bromide-water H-bonding ring pattern. The reaction of these dications with chemical reductants readily provides the singly and doubly reduced redox states, which were characterized by UV-vis spectroscopy and found to exhibit intense absorptions extending into the near-IR region. Taken together, this work demonstrates that phosphonium incorporation onto congested aromatic diimide scaffolds is synthetically viable and produces unusual electron-poor compounds.
Collapse
Affiliation(s)
| | - Min Ji Kim
- Chemistry Department, Macalester College, 1600 Grand Avenue, Saint Paul, MN, 55105, USA
| | - Daniela Castellanos
- Chemistry Department, Macalester College, 1600 Grand Avenue, Saint Paul, MN, 55105, USA
| | - Conor H Broderick
- Chemistry Department, Macalester College, 1600 Grand Avenue, Saint Paul, MN, 55105, USA
| | - Steven M Ngo
- Chemistry Department, Macalester College, 1600 Grand Avenue, Saint Paul, MN, 55105, USA
| | - Victor G Young
- Department of Chemistry, University of Minnesota, 207 Pleasant St. S.E., Minneapolis, MN, 55455, USA
| | - Dennis D Cao
- Chemistry Department, Macalester College, 1600 Grand Avenue, Saint Paul, MN, 55105, USA
| |
Collapse
|
4
|
Gutiérrez-Peña CL, Gutiérrez-Blanco A, Gusev DG, Poyatos M, Peris E. Lone-Pair-π Bond Strength Unveiled by a Combined Experimental and Computational Study. Angew Chem Int Ed Engl 2024; 63:e202407817. [PMID: 38748473 DOI: 10.1002/anie.202407817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Indexed: 07/02/2024]
Abstract
A series of naphthalene-diimide (NDI) and perylene-diimide (PDI) connected bis-N-heterocyclic carbene complexes of iridium(III) have been prepared and fully characterized. The analysis of their NMR spectroscopic features, together with their molecular structures show that these species display lone-pair-π interactions between the chloride ligands of the Ir(III) complex and the heterocycles of the NDI/PDI moieties. The detection of this type of interaction in solution is due to the formation of two atropisomers, which are formed as a result of the restricted rotation about the Ir-Ccarbene bond imposed by the (Cl)lp⋅⋅⋅π interaction. Variable-temperature 1H NMR analysis allowed the determination of the strength of this non-covalent interaction, which lies between ΔH=6.6 and 10 kcal/mol. The computational studies performed fully support the experimental findings.
Collapse
Affiliation(s)
- Cristian L Gutiérrez-Peña
- Institute of Advanced Materials (INAM)., Universitat Jaume I, Av. Vicente Sos Baynat s/n., Castellón., E-12071., Spain
| | - Ana Gutiérrez-Blanco
- Institute of Advanced Materials (INAM)., Universitat Jaume I, Av. Vicente Sos Baynat s/n., Castellón., E-12071., Spain
| | - Dmitry G Gusev
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, 75 University Avenue West, Waterloo, Ontario, N2 L3 C5, Canada
| | - Macarena Poyatos
- Institute of Advanced Materials (INAM)., Universitat Jaume I, Av. Vicente Sos Baynat s/n., Castellón., E-12071., Spain
| | - Eduardo Peris
- Institute of Advanced Materials (INAM)., Universitat Jaume I, Av. Vicente Sos Baynat s/n., Castellón., E-12071., Spain
| |
Collapse
|
5
|
Ling QH, Fu Y, Lou ZC, Yue B, Guo C, Hu X, Lu W, Hu L, Wang W, Zhang M, Yang HB, Xu L. Naphthalene Diimide-Based Metallacage as an Artificial Ion Channel for Chloride Ion Transport. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308181. [PMID: 38459671 DOI: 10.1002/advs.202308181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/06/2024] [Indexed: 03/10/2024]
Abstract
Developing synthetic molecular devices for controlling ion transmembrane transport is a promising research field in supramolecular chemistry. These artificial ion channels provide models to study ion channel diseases and have huge potential for therapeutic applications. Compared with self-assembled ion channels constructed by intermolecular weak interactions between smaller molecules or cyclic compounds, metallacage-based ion channels have well-defined structures and can exist as single components in the phospholipid bilayer. A naphthalene diimide-based artificial chloride ion channel is constructed through efficient subcomponent self-assembly and its selective ion transport activity in large unilamellar vesicles and the planar lipid bilayer membrane by fluorescence and ion-current measurements is investigated. Molecular dynamics simulations and density functional theory calculations show that the metallacage spans the entire phospholipid bilayer as an unimolecular ion transport channel. This channel transports chloride ions across the cell membrane, which disturbs the ion balance of cancer cells and inhibits the growth of cancer cells at low concentrations.
Collapse
Affiliation(s)
- Qing-Hui Ling
- State Key Laboratory of Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Yuanyuan Fu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200062, China
| | - Zhen-Chen Lou
- State Key Laboratory of Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Bangkun Yue
- Key Laboratory of Micro-Nano Optoelectronic Devices (Wenzhou), College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Chenxing Guo
- College of Chemistry and Environmental Engineering, Shenzhen University, Guangdong, 518055, China
| | - Xinyu Hu
- Key Laboratory of Micro-Nano Optoelectronic Devices (Wenzhou), College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Weiqiang Lu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200062, China
| | - Lianrui Hu
- State Key Laboratory of Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Wei Wang
- State Key Laboratory of Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Min Zhang
- State Key Laboratory of Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Hai-Bo Yang
- State Key Laboratory of Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Lin Xu
- State Key Laboratory of Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| |
Collapse
|
6
|
Liu L, Gong J, Jiang G, Wang J. Anion-π + AIEgens for Fluorescence Imaging and Photodynamic Therapy. Chemistry 2024; 30:e202400378. [PMID: 38418406 DOI: 10.1002/chem.202400378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/28/2024] [Accepted: 02/28/2024] [Indexed: 03/01/2024]
Abstract
Fluorescence imaging-guided photodynamic therapy (PDT) has attracted extensive attention due to its potential of real-time monitoring the lesion locations and visualizing the treatment process with high sensitivity and resolution. Aggregation-induced emission luminogens (AIEgens) show enhanced fluorescence and reactive oxygen species (ROS) generation after cellular uptake, giving them significant advantages in bioimaging and PDT applications. However, most AIEgens are unfavorable for the application in organisms due to their severe hydrophobicity. Anion-π+ type AIEgens carry intrinsic charges that can effectively alleviate their hydrophobicity and improve their binding capability to cells, which is expected to enhance the bioimaging quality and PDT performance. This concept summarizes the applications of anion-π+ type AIEgens in fluorescence imaging, fluorescence imaging-guided photodynamic anticancer and antimicrobial therapy in recent years, hoping to provide some new ideas for the construction of robust photosensitizers. Finally, the current problems and future challenges of anion-π+ AIEgens are discussed.
Collapse
Affiliation(s)
- Lingxiu Liu
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Institutes of Biomedical Sciences, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Jianye Gong
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Institutes of Biomedical Sciences, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Guoyu Jiang
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Institutes of Biomedical Sciences, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Jianguo Wang
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Institutes of Biomedical Sciences, Inner Mongolia University, Hohhot, 010021, P. R. China
| |
Collapse
|
7
|
Hazra N, Gayen K, Ghosh P, Hansda B, Banerjee A. Stabilization of a Photoradiated Naphthalene Diimide-Based Organic Radical Anion Inside a Peptide-Based Gel Matrix with an Improvement of Optoelectronic Properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:9462-9470. [PMID: 38652709 DOI: 10.1021/acs.langmuir.3c03947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
An amino acid-conjugated naphthalene diimide (NDI)-based highly red fluorescent radical anion has been found in a water medium under the photoradiated condition. This molecule has failed to form the radical anion in the monomeric state; however, the J aggregation in the aqueous medium has ensured the formation of radical anion in the ambient condition after the irradiation of both sunlight and UV light exposure. Electron paramagnetic resonance (EPR) studies clearly suggest the formation of radical anions. Herein, the stability of the radical anion in the aqueous medium is only a few minutes as a small amount of shaking is enough to quench the radical anion in the solution state. Furthermore, the incorporation of this molecule into a peptide-based hydrogel matrix and the consequent photoirradiation have not only helped to develop radical anion in the gel matrix but also increased the enormous stability of the radical anion inside the hydrogel matrix even for 30 days. It is envisaged that the formation of the radical anion within the gel matrix prevents the free movement of the NDI molecules and restricts the diffusion of molecular oxygen in the system, which leads to the stability of the radical anions in the gel. Moreover, the stability of the radical anion within the gel has helped to enhance the conductivity of the hybrid gel to a great extent. Interestingly, the radical anion-containing hybrid hydrogel has shown a potential photoswitching property.
