1
|
Xu G, Zhu J, Song L, Li W, Tang J, Cai L, Han XX. Immobilization of Membrane-Associated Protein Complexes on SERS-Active Nanomaterials for Structural and Dynamic Characterization. NANO LETTERS 2024; 24:13843-13850. [PMID: 39423236 DOI: 10.1021/acs.nanolett.4c04423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Exploring the structural basis of membrane proteins is significant for a deeper understanding of protein functions. In situ analysis of membrane proteins and their dynamics, however, still challenges conventional techniques. Here we report the first attempt to immobilize membrane protein complexes on surface-enhanced Raman scattering (SERS)-active supports, titanium dioxide-coated silver (Ag@TiO2) nanoparticles. Biocompatible immobilization of microsomal monooxygenase complexes is achieved through lipid fission and fusion. SERS activity of the Ag@TiO2 nanoparticles enables in situ monitoring of protein-protein electron transfer and enzyme catalysis in real time. Through SERS fingerprints of the monooxygenase redox centers, the correlations between these protein-ligand interactions and reactive oxygen species generation are revealed, providing novel insights into the molecular mechanisms underlying monooxygenase-mediated apoptotic regulation. This study offers a novel strategy to explore structure-function relationships of membrane protein complexes and has the potential to advance the development of novel reactive oxygen species-inducing drugs for cancer therapy.
Collapse
Affiliation(s)
- Guangyang Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Jinyu Zhu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Li Song
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Wei Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Jinping Tang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Linjun Cai
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun 130012, P. R. China
| | - Xiao Xia Han
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
2
|
Xu G, Li W, Xie H, Zhu J, Song L, Tang J, Miao Y, Han XX. In Situ Monitoring of Membrane Protein Electron Transfer via Surface-Enhanced Resonance Raman Spectroscopy. Anal Chem 2024; 96:6-11. [PMID: 38132829 DOI: 10.1021/acs.analchem.3c04700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
In situ analysis of membrane protein-ligand interactions under physiological conditions is of significance for both fundamental and applied science, but it is still a big challenge due to the limits in sensitivity and selectivity. Here, we demonstrate the potential of surface-enhanced resonance Raman spectroscopy (SERRS) for the investigation of membrane protein-protein interactions. Lipid biolayers are successfully coated on silver nanoparticles through electrostatic interactions, and a highly sensitive and biomimetic membrane platform is obtained in vitro. Self-assembly and immobilization of the reduced cytochrome b5 on the coated membrane are achieved and protein native biological functions are preserved. Owing to resonance effect, the Raman fingerprint of the immobilized cytochrome b5 redox center is selectively enhanced, allowing for in situ and real-time monitoring of the electron transfer process between cytochrome b5 and their partners, cytochrome c and myoglobin. This study provides a sensitive analytical approach for membrane proteins and paves the way for in situ exploration of their structural basis and functions.
Collapse
Affiliation(s)
- Guangyang Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Wei Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Han Xie
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Jinyu Zhu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Li Song
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Jinping Tang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yu Miao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Xiao Xia Han
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
3
|
Keller TCS, Lechauve C, Keller AS, Brooks S, Weiss MJ, Columbus L, Ackerman H, Cortese-Krott MM, Isakson BE. The role of globins in cardiovascular physiology. Physiol Rev 2022; 102:859-892. [PMID: 34486392 PMCID: PMC8799389 DOI: 10.1152/physrev.00037.2020] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 12/11/2022] Open
Abstract
Globin proteins exist in every cell type of the vasculature, from erythrocytes to endothelial cells, vascular smooth muscle cells, and peripheral nerve cells. Many globin subtypes are also expressed in muscle tissues (including cardiac and skeletal muscle), in other organ-specific cell types, and in cells of the central nervous system (CNS). The ability of each of these globins to interact with molecular oxygen (O2) and nitric oxide (NO) is preserved across these contexts. Endothelial α-globin is an example of extraerythrocytic globin expression. Other globins, including myoglobin, cytoglobin, and neuroglobin, are observed in other vascular tissues. Myoglobin is observed primarily in skeletal muscle and smooth muscle cells surrounding the aorta or other large arteries. Cytoglobin is found in vascular smooth muscle but can also be expressed in nonvascular cell types, especially in oxidative stress conditions after ischemic insult. Neuroglobin was first observed in neuronal cells, and its expression appears to be restricted mainly to the CNS and the peripheral nervous system. Brain and CNS neurons expressing neuroglobin are positioned close to many arteries within the brain parenchyma and can control smooth muscle contraction and thus tissue perfusion and vascular reactivity. Overall, reactions between NO and globin heme iron contribute to vascular homeostasis by regulating vasodilatory NO signals and scavenging reactive species in cells of the mammalian vascular system. Here, we discuss how globin proteins affect vascular physiology, with a focus on NO biology, and offer perspectives for future study of these functions.