Collapse
Affiliation(s)
- Niladri Hazra
- School of Biological Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
| | - Kousik Gayen
- School of Biological Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
| | - Purnadas Ghosh
- School of Biological Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
| | - Biswanath Hansda
- School of Biological Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
| | - Arindam Banerjee
- School of Biological Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
| |
Collapse
|
8
|
Huang WL, Wang XD, Ao YF, Wang QQ, Wang DX. Mimicking the Shape and Function of the ClC Chloride Channel Selective Pore by Combining a Molecular Hourglass Shape with Anion-π Interactions. Chemistry 2024; 30:e202304222. [PMID: 38270386 DOI: 10.1002/chem.202304222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 01/26/2024]
Abstract
ClC is the main family of natural chloride channel proteins that transport Cl- across the cell membrane with high selectivity. The chloride transport and selectivity are determined by the hourglass-shaped pore and the filter located in the central and narrow region of the pore. Artificial unimolecular channel that mimics both the shape and function of the ClC selective pore is attractive, because it could provide simple molecular model to probe the intriguing mechanism and structure-function relevance of ClC. Here we elaborated upon the concept of molecular hourglass plus anion-π interactions for this purpose. The concept was validated by experimental results of molecular hourglasses using shape-persistent 1,3-alternate tetraoxacalix[2]arene[2]triazine as the central macrocyclic skeleton to control the conductance and selectivity, and anion-π interactions as the driving force to facilitate the chloride dehydration and movement along the channel.
Collapse
Affiliation(s)
- Wen-Long Huang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
| | - Xu-Dong Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
| | - Yu-Fei Ao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Qi-Qiang Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - De-Xian Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| |
Collapse
|
9
|
Ganguly T, Das S, Maity D, Baitalik S. Luminescent Ruthenium-Terpyridine Complexes Coupled with Stilbene-Appended Naphthalene, Anthracene, and Pyrene Motifs Demonstrate Fluoride Ion Sensing and Reversible Trans-Cis Photoisomerization. Inorg Chem 2024; 63:6883-6897. [PMID: 38567656 DOI: 10.1021/acs.inorgchem.4c00339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
A new family of luminescent heteroleptic Ru(II)-terpyridine complexes coupled with stilbene-appended naphthalene, anthracene, and pyrene motifs is reported. Each of the complexes features moderately intense emission at room temperature having a lifetime of 16.7 ns for naphthalene and 11.4 ns for anthracene, while a substantially elevated lifetime of 8.3 μs was observed for the pyrene derivative. All the three complexes display a reversible couple in the positive potential window due to Ru2+/Ru3+ oxidation but multiple reversible and/or quasi-reversible peaks in the negative potential domain because of the reduction of the terpyridine moieties. All the complexes selectively sense F- among the studied anions via the intermediary of different noncovalent interactions. The interaction event is monitored through absorption, emission, and 1H and 19F NMR spectroscopy. Additionally, upon utilizing the stilbene motif, reversible trans-cis isomerization of the complexes has been undertaken upon alternate treatment of visible and UV light so that the complexes can act as potential photomolecular switches. We also carried out the anion sensing characterization of the cis form of the complexes. Theoretical calculation employing density functional theory is also executed for a selective complex (naphthalene derivative) to elucidate different noncovalent interactions that are operative during the complex-fluoride interplay.
Collapse
Affiliation(s)
- Tanusree Ganguly
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata 700032, India
| | - Soumi Das
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata 700032, India
| | - Dinesh Maity
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata 700032, India
- Department of Chemistry, Katwa College, Purba Bardhaman, West Bengal 713130, India
| | - Sujoy Baitalik
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata 700032, India
| |
Collapse
|
10
|
Shen J, R D, Li Z, Oh H, Behera H, Joshi H, Kumar M, Aksimentiev A, Zeng H. Sulfur-Containing Foldamer-Based Artificial Lithium Channels. Angew Chem Int Ed Engl 2023; 62:e202305623. [PMID: 37539755 DOI: 10.1002/anie.202305623] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/18/2023] [Accepted: 08/02/2023] [Indexed: 08/05/2023]
Abstract
Unlike many other biologically relevant ions (Na+ , K+ , Ca2+ , Cl- , etc) and protons, whose cellular concentrations are closely regulated by highly selective channel proteins, Li+ ion is unusual in that its concentration is well tolerated over many orders of magnitude and that no lithium-specific channel proteins have so far been identified. While one naturally evolved primary pathway for Li+ ions to traverse across the cell membrane is through sodium channels by competing with Na+ ions, highly sought-after artificial lithium-transporting channels remain a major challenge to develop. Here we show that sulfur-containing organic nanotubes derived from intramolecularly H-bonded helically folded aromatic foldamers of 3.6 Å in hollow cavity diameter could facilitate highly selective and efficient transmembrane transport of Li+ ions, with high transport selectivity factors of 15.3 and 19.9 over Na+ and K+ ions, respectively.
Collapse
Affiliation(s)
- Jie Shen
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Deepa R
- Department of BioTechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, 502285, Telangana, India
| | - Zhongyan Li
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Hyeonji Oh
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Harekrushna Behera
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Himanshu Joshi
- Department of BioTechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, 502285, Telangana, India
| | - Manish Kumar
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Aleksei Aksimentiev
- Department of Physics and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA
| | - Huaqiang Zeng
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| |
Collapse
|
11
|
Sharma R, Vijay A, Chattopadhayay S, Mukherjee A, Talukdar P. Self-assembled anion channel formation by bis(1,3-propanediol)-linked meta-dipropynylbenzene-based small molecules. Chem Commun (Camb) 2023; 59:3602-3605. [PMID: 36883913 DOI: 10.1039/d2cc05155a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Two self-assembled barrel-rosette ion channels have been developed using bis(1,3-propanediol)-linked m-dipropynylbenzene-based molecules. The system with an additional amide arm acted as a better channel compared to that having an ester arm. The amide-linked channel displayed substantial channel activity and excellent chloride selectivity in the lipid bilayer membranes. Molecular dynamics simulation studies confirmed efficient hydrogen-bonded self-assembly of the amide-linked bis(1,3-propanediol)-based molecules in the lipid bilayer membrane and the detection of chloride recognition in the cavity.
Collapse
Affiliation(s)
- Rashmi Sharma
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India.
| | - Amal Vijay
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India.
| | - Sandip Chattopadhayay
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India.
| | - Arnab Mukherjee
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India.
| | - Pinaki Talukdar
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India.
| |
Collapse
|
12
|
Cataldo A, Chvojka M, Park G, Šindelář V, Gabbaï FP, Butler SJ, Valkenier H. Transmembrane transport of fluoride studied by time-resolved emission spectroscopy. Chem Commun (Camb) 2023; 59:4185-4188. [PMID: 36938842 PMCID: PMC10072081 DOI: 10.1039/d3cc00897e] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
Here we present a new method to monitor fluoride transmembrane transport into liposomes using a europium(III) complex. We take advantage of the long emission lifetime of this probe to measure the transport activity of a fluorescent transporter. The high sensitivity, selectivity, and versatility of the assay allowed us to study different types of fluoride transporters and unravel their mechanisms of action.
Collapse
Affiliation(s)
- Alessio Cataldo
- Université libre de Bruxelles (ULB), Engineering of Molecular NanoSystems, Avenue F.D. Roosevelt 50, CP165/64, B-1050 Brussels, Belgium.
| | - Matúš Chvojka
- Université libre de Bruxelles (ULB), Engineering of Molecular NanoSystems, Avenue F.D. Roosevelt 50, CP165/64, B-1050 Brussels, Belgium. .,Department of Chemistry and RECETOX, Faculty of Science, Masaryk University, Brno 62500, Czech Republic
| | - Gyeongjin Park
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA
| | - Vladimír Šindelář
- Department of Chemistry and RECETOX, Faculty of Science, Masaryk University, Brno 62500, Czech Republic
| | - François P Gabbaï
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA
| | - Stephen J Butler
- Department of Chemistry, Loughborough University, Epinal Way, Loughborough, UK.
| | - Hennie Valkenier
- Université libre de Bruxelles (ULB), Engineering of Molecular NanoSystems, Avenue F.D. Roosevelt 50, CP165/64, B-1050 Brussels, Belgium.
| |
Collapse
|
13
|
Mondal A, Ahmad M, Mondal D, Talukdar P. Progress and prospects toward supramolecular bioactive ion transporters. Chem Commun (Camb) 2023; 59:1917-1938. [PMID: 36691926 DOI: 10.1039/d2cc06761g] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The majority of cellular physiological processes depend on natural ion channels, which are pore-forming membrane-embedded proteins that let ions flow across the cell membranes selectively. This selective movement of ions across the membranes balances the osmolality within and outside the cell. However, mutations in the genes that encode essential membrane transport proteins or structural reorganisation of these proteins can cause life-threatening diseases like cystic fibrosis. Artificial ion transport systems have opened up a way to replace dysfunctional natural ion channels to cure such diseases through channel replacement therapy. Moreover, recent research has also demonstrated the ability of these systems to kill cancer cells, reigniting interest in the field among scientists. Our contributions to the recent progress in the design and development of artificial chloride ion transporters and their effect on biological systems have been discussed in this review. This review would provide current vistas and future directions toward the development of novel ion transporters with improved biocompatibility and desired anti-cancer properties. Additionally, it strongly emphasises stimuli-responsive ion transport systems, which are crucial for obtaining target-specificity and may speed up the application of these systems in clinical therapeutics.