Collapse
Affiliation(s)
- T C Stevenson Keller
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
- Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Christophe Lechauve
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Alexander S Keller
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Steven Brooks
- Physiology Unit, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Rockville, Maryland
| | - Mitchell J Weiss
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Linda Columbus
- Department of Chemistry, University of Virginia, Charlottesville, Virginia
| | - Hans Ackerman
- Physiology Unit, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Rockville, Maryland
| | - Miriam M Cortese-Krott
- Myocardial Infarction Research Laboratory, Department of Cardiology, Pulmonology, and Angiology, Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Brant E Isakson
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
- Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, Virginia
| |
Collapse
|
4
|
Kiger L, Keith J, Freiwan A, Fernandez AG, Tillman H, Isakson BE, Weiss MJ, Lechauve C. Redox-Regulation of α-Globin in Vascular Physiology. Antioxidants (Basel) 2022; 11:antiox11010159. [PMID: 35052663 PMCID: PMC8773178 DOI: 10.3390/antiox11010159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 12/22/2022] Open
Abstract
Interest in the structure, function, and evolutionary relations of circulating and intracellular globins dates back more than 60 years to the first determination of the three-dimensional structure of these proteins. Non-erythrocytic globins have been implicated in circulatory control through reactions that couple nitric oxide (NO) signaling with cellular oxygen availability and redox status. Small artery endothelial cells (ECs) express free α-globin, which causes vasoconstriction by degrading NO. This reaction converts reduced (Fe2+) α-globin to the oxidized (Fe3+) form, which is unstable, cytotoxic, and unable to degrade NO. Therefore, (Fe3+) α-globin must be stabilized and recycled to (Fe2+) α-globin to reinitiate the catalytic cycle. The molecular chaperone α-hemoglobin-stabilizing protein (AHSP) binds (Fe3+) α-globin to inhibit its degradation and facilitate its reduction. The mechanisms that reduce (Fe3+) α-globin in ECs are unknown, although endothelial nitric oxide synthase (eNOS) and cytochrome b5 reductase (CyB5R3) with cytochrome b5 type A (CyB5a) can reduce (Fe3+) α-globin in solution. Here, we examine the expression and cellular localization of eNOS, CyB5a, and CyB5R3 in mouse arterial ECs and show that α-globin can be reduced by either of two independent redox systems, CyB5R3/CyB5a and eNOS. Together, our findings provide new insights into the regulation of blood vessel contractility.
Collapse
Affiliation(s)
- Laurent Kiger
- Inserm U955, Institut Mondor de Recherche Biomédicale, University Paris Est Creteil, 94017 Créteil, France;
| | - Julia Keith
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (J.K.); (A.G.F.); (M.J.W.)
| | - Abdullah Freiwan
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA;
| | - Alfonso G. Fernandez
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (J.K.); (A.G.F.); (M.J.W.)
| | - Heather Tillman
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA;
| | - Brant E. Isakson
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA;
| | - Mitchell J. Weiss
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (J.K.); (A.G.F.); (M.J.W.)
| | - Christophe Lechauve
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (J.K.); (A.G.F.); (M.J.W.)
- Correspondence: ; Tel.: +1-(901)-595-8344; Fax: +1-(901)-595-4723
| |
Collapse
|
5
|
Ribeiro SS, Castro TG, Gomes CM, Marcos JC. Hofmeister effects on protein stability are dependent on the nature of the unfolded state. Phys Chem Chem Phys 2021; 23:25210-25225. [PMID: 34730580 DOI: 10.1039/d1cp02477a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The interpretation of a salt's effect on protein stability traditionally discriminates low concentration regimes (<0.3 M), dominated by electrostatic forces, and high concentration regimes, generally described by ion-specific Hofmeister effects. However, increased theoretical and experimental studies have highlighted observations of the Hofmeister phenomena at concentration ranges as low as 0.001 M. Reasonable quantitative predictions of such observations have been successfully achieved throughout the inclusion of ion dispersion forces in classical electrostatic theories. This molecular description is also on the basis of quantitative estimates obtained resorting to surface/bulk solvent partition models developed for ion-specific Hofmeister effects. However, the latter are limited by the availability of reliable structures representative of the unfolded state. Here, we use myoglobin as a model to explore how ion-dependency on the nature of the unfolded state affects protein stability, combining spectroscopic techniques with molecular dynamic simulations. To this end, the thermal and chemical stability of myoglobin was assessed in the presence of three different salts (NaCl, (NH4)2SO4 and Na2SO4), at physiologically relevant concentrations (0-0.3 M). We observed mild destabilization of the native state induced by each ion, attributed to unfavorable neutralization and hydrogen-bonding with the protein side-chains. Both effects, combined with binding of Na+, Cl- and SO42- to the thermally unfolded state, resulted in an overall destabilization of the protein. Contrastingly, ion binding was hindered in the chemically unfolded conformation, due to occupation of the binding sites by urea molecules. Such mechanistic action led to a lower degree of destabilization, promoting surface tension effects that stabilized myoglobin according to the Hofmeister series. Therefore, we demonstrate that Hofmeister effects on protein stability are modulated by the heterogeneous physico-chemical nature of the unfolded state. Altogether, our findings evidence the need to characterize the structure of the unfolded state when attempting to dissect the molecular mechanisms underlying the effects of salts on protein stability.
Collapse
Affiliation(s)
- Sara S Ribeiro
- Centre of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Tarsila G Castro
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Cláudio M Gomes
- Biosystems and Integrative Sciences Institute, Faculdade de Ciências and Departamento de Química e Bioquímica, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - João C Marcos
- Centre of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| |
Collapse
|
6
|
Dixit VA, Blumberger J, Vyas SK. Methemoglobin formation in mutant hemoglobin α chains: electron transfer parameters and rates. Biophys J 2021; 120:3807-3819. [PMID: 34265263 DOI: 10.1016/j.bpj.2021.07.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/06/2021] [Accepted: 07/07/2021] [Indexed: 11/26/2022] Open
Abstract
Hemoglobin-mediated transport of dioxygen (O2) critically depends on the stability of the reduced (Fe2+) form of the heme cofactors. Some protein mutations stabilize the oxidized (Fe3+) state (methemoglobin, Hb M), causing methemoglobinemia, and can be lethal above 30%. The majority of the analyses of factors influencing Hb oxidation are retrospective and give insights only for inner-sphere mutations of heme (His58, His87). Herein, we report the first all-atom molecular dynamics simulations on both redox states and calculations of the Marcus electron transfer (ET) parameters for the α chain Hb oxidation and reduction rates for Hb M. The Hb wild-type (WT) and most of the studied α chain variants maintain globin structure except the Hb M Iwate (H87Y). The mutants forming Hb M tend to have lower redox potentials and thus stabilize the oxidized (Fe3+) state (in particular, the Hb Miyagi variant with K61E mutation). Solvent reorganization (λsolv 73-96%) makes major contributions to reorganization free energy, whereas protein reorganization (λprot) accounts for 27-30% except for the Miyagi and J-Buda variants (λprot ∼4%). Analysis of heme-solvent H-bonding interactions among variants provide insights into the role of Lys61 residue in stabilizing the Fe2+ state. Semiclassical Marcus ET theory-based calculations predict experimental kET for the Cyt b5-Hb complex and provide insights into relative reduction rates for Hb M in Hb variants. Thus, our methodology provides a rationale for the effect of mutations on the structure, stability, and Hb oxidation reduction rates and has potential for identification of mutations that result in methemoglobinemia.