Collapse
Affiliation(s)
- Abhishek Mondal
- Chemistry Department, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India.
| | - Manzoor Ahmad
- Chemistry Department, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India. .,Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK
| | - Debashis Mondal
- Chemistry Department, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India. .,Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Zwirkii Wigury 101, Warsaw 02-089, Poland
| | - Pinaki Talukdar
- Chemistry Department, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India.
| |
Collapse
|
14
|
Plais R, Gouarin G, Bournier A, Zayene O, Mussard V, Bourdreux F, Marrot J, Brosseau A, Gaucher A, Clavier G, Salpin JY, Prim D. Chloride Binding Modulated by Anion Receptors Bearing Tetrazine and Urea. Chemphyschem 2023; 24:e202200524. [PMID: 36111796 PMCID: PMC10091995 DOI: 10.1002/cphc.202200524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/15/2022] [Indexed: 01/20/2023]
Abstract
Modulation and fine-tuning of the strength of weak interactions to bind anions are described in a series of synthetic receptors. The general design of the receptors includes both a urea motif and a tetrazine motif. The synthetic sequence towards three receptors is detailed. Impacts of H-bond strength and linker length between urea and tetrazine on chloride complexation are studied. Binding properties of the chloride anion are examined in both the ground and excited states using a panel of analytical methods (NMR spectroscopy, mass spectrometry, UV/Visible spectroscopies, and fluorescence). A ranking of the receptors by complexation strength has been determined, allowing a better understanding of the structure-properties relationship on these compounds.
Collapse
Affiliation(s)
- Romain Plais
- Institut Lavoisier de Versailles, Université Paris-Saclay, UVSQ, CNRS, 78000, Versailles, France
| | - Guy Gouarin
- Institut Lavoisier de Versailles, Université Paris-Saclay, UVSQ, CNRS, 78000, Versailles, France
| | - Amélie Bournier
- LAMBE, Université Paris-Saclay, Univ Evry, CNRS, 91025, Evry-Courcouronnes, France.,LAMBE, CY Cergy Paris Université, CNRS, 95000, Cergy, France
| | - Olfa Zayene
- Institut Lavoisier de Versailles, Université Paris-Saclay, UVSQ, CNRS, 78000, Versailles, France
| | - Vanessa Mussard
- Institut Lavoisier de Versailles, Université Paris-Saclay, UVSQ, CNRS, 78000, Versailles, France
| | - Flavien Bourdreux
- Institut Lavoisier de Versailles, Université Paris-Saclay, UVSQ, CNRS, 78000, Versailles, France
| | - Jérome Marrot
- Institut Lavoisier de Versailles, Université Paris-Saclay, UVSQ, CNRS, 78000, Versailles, France
| | - Arnaud Brosseau
- PPSM, Université Paris-Saclay, ENS Paris-Saclay, CNRS, 91190, Gif-sur-Yvette, France
| | - Anne Gaucher
- Institut Lavoisier de Versailles, Université Paris-Saclay, UVSQ, CNRS, 78000, Versailles, France
| | - Gilles Clavier
- PPSM, Université Paris-Saclay, ENS Paris-Saclay, CNRS, 91190, Gif-sur-Yvette, France
| | - Jean-Yves Salpin
- LAMBE, Université Paris-Saclay, Univ Evry, CNRS, 91025, Evry-Courcouronnes, France.,LAMBE, CY Cergy Paris Université, CNRS, 95000, Cergy, France
| | - Damien Prim
- Institut Lavoisier de Versailles, Université Paris-Saclay, UVSQ, CNRS, 78000, Versailles, France
| |
Collapse
|
15
|
Sun S, Liu Z, Colombo F, Gao R, Yu Y, Qiu Y, Su J, Gan L. Open-Cage Fullerene as Molecular Container for F - , Cl - , Br - and I . Angew Chem Int Ed Engl 2022; 61:e202212090. [PMID: 36316627 DOI: 10.1002/anie.202212090] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Indexed: 11/06/2022]
Abstract
A 19-membered open-cage fullerene derivative was prepared from C60 in 7 steps and 5.5 % yield through the peroxide-mediate pathway. There are four carbonyl groups, an ether oxygen and a quinoxaline moiety on the rim of the orifice. A chloride anion could be inserted into its cavity by heating with hydrochloric acid at 60 °C for 4 h. Encapsulation of fluoride, bromide and iodide anions was also achieved at slightly more forcing conditions, 90 °C for 14 h. Single crystal X-ray structures of the sodium salt of the chloride and the bromide encapsulated derivatives were obtained, which showed the halide anion in the center of the cavity and two sodium cations connecting two cages through coordination to the oxygen atoms on the rim of the orifices. The halide encapsulation ratio is quantitative in the isolated products.
Collapse
Affiliation(s)
- Shijun Sun
- State Key Laboratory of Chemistry and Utilization of Carbon-Based Energy Resources, College of Chemistry, Xinjiang University, 830017, Urumqi, Xinjiang, P. R. China
| | - Zhen Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, China
| | - Francesca Colombo
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, China
| | - Rui Gao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, China
| | - Yuming Yu
- State Key Laboratory of Chemistry and Utilization of Carbon-Based Energy Resources, College of Chemistry, Xinjiang University, 830017, Urumqi, Xinjiang, P. R. China
| | - Yi Qiu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, China
| | - Jie Su
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, China
| | - Liangbing Gan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, China
| |
Collapse
|
16
|
Shen J, Ye R, Liu Z, Zeng H. Hybrid Pyridine–Pyridone Foldamer Channels as M2‐Like Artificial Proton Channels. Angew Chem Int Ed Engl 2022; 61:e202200259. [DOI: 10.1002/anie.202200259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Jie Shen
- College of Chemistry Fuzhou University Fuzhou Fujian 350116 China
| | - Ruijuan Ye
- College of Chemistry Fuzhou University Fuzhou Fujian 350116 China
| | - Zhiwei Liu
- Department of Chemistry & Biochemistry Rowan University 201 Mullica Hill Road Glassboro NJ 08028 USA
| | - Huaqiang Zeng
- College of Chemistry Fuzhou University Fuzhou Fujian 350116 China
| |
Collapse
|
17
|
Shen J, Ye R, Liu Z, Zeng H. Hybrid Pyridine–Pyridone Foldamer Channels as M2‐Like Artificial Proton Channels. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jie Shen
- College of Chemistry Fuzhou University Fuzhou Fujian 350116 China
| | - Ruijuan Ye
- College of Chemistry Fuzhou University Fuzhou Fujian 350116 China
| | - Zhiwei Liu
- Department of Chemistry & Biochemistry Rowan University 201 Mullica Hill Road Glassboro NJ 08028 USA
| | - Huaqiang Zeng
- College of Chemistry Fuzhou University Fuzhou Fujian 350116 China
| |
Collapse
|
18
|
Pada Majhi T, Teat SJ, Kundu N. Synthesis and structure of vanadium (IV) single-stranded dihelicate involving multi-ring nitrogen-heterocyclic ligand. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
19
|
Yan B, Lv Z, Chen S, Xiang L, Gong L, Xiang J, Fan H, Zeng H. Probing Anion - π interactions between fluoroarene and carboxylate anion in aqueous solutions. J Colloid Interface Sci 2022; 615:778-785. [PMID: 35176544 DOI: 10.1016/j.jcis.2022.01.184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/11/2022] [Accepted: 01/29/2022] [Indexed: 12/19/2022]
Abstract
Despite the much progress in developing π-conjugated fluoroarene moieties based functional materials in which anion - π interactions are commonly involved, it remains challenging to quantitatively characterize the nanomechanical interaction mechanism of these anion - π systems, particularly in aqueous solutions. In this study, we reported the first experimental quantification of the nanomechanics of anion - π interactions between π-conjugated fluoroarene moieties and carboxylate anions in aqueous solutions through direct molecular force measurements, with a special focus on the impact of the anion species, concentration and of the substitution effect of aromatic side group. The results using surface forces apparatus (SFA) and single-molecule force spectroscopy (SMFS) provide complementary evidences to demonstrate that the robust and reversible adhesion measured between the fluoroarene π systems and carboxylate anions was mainly attributed to anion - π interaction. Moreover, their nanomechanical properties were also systematically scrutinized, with the interaction strength being found to be significantly determined by the contact time, the type of fluoroarene systems (PFST > DFST) and the type of anions and ion concentration (HPO42- > CO32- > I- > Cl- ≈ NO3- > F-).