Collapse
Affiliation(s)
- Vaibhav A Dixit
- Department of Pharmacy, Birla Institute of Technology and Sciences Pilani (BITS-Pilani), Rajasthan, India.
| | - Jochen Blumberger
- Department of Physics and Astronomy, University College London, London, United Kingdom
| | - Shivam Kumar Vyas
- Department of Pharmacy, Birla Institute of Technology and Sciences Pilani (BITS-Pilani), Rajasthan, India
| |
Collapse
|
7
|
|
8
|
Sugimoto Y, Kitazumi Y, Shirai O, Nishikawa K, Higuchi Y, Yamamoto M, Kano K. Electrostatic roles in electron transfer from [NiFe] hydrogenase to cytochrome c 3 from Desulfovibrio vulgaris Miyazaki F. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:481-487. [DOI: 10.1016/j.bbapap.2017.02.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 02/08/2017] [Accepted: 02/08/2017] [Indexed: 10/20/2022]
|
9
|
Nickel electrodes as a cheap and versatile platform for studying structure and function of immobilized redox proteins. Anal Chim Acta 2016; 941:35-40. [DOI: 10.1016/j.aca.2016.08.053] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 08/23/2016] [Accepted: 08/30/2016] [Indexed: 11/21/2022]
|
10
|
Trana EN, Nocek JM, Woude JV, Span I, Smith SM, Rosenzweig AC, Hoffman BM. Charge-Disproportionation Symmetry Breaking Creates a Heterodimeric Myoglobin Complex with Enhanced Affinity and Rapid Intracomplex Electron Transfer. J Am Chem Soc 2016; 138:12615-28. [PMID: 27646786 DOI: 10.1021/jacs.6b07672] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We report rapid photoinitiated intracomplex electron transfer (ET) within a "charge-disproportionated" myoglobin (Mb) dimer with greatly enhanced affinity. Two mutually supportive Brownian Dynamics (BD) interface redesign strategies, one a new "heme-filtering" approach, were employed to "break the symmetry" of a Mb homodimer by pairing Mb constructs with complementary highly positive and highly negative net surface charges, introduced through D/E → K and K → E mutations, respectively. BD simulations using a previously developed positive mutant, Mb(+6) = Mb(D44K/D60K/E85K), led to construction of the complementary negative mutant Mb(-6) = Mb(K45E, K63E, K95E). Simulations predict the pair will form a well-defined complex comprising a tight ensemble of conformations with nearly parallel hemes, at a metal-metal distance ∼18-19 Å. Upon expression and X-ray characterization of the partners, BD predictions were verified through ET photocycle measurements enabled by Zn-deuteroporphyrin substitution, forming the [ZnMb(-6), Fe(3+)Mb(+6)] complex. Triplet ET quenching shows charge disproportionation increases the binding constant by no less than ∼5 orders of magnitude relative to wild-type Mb values. All progress curves for charge separation (CS) and charge recombination (CR) are reproduced by a generalized kinetic model for the interprotein ET photocycle. The intracomplex ET rate constants for both CS and CR are increased by over 5 orders of magnitude, and their viscosity independence is indicative of true interprotein ET, rather than dynamic gating as seen in previous studies. The complex displays an unprecedented timecourse for CR of the CS intermediate I. After a laser flash, I forms through photoinduced CS, accumulates to a maximum concentration, then dies away through CR. However, before completely disappearing, I reappears without another flash and reaches a second maximum before disappearing completely.