Collapse
Affiliation(s)
- Bin Yan
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Zezhong Lv
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Sheng Chen
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Li Xiang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada
| | - Lu Gong
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada
| | - Jun Xiang
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China.
| | - Haojun Fan
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada.
| |
Collapse
|
20
|
Liu JJ, Fu JJ, Liu T, Shen X, Cheng FX. The modulation effect of an electron-rich guest on the luminescence of naphthalene diimide-based metal–organic frameworks. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00768a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A series of host–guest MOF materials were successfully fabricated by virtue of donor–acceptor interactions, which exhibit color-tunable emissions in a wide wavelength range by rational selection of guest molecules.
Collapse
Affiliation(s)
- Jian-Jun Liu
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China
| | - Jia-Jia Fu
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China
| | - Teng Liu
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China
| | - Xianfu Shen
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China
| | - Fei-Xiang Cheng
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China
| |
Collapse
|
21
|
Malla JA, Ahmad M, Talukdar P. Molecular Self-Assembly as a Tool to Construct Transmembrane Supramolecular Ion Channels. CHEM REC 2021; 22:e202100225. [PMID: 34766703 DOI: 10.1002/tcr.202100225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/16/2021] [Accepted: 10/25/2021] [Indexed: 12/12/2022]
Abstract
Self-assembly has become a powerful tool for building various supramolecular architectures with applications in material science, environmental science, and chemical biology. One such area is the development of artificial transmembrane ion channels that mimic naturally occurring channel-forming proteins to unveil various structural and functional aspects of these complex biological systems, hoping to replace the defective protein channels with these synthetically accessible moieties. This account describes our recent approaches to construct supramolecular ion channels using synthetic molecules and their applications in medicinal chemistry.
Collapse
Affiliation(s)
- Javid Ahmad Malla
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhaba Road, Pune, Maharashtra, 411008, India
| | - Manzoor Ahmad
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhaba Road, Pune, Maharashtra, 411008, India
| | - Pinaki Talukdar
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhaba Road, Pune, Maharashtra, 411008, India
| |
Collapse
|
22
|
Abstract
It follows from the Schrödinger equation that the forces operating within molecules and molecular complexes are Coulombic, which necessarily entails both electrostatics and polarization. A common and important class of molecular complexes is due to π-holes. These are molecular regions of low electronic density that are perpendicular to planar portions of the molecular frameworks. π-Holes often have positive electrostatic potentials associated with them, which result in mutually polarizing attractive forces with negative sites such as lone pairs, π electrons or anions. In many molecules, π-holes correspond to a flattening of the electronic density surface but in benzene derivatives and in polyazines the π-holes are craters above and below the rings. The interaction energies of π-hole complexes can be expressed quite well in terms of regression relationships that account for both the electrostatics and the polarization. There is a marked gradation in the interaction energies, from quite weak (about -2 kcal mol-1) to relatively strong (about -40 kcal mol-1). Gradations are also evident in the ratios of the intermolecular separations to the sums of the respective van der Waals radii and in the gradual transition of the π-hole atoms from trigonal to quasi-tetrahedral configurations. These trends are consistent with the concept that chemical interactions form a continuum, from very weak to very strong.
Collapse
Affiliation(s)
- Peter Politzer
- Department of Chemistry, University of New Orleans, New Orleans, LA 70148, USA.
| | | | | |
Collapse
|
23
|
Khurana R, Mohanty J, Barooah N, Bhasikuttan AC. Photoinduced emissive naphthalenediimide radical anion in the confinement of cucurbituril nanocavity; in situ generation of gold nanoparticles. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
24
|
The Neglected Nuclei. Molecules 2021; 26:molecules26102982. [PMID: 34069785 PMCID: PMC8157270 DOI: 10.3390/molecules26102982] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 11/17/2022] Open
Abstract
Since the nuclei in a molecule are treated as stationary, it is perhaps natural that interpretations of molecular properties and reactivity have focused primarily upon the electronic density distribution. The role of the nuclei has generally received little explicit consideration. Our objective has been to at least partially redress this imbalance in emphasis. We discuss a number of examples in which the nuclei play the determining role with respect to molecular properties and reactive behavior. It follows that conventional interpretations based solely upon electronic densities and donating or withdrawing tendencies should be made with caution.
Collapse
|
25
|
Kumar P, Kumar V, Gupta R. Dipicolinamide and isophthalamide based fluorescent chemosensors: recognition and detection of assorted analytes. Dalton Trans 2021; 49:9544-9555. [PMID: 32627772 DOI: 10.1039/d0dt01508c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
This perspective focuses on a variety of fluorescent receptors based on dipicolinamide and isophthalamide groups and their significant roles in the molecular recognition, sensing and detection of assorted analytes ranging from metal ions, anions, neutral molecules, drugs and explosives. Both the "turn-on" and "turn-off" nature of sensing highlights noteworthy applications in many fields encompassing biological, medicinal, environmental and analytical disciplines.
Collapse
Affiliation(s)
- Pramod Kumar
- Department of Chemistry, University of Delhi, Delhi-110007, India.
| | - Vijay Kumar
- Department of Chemistry, University of Delhi, Delhi-110007, India.
| | - Rajeev Gupta
- Department of Chemistry, University of Delhi, Delhi-110007, India.
| |
Collapse
|
26
|
Pannwitz A, Saaring H, Beztsinna N, Li X, Siegler MA, Bonnet S. Mimicking Photosystem I with a Transmembrane Light Harvester and Energy Transfer-Induced Photoreduction in Phospholipid Bilayers. Chemistry 2021; 27:3013-3018. [PMID: 32743875 PMCID: PMC7898337 DOI: 10.1002/chem.202003391] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Indexed: 11/19/2022]
Abstract
Photosystem I (PS I) is a transmembrane protein that assembles perpendicular to the membrane, and performs light harvesting, energy transfer, and electron transfer to a final, water-soluble electron acceptor. We present here a supramolecular model of it formed by a bicationic oligofluorene 12+ bound to the bisanionic photoredox catalyst eosin Y (EY2- ) in phospholipid bilayers. According to confocal microscopy, molecular modeling, and time dependent density functional theory calculations, 12+ prefers to align perpendicularly to the lipid bilayer. In presence of EY2- , a strong complex is formed (Ka =2.1±0.1×106 m-1 ), which upon excitation of 12+ leads to efficient energy transfer to EY2- . Follow-up electron transfer from the excited state of EY2- to the water-soluble electron donor EDTA was shown via UV-Vis absorption spectroscopy. Overall, controlled self-assembly and photochemistry within the membrane provides an unprecedented yet simple synthetic functional mimic of PS I.
Collapse
Affiliation(s)
- Andrea Pannwitz
- Leiden UniversityLeiden Institute of ChemistryEinsteinweg 55, 2333CCLeidenThe Netherlands
| | - Holden Saaring
- Leiden UniversityLeiden Institute of ChemistryEinsteinweg 55, 2333CCLeidenThe Netherlands
| | - Nataliia Beztsinna
- Leiden UniversityLeiden Institute of ChemistryEinsteinweg 55, 2333CCLeidenThe Netherlands
| | - Xinmeng Li
- Leiden UniversityLeiden Institute of ChemistryEinsteinweg 55, 2333CCLeidenThe Netherlands
| | - Maxime A. Siegler
- Johns Hopkins UniversityDepartment of ChemistryMaryland21218BaltimoreUSA
| | - Sylvestre Bonnet
- Leiden UniversityLeiden Institute of ChemistryEinsteinweg 55, 2333CCLeidenThe Netherlands
| |
Collapse
|
27
|
August D, Borsley S, Cockroft SL, della Sala F, Leigh DA, Webb SJ. Transmembrane Ion Channels Formed by a Star of David [2]Catenane and a Molecular Pentafoil Knot. J Am Chem Soc 2020; 142:18859-18865. [PMID: 33084320 PMCID: PMC7745878 DOI: 10.1021/jacs.0c07977] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Indexed: 12/19/2022]
Abstract
A (FeII)6-coordinated triply interlocked ("Star of David") [2]catenane (612 link) and a (FeII)5-coordinated pentafoil (51) knot are found to selectively transport anions across phospholipid bilayers. Allostery, topology, and building block stoichiometry all play important roles in the efficacy of the ionophoric activity. Multiple FeII cation coordination by the interlocked molecules is crucial: the demetalated catenane exhibits no anion binding in solution nor any transmembrane ion transport properties. However, the topologically trivial, Lehn-type cyclic hexameric FeII helicates-which have similar anion binding affinities to the metalated Star of David catenane in solution-also display no ion transport properties. The unanticipated difference in behavior between the open- and closed-loop structures may arise from conformational restrictions in the linking groups that likely enhances the rigidity of the channel-forming topologically complex molecules. The (FeII)6-coordinated Star of David catenane, derived from a hexameric cyclic helicate, is 2 orders of magnitude more potent in terms of ion transport than the (FeII)5-coordinated pentafoil knot, derived from a cyclic pentamer of the same building block. The reduced efficacy is reminiscent of multisubunit protein ion channels assembled with incorrect monomer stoichiometries.
Collapse
Affiliation(s)
- David
P. August
- Department
of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United
Kingdom
| | - Stefan Borsley
- Department
of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United
Kingdom
| | - Scott L. Cockroft
- EaStCHEM
School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster
Road, Edinburgh EH9 3FJ, United Kingdom
| | - Flavio della Sala
- Department
of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United
Kingdom
- Manchester
Institute of Biotechnology, University of
Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - David A. Leigh
- Department
of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United
Kingdom
| | - Simon J. Webb
- Department
of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United
Kingdom
- Manchester
Institute of Biotechnology, University of
Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| |
Collapse
|
28
|
Shybeka I, Aster A, Cheng Y, Sakai N, Frontera A, Vauthey E, Matile S. Naphthalenediimides with Cyclic Oligochalcogenides in Their Core. Chemistry 2020; 26:14059-14063. [PMID: 33006168 DOI: 10.1002/chem.202003550] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/18/2020] [Indexed: 01/04/2023]
Abstract
Naphthalenediimides (NDIs) are privileged scaffolds par excellence, of use in functional systems from catalysts to ion channels, photosystems, sensors, ordered matter in all forms, tubes, knots, stacks, sheets, vesicles, and colored over the full visible range. Despite this extensively explored chemical space, there is still room to discover core-substituted NDIs with fundamentally new properties: NDIs with cyclic trisulfides (i.e., trisulfanes) in their core absorb at 668 nm, emit at 801 nm, and contract into disulfides (i.e., dithietes) upon irradiation at <475 nm. Intramolecular 1,5-chalcogen bonds account for record redshifts with trisulfides, ring-tension mediated chalcogen-bond-mediated cleavage for blueshifts to 492 nm upon ring contraction. Cyclic oligochalcogenides (COCs) in the NDI core open faster than strained dithiolanes as in asparagusic acid and are much better retained on thiol exchange affinity columns. This makes COC-NDIs attractive not only within the existing multifunctionality, particularly artificial photosystems, but also for thiol-mediated cellular uptake.
Collapse
Affiliation(s)
- Inga Shybeka
- School of Chemistry and Biochemistry, University of Geneva, Geneva, Switzerland
| | - Alexander Aster
- School of Chemistry and Biochemistry, University of Geneva, Geneva, Switzerland
| | - Yangyang Cheng
- School of Chemistry and Biochemistry, University of Geneva, Geneva, Switzerland
| | - Naomi Sakai
- School of Chemistry and Biochemistry, University of Geneva, Geneva, Switzerland
| | - Antonio Frontera
- Department de Química, Universitat de les Illes Balears, Palma de Mallorca, Spain
| | - Eric Vauthey
- School of Chemistry and Biochemistry, University of Geneva, Geneva, Switzerland
| | - Stefan Matile
- School of Chemistry and Biochemistry, University of Geneva, Geneva, Switzerland
| |
Collapse
|
29
|
Zheng S, Huang L, Sun Z, Barboiu M. Self‐Assembled Artificial Ion‐Channels toward Natural Selection of Functions. Angew Chem Int Ed Engl 2020; 60:566-597. [DOI: 10.1002/anie.201915287] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Shao‐Ping Zheng
- Lehn Institute of Functional Materials School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
- Institut Europeen des Membranes Adaptive Supramolecular Nanosystems Group University of Montpellier ENSCM-CNRS Place E. Bataillon CC047 34095 Montpellier France
| | - Li‐Bo Huang
- Lehn Institute of Functional Materials School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
- Institut Europeen des Membranes Adaptive Supramolecular Nanosystems Group University of Montpellier ENSCM-CNRS Place E. Bataillon CC047 34095 Montpellier France
| | - Zhanhu Sun
- Institut Europeen des Membranes Adaptive Supramolecular Nanosystems Group University of Montpellier ENSCM-CNRS Place E. Bataillon CC047 34095 Montpellier France
| | - Mihail Barboiu
- Lehn Institute of Functional Materials School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
- Institut Europeen des Membranes Adaptive Supramolecular Nanosystems Group University of Montpellier ENSCM-CNRS Place E. Bataillon CC047 34095 Montpellier France
| |
Collapse
|
30
|
Zheng S, Huang L, Sun Z, Barboiu M. Selbstorganisierte künstliche Ionenkanäle für die natürliche Selektion von Funktionen. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915287] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Shao‐Ping Zheng
- Lehn Institute of Functional Materials School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
- Institut Europeen des Membranes Adaptive Supramolecular Nanosystems Group University of Montpellier ENSCM-CNRS Place E. Bataillon CC047 34095 Montpellier Frankreich
| | - Li‐Bo Huang
- Lehn Institute of Functional Materials School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
- Institut Europeen des Membranes Adaptive Supramolecular Nanosystems Group University of Montpellier ENSCM-CNRS Place E. Bataillon CC047 34095 Montpellier Frankreich
| | - Zhanhu Sun
- Institut Europeen des Membranes Adaptive Supramolecular Nanosystems Group University of Montpellier ENSCM-CNRS Place E. Bataillon CC047 34095 Montpellier Frankreich
| | - Mihail Barboiu
- Lehn Institute of Functional Materials School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
- Institut Europeen des Membranes Adaptive Supramolecular Nanosystems Group University of Montpellier ENSCM-CNRS Place E. Bataillon CC047 34095 Montpellier Frankreich
| |
Collapse
|
31
|
Peters AD, Borsley S, Della Sala F, Cairns-Gibson DF, Leonidou M, Clayden J, Whitehead GFS, Vitórica-Yrezábal IJ, Takano E, Burthem J, Cockroft SL, Webb SJ. Switchable foldamer ion channels with antibacterial activity. Chem Sci 2020; 11:7023-7030. [PMID: 32953034 PMCID: PMC7481839 DOI: 10.1039/d0sc02393k] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 06/04/2020] [Indexed: 12/19/2022] Open
Abstract
Synthetic ion channels may have applications in treating channelopathies and as new classes of antibiotics, particularly if ion flow through the channels can be controlled. Here we describe triazole-capped octameric α-aminoisobutyric acid (Aib) foldamers that "switch on" ion channel activity in phospholipid bilayers upon copper(ii) chloride addition; activity is "switched off" upon copper(ii) extraction. X-ray crystallography showed that CuCl2 complexation gave chloro-bridged foldamer dimers, with hydrogen bonds between dimers producing channels within the crystal structure. These interactions suggest a pathway for foldamer self-assembly into membrane ion channels. The copper(ii)-foldamer complexes showed antibacterial activity against B. megaterium strain DSM319 that was similar to the peptaibol antibiotic alamethicin, but with 90% lower hemolytic activity.
Collapse
Affiliation(s)
- Anna D Peters
- Department of Chemistry , University of Manchester , Oxford Road , Manchester M13 9PL , UK .
- Manchester Institute of Biotechnology , University of Manchester , 131 Princess St , Manchester M1 7DN , UK
| | - Stefan Borsley
- Department of Chemistry , University of Manchester , Oxford Road , Manchester M13 9PL , UK .