Collapse
Affiliation(s)
- Ethan N Trana
- Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
| | - Judith M Nocek
- Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
| | - Jon Vander Woude
- Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
| | - Ingrid Span
- Department of Molecular Biosciences, Northwestern University , Evanston, Illinois 60208, United States
| | - Stephen M Smith
- Department of Molecular Biosciences, Northwestern University , Evanston, Illinois 60208, United States
| | - Amy C Rosenzweig
- Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States.,Department of Molecular Biosciences, Northwestern University , Evanston, Illinois 60208, United States
| | - Brian M Hoffman
- Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States.,Department of Molecular Biosciences, Northwestern University , Evanston, Illinois 60208, United States
| |
Collapse
|
11
|
Sugimoto Y, Kitazumi Y, Shirai O, Yamamoto M, Kano K. Understanding of the Effects of Ionic Strength on the Bimolecular Rate Constant between Structurally Identified Redox Enzymes and Charged Substrates Using Numerical Simulations on the Basis of the Poisson–Boltzmann Equation. J Phys Chem B 2016; 120:3122-8. [DOI: 10.1021/acs.jpcb.6b00661] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yu Sugimoto
- Division
of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Yuki Kitazumi
- Division
of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Osamu Shirai
- Division
of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Masahiro Yamamoto
- Department
of Chemistry, Konan University, 8-9-1 Okamoto, Higashi-Nada, Kobe, Hyogo 658-8501, Japan
| | - Kenji Kano
- Division
of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
12
|
Dolidze TD, Shushanyan M, Khoshtariya DE. Electron transfer with myoglobin in free and strongly confined regimes: disclosing diverse mechanistic role of the Fe-coordinated water by temperature- and pressure-assisted voltammetric studies. J COORD CHEM 2015. [DOI: 10.1080/00958972.2015.1068937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Tinatin D. Dolidze
- Department of Biophysics, I. Beritashvili Center for Experimental Biomedicine, Tbilisi, Georgia
- Department of Physics, Institute for Biophysics and Bionanosciences, I. Javakhishvili Tbilisi State University, Tbilisi, Georgia
- Department of Chemistry and Pharmacy, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - Mikhael Shushanyan
- Department of Biophysics, I. Beritashvili Center for Experimental Biomedicine, Tbilisi, Georgia
- Department of Physics, Institute for Biophysics and Bionanosciences, I. Javakhishvili Tbilisi State University, Tbilisi, Georgia
| | - Dimitri E. Khoshtariya
- Department of Biophysics, I. Beritashvili Center for Experimental Biomedicine, Tbilisi, Georgia
- Department of Physics, Institute for Biophysics and Bionanosciences, I. Javakhishvili Tbilisi State University, Tbilisi, Georgia
- Department of Chemistry and Pharmacy, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
13
|
Yu Y, Cui C, Liu X, Petrik ID, Wang J, Lu Y. A Designed Metalloenzyme Achieving the Catalytic Rate of a Native Enzyme. J Am Chem Soc 2015; 137:11570-3. [PMID: 26318313 PMCID: PMC4676421 DOI: 10.1021/jacs.5b07119] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Terminal
oxidases catalyze four-electron reduction of oxygen to
water, and the energy harvested is utilized to drive the synthesis
of adenosine triphosphate. While much effort has been made to design
a catalyst mimicking the function of terminal oxidases, most biomimetic
catalysts have much lower activity than native oxidases. Herein we
report a designed oxidase in myoglobin with an O2 reduction
rate (52 s–1) comparable to that of a native cytochrome
(cyt) cbb3 oxidase (50 s–1) under identical conditions. We achieved this goal by engineering
more favorable electrostatic interactions between a functional oxidase
model designed in sperm whale myoglobin and its native redox partner,
cyt b5, resulting in a 400-fold electron
transfer (ET) rate enhancement. Achieving high activity equivalent
to that of native enzymes in a designed metalloenzyme offers deeper
insight into the roles of tunable processes such as ET in oxidase
activity and enzymatic function and may extend into applications such
as more efficient oxygen reduction reaction catalysts for biofuel
cells.
Collapse
Affiliation(s)
| | | | - Xiaohong Liu
- Laboratory of Non-coding RNA, Institute of Biophysics, Chinese Academy of Sciences , 15 Datun Road, Chaoyang District, Beijing 100101, P. R. China
| | | | - Jiangyun Wang
- Laboratory of Non-coding RNA, Institute of Biophysics, Chinese Academy of Sciences , 15 Datun Road, Chaoyang District, Beijing 100101, P. R. China
| | | |
Collapse
|
14
|
Alvarez-Paggi D, Zitare U, Murgida DH. The role of protein dynamics and thermal fluctuations in regulating cytochrome c/cytochrome c oxidase electron transfer. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:1196-207. [PMID: 24502917 DOI: 10.1016/j.bbabio.2014.01.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 01/22/2014] [Accepted: 01/28/2014] [Indexed: 01/06/2023]
Abstract
In this overview we present recent combined electrochemical, spectroelectrochemical, spectroscopic and computational studies from our group on the electron transfer reactions of cytochrome c and of the primary electron acceptor of cytochrome c oxidase, the CuA site, in biomimetic complexes. Based on these results, we discuss how protein dynamics and thermal fluctuations may impact on protein ET reactions, comment on the possible physiological relevance of these results, and finally propose a regulatory mechanism that may operate in the Cyt/CcO electron transfer reaction in vivo. This article is part of a Special Issue entitled: 18th European Bioenergetic Conference.
Collapse
Affiliation(s)
- Damian Alvarez-Paggi
- INQUIMAE-CONICET, Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, pab. 2, piso 3, C1428EHA Buenos Aires, Argentina
| | - Ulises Zitare
- INQUIMAE-CONICET, Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, pab. 2, piso 3, C1428EHA Buenos Aires, Argentina
| | - Daniel H Murgida
- INQUIMAE-CONICET, Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, pab. 2, piso 3, C1428EHA Buenos Aires, Argentina.
| |
Collapse
|
15
|
Khoshtariya DE, Dolidze TD, Shushanyan M, van Eldik R. Long-range electron transfer with myoglobin immobilized at Au/mixed-SAM junctions: mechanistic impact of the strong protein confinement. J Phys Chem B 2014; 118:692-706. [PMID: 24369906 DOI: 10.1021/jp4101569] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Horse muscle myoglobin (Mb) was tightly immobilized at Au-deposited ~15-Å-thick mixed-type (1:1) alkanethiol SAMs, HS-(CH₂)₁₁-COOH/HS-(CH₂)₁₁-OH, and placed in contact with buffered H₂O or D₂O solutions. Fast-scan cyclic voltammetry (CV) and a Marcus-equation-based analysis were applied to determine unimolecular standard rate constants and reorganization free energies for electron transfer (ET), under variable-temperature (15-55 °C) and -pressure (0.01-150 MPa) conditions. The CV signal was surprisingly stable and reproducible even after multiple temperature and pressure cycles. The data analysis revealed the following values: standard rate constant, 33 s⁻¹ (25 °C, 0.01 MPa, H₂O); reorganization free energy, 0.5 ± 0.1 eV (throughout); activation enthalpy, 12 ± 3 kJ mol⁻¹; activation volume, -3.1 ± 0.2 cm³ mol⁻¹; and pH-dependent solvent kinetic isotope effect (k(H)⁰/k(D)⁰), 0.7-1.4. Furthermore, the values for the rate constant and reorganization free energy are very similar to those previously found for cytochrome c electrostatically immobilized at the monocomponent Au/HS-(CH₂)₁₁-COOH junction. In vivo, Mb apparently forms a natural electrostatic complex with cytochrome b₅ (cyt-b₅) through the "dynamic" (loose) docking pattern, allowing for a slow ET that is intrinsically coupled to the water's removal from the "defective" heme iron (altogether shaping the biological repair mechanism for Mb's "met" form). In contrary, our experiments rather mimic the case of a "simple" (tight) docking of the redesigned (mutant) Mb with cyt-b₅ (Nocek et al. J. Am. Chem. Soc. 2010, 132, 6165-6175). According to our analysis, in this configuration, Mb's distal pocket (linked to the "ligand channel") seems to be arrested within the restricted configuration, allowing the rate-determining reversible ET process to be coupled only to the inner-sphere reorganization (minimal elongation/shortening of an Fe-OH₂ bond) rather than the pronounced detachment (rebinding) of water and, hence, to be much faster.