- EaStCHEM School of Chemistry , University of Edinburgh , Joseph Black Building, David Brewster Road , Edinburgh EH9 3FJ , UK
| | - Flavio Della Sala
- Department of Chemistry , University of Manchester , Oxford Road , Manchester M13 9PL , UK .
- Manchester Institute of Biotechnology , University of Manchester , 131 Princess St , Manchester M1 7DN , UK
| | - Dominic F Cairns-Gibson
- EaStCHEM School of Chemistry , University of Edinburgh , Joseph Black Building, David Brewster Road , Edinburgh EH9 3FJ , UK
| | - Marios Leonidou
- Department of Chemistry , University of Manchester , Oxford Road , Manchester M13 9PL , UK .
- Manchester Institute of Biotechnology , University of Manchester , 131 Princess St , Manchester M1 7DN , UK
| | - Jonathan Clayden
- School of Chemistry , University of Bristol , Cantock's Close , Bristol BS8 1TS , UK
| | - George F S Whitehead
- Department of Chemistry , University of Manchester , Oxford Road , Manchester M13 9PL , UK .
| | | | - Eriko Takano
- Department of Chemistry , University of Manchester , Oxford Road , Manchester M13 9PL , UK .
- Manchester Institute of Biotechnology , University of Manchester , 131 Princess St , Manchester M1 7DN , UK
| | - John Burthem
- Department of Haematology , Manchester Royal Infirmary , Manchester University NHS Foundation Trust , Manchester M13 9WL , UK
- Division of Cancer Sciences , School of Medical Sciences , University of Manchester , Manchester , UK
| | - Scott L Cockroft
- EaStCHEM School of Chemistry , University of Edinburgh , Joseph Black Building, David Brewster Road , Edinburgh EH9 3FJ , UK
| | - Simon J Webb
- Department of Chemistry , University of Manchester , Oxford Road , Manchester M13 9PL , UK .
- Manchester Institute of Biotechnology , University of Manchester , 131 Princess St , Manchester M1 7DN , UK
| |
Collapse
|
32
|
Huang WL, Wang XD, Ao YF, Wang QQ, Wang DX. Artificial Chloride-Selective Channel: Shape and Function Mimic of the ClC Channel Selective Pore. J Am Chem Soc 2020; 142:13273-13277. [DOI: 10.1021/jacs.0c02881] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Wen-Long Huang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xu-Dong Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yu-Fei Ao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Qi-Qiang Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - De-Xian Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
33
|
Zhirov AM, Kovalev DA, Ulshina DV, Pisarenko SV, Demidov OP, Borovlev IV. Diazapyrenes: interaction with nucleic acids and biological activity. Chem Heterocycl Compd (N Y) 2020; 56:674-693. [PMID: 32836316 PMCID: PMC7366485 DOI: 10.1007/s10593-020-02717-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 11/26/2019] [Indexed: 12/22/2022]
Abstract
The review summarizes data on the practical aspects of the interaction of nucleic acids with diazapyrene derivatives. The information on biological activity is given and the probable mechanisms underlying the action of diazapyrenes are analyzed. It contains 119 references.
Collapse
Affiliation(s)
- Andrey M. Zhirov
- Stavropol Research Anti-Plague Institute, 13-15 Sovetskaya St, Stavropol, 355035 Russia
| | - Dmitry A. Kovalev
- Stavropol Research Anti-Plague Institute, 13-15 Sovetskaya St, Stavropol, 355035 Russia
| | - Diana V. Ulshina
- Stavropol Research Anti-Plague Institute, 13-15 Sovetskaya St, Stavropol, 355035 Russia
| | - Sergey V. Pisarenko
- Stavropol Research Anti-Plague Institute, 13-15 Sovetskaya St, Stavropol, 355035 Russia
| | - Oleg P. Demidov
- North Caucasus Federal University, 1a Pushkina St, Stavropol, 355017 Russia
| | - Ivan V. Borovlev
- North Caucasus Federal University, 1a Pushkina St, Stavropol, 355017 Russia
| |
Collapse
|
34
|
Rather IA, Wagay SA, Ali R. Emergence of anion-π interactions: The land of opportunity in supramolecular chemistry and beyond. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213327] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
35
|
Ernst BG, Lao KU, Sullivan AG, DiStasio Jr. RA. Attracting Opposites: Promiscuous Ion−π Binding in the Nucleobases. J Phys Chem A 2020; 124:4128-4140. [DOI: 10.1021/acs.jpca.0c02766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Brian G. Ernst
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Ka Un Lao
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Andrew G. Sullivan
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Robert A. DiStasio Jr.
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
36
|
Roy A, Joshi H, Ye R, Shen J, Chen F, Aksimentiev A, Zeng H. Polyhydrazide-Based Organic Nanotubes as Efficient and Selective Artificial Iodide Channels. Angew Chem Int Ed Engl 2020; 59:4806-4813. [PMID: 31950583 PMCID: PMC7093082 DOI: 10.1002/anie.201916287] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Indexed: 12/29/2022]
Abstract
Reported herein is a series of pore-containing polymeric nanotubes based on a hydrogen-bonded hydrazide backbone. Nanotubes of suitable lengths, possessing a hollow cavity of about a 6.5 Å diameter, mediate highly efficient transport of diverse types of anions, rather than cations, across lipid membranes. The reported polymer channel, having an average molecular weight of 18.2 kDa and 3.6 nm in helical height, exhibits the highest anion-transport activities for iodide (EC50 =0.042 μm or 0.028 mol % relative to lipid), whcih is transported 10 times more efficiently than chlorides (EC50 =0.47 μm). Notably, even in cholesterol-rich environment, iodide transport activity remains high with an EC50 of 0.37 μm. Molecular dynamics simulation studies confirm that the channel is highly selective for anions and that such anion selectivity arises from a positive electrostatic potential of the central lumen rendered by the interior-pointing methyl groups.
Collapse
Affiliation(s)
- Arundhati Roy
- NanoBio Lab, 31 Biopolis Way, The Nanos, Singapore, 138669, Singapore
| | - Himanshu Joshi
- Department of Physics and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Ruijuan Ye
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Jie Shen
- NanoBio Lab, 31 Biopolis Way, The Nanos, Singapore, 138669, Singapore
| | - Feng Chen
- NanoBio Lab, 31 Biopolis Way, The Nanos, Singapore, 138669, Singapore
| | - Aleksei Aksimentiev
- Department of Physics and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Huaqiang Zeng
- NanoBio Lab, 31 Biopolis Way, The Nanos, Singapore, 138669, Singapore
| |
Collapse
|
37
|
Roy A, Joshi H, Ye R, Shen J, Chen F, Aksimentiev A, Zeng H. Polyhydrazide‐Based Organic Nanotubes as Efficient and Selective Artificial Iodide Channels. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916287] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Arundhati Roy
- NanoBio Lab 31 Biopolis Way The Nanos, Singapore 138669 Singapore
| | - Himanshu Joshi
- Department of Physics and Beckman Institute for Advanced Science and TechnologyUniversity of Illinois at Urbana-Champaign Urbana IL 61801 USA
| | - Ruijuan Ye
- Department of Chemical and Biomolecular EngineeringNational University of Singapore Singapore 117585 Singapore
| | - Jie Shen
- NanoBio Lab 31 Biopolis Way The Nanos, Singapore 138669 Singapore
| | - Feng Chen
- NanoBio Lab 31 Biopolis Way The Nanos, Singapore 138669 Singapore
| | - Aleksei Aksimentiev
- Department of Physics and Beckman Institute for Advanced Science and TechnologyUniversity of Illinois at Urbana-Champaign Urbana IL 61801 USA
| | - Huaqiang Zeng
- NanoBio Lab 31 Biopolis Way The Nanos, Singapore 138669 Singapore
| |
Collapse
|
38
|
Multifunctional conjugated 1,6-heptadiynes and its derivatives stimulated molecular electronics: Future moletronics. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2019.109467] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
39
|
Saha A, Akhtar N, Kumar V, Kumar S, Srivastava HK, Kumar S, Manna D. pH-Regulated anion transport activities of bis(iminourea) derivatives across the cell and vesicle membrane. Org Biomol Chem 2020; 17:5779-5788. [PMID: 31135015 DOI: 10.1039/c9ob00650h] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recently, synthetic anion transporters have gained considerable attention because of their ability to disrupt cellular anion homeostasis and promote cell death. Herein, we report the development of bis(iminourea) derivatives as a new class of selective Cl- ion carrier. The bis(iminourea) derivatives were synthesized via a one-pot approach under mild reaction conditions. The presence of iminourea moieties suggests that the bis(iminourea) derivatives can be considered as unique guanidine mimics, indicating that the protonated framework could have much stronger anion recognition properties. The cooperative interactions of H+ and Cl- ions with these iminourea moieties results in the efficient transport of HCl across the lipid bilayer in an acidic environment. Under physiological conditions these compounds weakly transport Cl- ions via an antiport exchange mechanism. This pH-dependent gating/switching behavior (9-fold) within a narrow window could be due to the apparent pKa values (6.2-6.7) of the compounds within the lipid bilayer. The disruption of ionic homeostasis by the potent compounds was found to induce cell death.
Collapse
Affiliation(s)
- Abhishek Saha
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam, India.
| | | | | | | | | | | | | |
Collapse
|
40
|
Fuertes A, Amorín M, Granja JR. Versatile symport transporters based on cyclic peptide dimers. Chem Commun (Camb) 2020; 56:46-49. [DOI: 10.1039/c9cc06644f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present the synthesis and transmembrane transport properties of a new family of tris-pyridine-decorated cyclic peptides.
Collapse
Affiliation(s)
- Alberto Fuertes
- Singular Research Centre in Chemical Biology and Molecular Materials
- (CIQUS), Organic Chemistry Department
- University of Santiago de Compostela (USC)
- Santiago de Compostela
- Spain
| | - Manuel Amorín
- Singular Research Centre in Chemical Biology and Molecular Materials
- (CIQUS), Organic Chemistry Department
- University of Santiago de Compostela (USC)
- Santiago de Compostela
- Spain
| | - Juan R. Granja
- Singular Research Centre in Chemical Biology and Molecular Materials
- (CIQUS), Organic Chemistry Department
- University of Santiago de Compostela (USC)
- Santiago de Compostela
- Spain
| |
Collapse
|
41
|
Luo J, Zhu J, Tuo DH, Yuan Q, Wang L, Wang XB, Ao YF, Wang QQ, Wang DX. Macrocycle-Directed Construction of Tetrahedral Anion-π Receptors for Nesting Anions with Complementary Geometry. Chemistry 2019; 25:13275-13279. [PMID: 31398268 DOI: 10.1002/chem.201903272] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/07/2019] [Indexed: 12/19/2022]
Abstract
Manipulation of the emerging anion-π interactions in a highly cooperative manner through sophisticated host design represents a very challenging task. In this work, unprecedented tetrahedral anion-π receptors have been successfully constructed for complementary accommodation of tetrahedral and relevant anions. The synthesis was achieved by a macrocycle-directed approach by using large macrocycle precursors bearing four reactive sites, which enabled a kinetic-favored pathway and afforded the otherwise inaccessible tetrahedral cages in considerable yields. Crystal structure suggested that the tetrahedral cages have an enclosed three-dimensional cavity surrounded by four electron-deficient triazine faces in a tetrahedral array. The complementary accommodation of a series of tetrahedral and relevant anions including BF4 - , ClO4 - , H2 PO4 - , HSO4 - , SO4 2- and PF6 - was revealed by ESI-MS and DFT calculations. Crystal structures of ClO4 - and PF6 - complexes showed that the anion was nicely encapsulated within the tetrahedral cavity with up to quadruple cooperative anion-π interactions by an excellent shape and size match. The strong anion-π binding was further confirmed by negative ion photoelectron spectroscopy measurements.
Collapse
Affiliation(s)
- Jian Luo
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Jun Zhu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - De-Hui Tuo
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Qinqin Yuan
- Physical Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, MS K8-88, Richland, Washington, 99352, USA
| | - Lei Wang
- Physical Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, MS K8-88, Richland, Washington, 99352, USA
| | - Xue-Bin Wang
- Physical Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, MS K8-88, Richland, Washington, 99352, USA
| | - Yu-Fei Ao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Qi-Qiang Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - De-Xian Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
42
|
Burade SS, Pawar SV, Saha T, Kumbhar N, Kotmale AS, Ahmad M, Talukdar P, Dhavale DD. Sugar-derived oxazolone pseudotetrapeptide as γ-turn inducer and anion-selective transporter. Beilstein J Org Chem 2019; 15:2419-2427. [PMID: 31666876 PMCID: PMC6808195 DOI: 10.3762/bjoc.15.234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 09/23/2019] [Indexed: 12/02/2022] Open
Abstract
The intramolecular cyclization of a C-3-tetrasubstituted furanoid sugar amino acid-derived linear tetrapeptide afforded an oxazolone pseudo-peptide with the formation of an oxazole ring at the C-terminus. A conformational study of the oxazolone pseudo-peptide showed intramolecular C=O···HN(II) hydrogen bonding in a seven-membered ring leading to a γ-turn conformation. This fact was supported by a solution-state NMR and molecular modeling studies. The oxazolone pseudotetrapeptide was found to be a better Cl--selective transporter for which an anion-anion antiport mechanism was established.
Collapse
Affiliation(s)
- Sachin S Burade
- Garware Research Center, Department of Chemistry, Savitribai Phule Pune University (formerly University of Pune), Pune 411007, India
| | - Sushil V Pawar
- Garware Research Center, Department of Chemistry, Savitribai Phule Pune University (formerly University of Pune), Pune 411007, India
| | - Tanmoy Saha
- Indian Institute of Science Education and Research, Pune, Pune 411008, India
| | - Navanath Kumbhar
- Garware Research Center, Department of Chemistry, Savitribai Phule Pune University (formerly University of Pune), Pune 411007, India
| | - Amol S Kotmale
- Garware Research Center, Department of Chemistry, Savitribai Phule Pune University (formerly University of Pune), Pune 411007, India
| | - Manzoor Ahmad
- Indian Institute of Science Education and Research, Pune, Pune 411008, India
| | - Pinaki Talukdar
- Indian Institute of Science Education and Research, Pune, Pune 411008, India
| | - Dilip D Dhavale
- Garware Research Center, Department of Chemistry, Savitribai Phule Pune University (formerly University of Pune), Pune 411007, India
| |
Collapse
|
43
|
Bornhof A, Vázquez‐Nakagawa M, Rodríguez‐Pérez L, Ángeles Herranz M, Sakai N, Martín N, Matile S, López‐Andarias J. Anion–π Catalysis on Carbon Nanotubes. Angew Chem Int Ed Engl 2019; 58:16097-16100. [DOI: 10.1002/anie.201909540] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Anna‐Bea Bornhof
- Department of Organic Chemistry University of Geneva 1211 Geneva Switzerland
| | - Mikiko Vázquez‐Nakagawa
- Department of Organic Chemistry Faculty of Chemistry Universidad Complutense de Madrid 28040 Madrid Spain
| | - Laura Rodríguez‐Pérez
- Department of Organic Chemistry Faculty of Chemistry Universidad Complutense de Madrid 28040 Madrid Spain
| | - María Ángeles Herranz
- Department of Organic Chemistry Faculty of Chemistry Universidad Complutense de Madrid 28040 Madrid Spain
| | - Naomi Sakai
- Department of Organic Chemistry University of Geneva 1211 Geneva Switzerland
| | - Nazario Martín
- Department of Organic Chemistry Faculty of Chemistry Universidad Complutense de Madrid 28040 Madrid Spain
- IMDEA-Nanociencia c/ Faraday 9, Campus Cantoblanco 28049 Madrid Spain
| | - Stefan Matile
- Department of Organic Chemistry University of Geneva 1211 Geneva Switzerland
| | | |
Collapse
|
44
|
Bornhof A, Vázquez‐Nakagawa M, Rodríguez‐Pérez L, Ángeles Herranz M, Sakai N, Martín N, Matile S, López‐Andarias J. Anion–π Catalysis on Carbon Nanotubes. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201909540] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Anna‐Bea Bornhof
- Department of Organic ChemistryUniversity of Geneva 1211 Geneva Switzerland
| | - Mikiko Vázquez‐Nakagawa
- Department of Organic ChemistryFaculty of ChemistryUniversidad Complutense de Madrid 28040 Madrid Spain
| | - Laura Rodríguez‐Pérez
- Department of Organic ChemistryFaculty of ChemistryUniversidad Complutense de Madrid 28040 Madrid Spain
| | - María Ángeles Herranz
- Department of Organic ChemistryFaculty of ChemistryUniversidad Complutense de Madrid 28040 Madrid Spain
| | - Naomi Sakai
- Department of Organic ChemistryUniversity of Geneva 1211 Geneva Switzerland
| | - Nazario Martín
- Department of Organic ChemistryFaculty of ChemistryUniversidad Complutense de Madrid 28040 Madrid Spain
- IMDEA-Nanociencia c/ Faraday 9, Campus Cantoblanco 28049 Madrid Spain
| | - Stefan Matile
- Department of Organic ChemistryUniversity of Geneva 1211 Geneva Switzerland
| | | |
Collapse
|
45
|
Zheng S, Li Y, Jiang J, van der Lee A, Dumitrescu D, Barboiu M. Self‐Assembled Columnar Triazole Quartets: An Example of Synergistic Hydrogen‐Bonding/Anion–π Interactions. Angew Chem Int Ed Engl 2019; 58:12037-12042. [DOI: 10.1002/anie.201904808] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Shao‐Ping Zheng
- Lehn Institute of Functional MaterialsSchool of ChemistrySun Yat-Sen University Guangzhou 510275 China
- Institut Europeen des MembranesAdaptive Supramolecular Nanosystems GroupUniversity of Montpellier, ENSCM-CNRS Place E. Bataillon CC047 34095 Montpellier France
| | - Yu‐Hao Li
- Lehn Institute of Functional MaterialsSchool of ChemistrySun Yat-Sen University Guangzhou 510275 China
| | - Ji‐Jun Jiang
- Lehn Institute of Functional MaterialsSchool of ChemistrySun Yat-Sen University Guangzhou 510275 China
| | - Arie van der Lee
- Institut Europeen des MembranesAdaptive Supramolecular Nanosystems GroupUniversity of Montpellier, ENSCM-CNRS Place E. Bataillon CC047 34095 Montpellier France
| | - Dan Dumitrescu
- XRD2 beamline, Elettra—Sincrotrone Trieste S.C.p.A. Strada Statale 14—km 163,5 in AREA Science Park 34149 Basovizza Trieste Italy
| | - Mihail Barboiu
- Lehn Institute of Functional MaterialsSchool of ChemistrySun Yat-Sen University Guangzhou 510275 China
- Institut Europeen des MembranesAdaptive Supramolecular Nanosystems GroupUniversity of Montpellier, ENSCM-CNRS Place E. Bataillon CC047 34095 Montpellier France
| |
Collapse
|
46
|
Strakova K, Assies L, Goujon A, Piazzolla F, Humeniuk HV, Matile S. Dithienothiophenes at Work: Access to Mechanosensitive Fluorescent Probes, Chalcogen-Bonding Catalysis, and Beyond. Chem Rev 2019; 119:10977-11005. [DOI: 10.1021/acs.chemrev.9b00279] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Karolina Strakova
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
| | - Lea Assies
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
| | - Antoine Goujon
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
| | | | | | - Stefan Matile
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
| |
Collapse
|
47
|
Abstract
Our work on the complexation of fluoride anions using group 15 Lewis acids has led us to investigate the use of these main group compounds as anion transporters. In this paper, we report on the anion transport properties of tetraarylstibonium and tetraarylbismuthonium cations of the general formula [Ph3PnAr]+ with Pn = Sb or Bi and with Ar = phenyl, naphthyl, anthryl, or pyrenyl. Using EYPC-based large unilamellar vesicles, we show that these main group cations transport hydroxide, fluoride and chloride anions across phospholipid bilayers. A comparison of the properties of [Ph3SbAnt]+ and [Ph3BiAnt]+ (Ant = 9-anthryl) illustrates the favorable role played by the Lewis acidity of the central pnictogen element with respect to the anion transport. Finally, we show that [Ph3SbAnt]+ accelerates the fluoride-induced hemolysis of human red blood cells, an effect that we assign to the transporter-facilitated influx of toxic fluoride anions.
Collapse
|
48
|
Zheng S, Li Y, Jiang J, van der Lee A, Dumitrescu D, Barboiu M. Self‐Assembled Columnar Triazole Quartets: An Example of Synergistic Hydrogen‐Bonding/Anion–π Interactions. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201904808] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Shao‐Ping Zheng
- Lehn Institute of Functional MaterialsSchool of ChemistrySun Yat-Sen University Guangzhou 510275 China
- Institut Europeen des MembranesAdaptive Supramolecular Nanosystems GroupUniversity of Montpellier, ENSCM-CNRS Place E. Bataillon CC047 34095 Montpellier France
| | - Yu‐Hao Li
- Lehn Institute of Functional MaterialsSchool of ChemistrySun Yat-Sen University Guangzhou 510275 China
| | - Ji‐Jun Jiang
- Lehn Institute of Functional MaterialsSchool of ChemistrySun Yat-Sen University Guangzhou 510275 China
| | - Arie van der Lee
- Institut Europeen des MembranesAdaptive Supramolecular Nanosystems GroupUniversity of Montpellier, ENSCM-CNRS Place E. Bataillon CC047 34095 Montpellier France
| | - Dan Dumitrescu
- XRD2 beamline, Elettra—Sincrotrone Trieste S.C.p.A. Strada Statale 14—km 163,5 in AREA Science Park 34149 Basovizza Trieste Italy
| | - Mihail Barboiu
- Lehn Institute of Functional MaterialsSchool of ChemistrySun Yat-Sen University Guangzhou 510275 China
- Institut Europeen des MembranesAdaptive Supramolecular Nanosystems GroupUniversity of Montpellier, ENSCM-CNRS Place E. Bataillon CC047 34095 Montpellier France
| |
Collapse
|
49
|
Huang WL, Wang XD, Li S, Zhang R, Ao YF, Tang J, Wang QQ, Wang DX. Anion Transporters Based on Noncovalent Balance including Anion-π, Hydrogen, and Halogen Bonding. J Org Chem 2019; 84:8859-8869. [PMID: 31203616 DOI: 10.1021/acs.joc.9b00561] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Anion transmembrane transport mediated by novel noncovalent interactions is of central interest in supramolecular chemistry. In this work, a series of oxacalix[2]arene[2]triazine-derived transporters 1 and 2 bearing anion-π-, hydrogen-, and halogen-bonding sites in rational proximity were designed and synthesized by a one-pot strategy starting from gallic acid ester derivatives and mono- or di-halogen-substituted triazines. 1H NMR titrations demonstrated efficient binding of 1 and 2 toward Cl- and Br- in solution, giving association constants in the range of 102-104 M-1. Cooperation of anion-π, hydrogen, and halogen bonding was revealed as a driving force for anion binding by single-crystal structures of two complexes and density functional theory calculations. Fluorescence assays indicated that compounds 1 are efficient chloride transporters with effective concentrations (EC50) falling in the range of 3.1-7.4 μM and following an order of 1a > 1b > 1c > 1d. The contribution of halogen bonding and cooperative noncovalent bonds to ion transport was then discussed. Significantly, transporters 1 exhibit high anticancer activity. In the presence of 1 and KCl (60 mM), the cell survival of HCT116 reduces to 11.9-24.9% with IC50 values in the range of 52.3-66.4 μM.
Collapse
Affiliation(s)
- Wen-Long Huang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Xu-Dong Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , China
| | - Sen Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , China
| | - Rui Zhang
- State Key Laboratory of Agrobiotechnology and College of Veterinary Medicine , China Agricultural University , Beijing 100193 , China
| | - Yu-Fei Ao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , China
| | - Jun Tang
- State Key Laboratory of Agrobiotechnology and College of Veterinary Medicine , China Agricultural University , Beijing 100193 , China
| | - Qi-Qiang Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - De-Xian Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|
50
|
Zeng F, Liu F, Yuan L, Zhou S, Shen J, Li N, Ren H, Zeng H. A Pore-Forming Tripeptide as an Extraordinarily Active Anion Channel. Org Lett 2019; 21:4826-4830. [DOI: 10.1021/acs.orglett.9b01723] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Fei Zeng
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, Hunan, China 425100
| | - Fang Liu
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, Hunan, China 425100
| | - Lin Yuan
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, Hunan, China 425100
| | - Shaoyuan Zhou
- College of Chemical Engineering, Sichuan University, Chengdu, China 610065
| | - Jie Shen
- NanoBio Lab, 31 Biopolis Way, The Nanos, Singapore 138669
| | - Ning Li
- NanoBio Lab, 31 Biopolis Way, The Nanos, Singapore 138669
| | - Haisheng Ren
- College of Chemical Engineering, Sichuan University, Chengdu, China 610065
| | - Huaqiang Zeng
- NanoBio Lab, 31 Biopolis Way, The Nanos, Singapore 138669
| |
Collapse
|