Collapse
Affiliation(s)
- Dimitri E Khoshtariya
- Department of Chemistry and Pharmacy, University of Erlangen-Nürnberg , 91058 Erlangen, Germany
| | | | | | | |
Collapse
|
16
|
Takematsu K, Williamson H, Blanco-Rodríguez AM, Sokolová L, Nikolovski P, Kaiser JT, Towrie M, Clark IP, Vlček A, Winkler JR, Gray HB. Tryptophan-accelerated electron flow across a protein-protein interface. J Am Chem Soc 2013; 135:15515-25. [PMID: 24032375 PMCID: PMC3855362 DOI: 10.1021/ja406830d] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report a new metallolabeled blue copper protein, Re126W122Cu(I) Pseudomonas aeruginosa azurin, which has three redox sites at well-defined distances in the protein fold: Re(I)(CO)3(4,7-dimethyl-1,10-phenanthroline) covalently bound at H126, a Cu center, and an indole side chain W122 situated between the Re and Cu sites (Re-W122(indole) = 13.1 Å, dmp-W122(indole) = 10.0 Å, Re-Cu = 25.6 Å). Near-UV excitation of the Re chromophore leads to prompt Cu(I) oxidation (<50 ns), followed by slow back ET to regenerate Cu(I) and ground-state Re(I) with biexponential kinetics, 220 ns and 6 μs. From spectroscopic measurements of kinetics and relative ET yields at different concentrations, it is likely that the photoinduced ET reactions occur in protein dimers, (Re126W122Cu(I))2 and that the forward ET is accelerated by intermolecular electron hopping through the interfacial tryptophan: *Re//←W122←Cu(I), where // denotes a protein-protein interface. Solution mass spectrometry confirms a broad oligomer distribution with prevalent monomers and dimers, and the crystal structure of the Cu(II) form shows two Re126W122Cu(II) molecules oriented such that redox cofactors Re(dmp) and W122-indole on different protein molecules are located at the interface at much shorter intermolecular distances (Re-W122(indole) = 6.9 Å, dmp-W122(indole) = 3.5 Å, and Re-Cu = 14.0 Å) than within single protein folds. Whereas forward ET is accelerated by hopping through W122, BET is retarded by a space jump at the interface that lacks specific interactions or water molecules. These findings on interfacial electron hopping in (Re126W122Cu(I))2 shed new light on optimal redox-unit placements required for functional long-range charge separation in protein complexes.
Collapse
Affiliation(s)
- Kana Takematsu
- Beckman Institute, California Institute of Technology, Pasadena, CA 91125, USA
| | - Heather Williamson
- Beckman Institute, California Institute of Technology, Pasadena, CA 91125, USA
| | - Ana María Blanco-Rodríguez
- Queen Mary University of London, School of Biological and Chemical Sciences, Mile End Road, London E1 4NS, United Kingdom
| | - Lucie Sokolová
- Institute of Physical and Theoretical Chemistry, Goethe-Universität, Max-von-Laue-Str. 7, 60438 Frankfurt am Main, Germany
| | - Pavle Nikolovski
- Beckman Institute, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jens T. Kaiser
- Beckman Institute, California Institute of Technology, Pasadena, CA 91125, USA
| | - Michael Towrie
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire, OX11 0FA, UK
| | - Ian P. Clark
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire, OX11 0FA, UK
| | - Antonín Vlček
- Queen Mary University of London, School of Biological and Chemical Sciences, Mile End Road, London E1 4NS, United Kingdom
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Dolejškova 3, CZ-182 23 Prague, Czech Republic
| | - Jay R. Winkler
- Beckman Institute, California Institute of Technology, Pasadena, CA 91125, USA
| | - Harry B. Gray
- Beckman Institute, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
17
|
Electrochemical characterization of dehaloperoxidase adsorbates on COOH/OH mixed self-assembled monolayers. J Electroanal Chem (Lausanne) 2013. [DOI: 10.1016/j.jelechem.2013.05.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
18
|
Saen-Oon S, Lucas MF, Guallar V. Electron transfer in proteins: theory, applications and future perspectives. Phys Chem Chem Phys 2013; 15:15271-85. [DOI: 10.1039/c3cp50484k] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
19
|
Ferreiro DN, Boechi L, Estrin DA, Martí MA. The key role of water in the dioxygenase function of Escherichia coli flavohemoglobin. J Inorg Biochem 2012; 119:75-84. [PMID: 23220591 DOI: 10.1016/j.jinorgbio.2012.10.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 10/31/2012] [Accepted: 10/31/2012] [Indexed: 10/27/2022]
Abstract
Flavohemoglobins (FHbs) are members of the globin superfamily, widely distributed among prokaryotes and eukaryotes that have been shown to carry out nitric oxide dioxygenase (NOD) activity. In prokaryotes, such as Escherichia coli, NOD activity is a defence mechanism against the NO release by the macrophages of the hosts' immune system during infection. Because of that, FHbs have been studied thoroughly and several drugs have been developed in an effort to fight infectious processes. Nevertheless, the protein's structural determinants involved in the NOD activity are still poorly understood. In this context, the aim of the present work is to unravel the molecular basis of FHbs structural dynamics-to-function relationship using state of the art computer simulation tools. In an effort to fulfill this goal, we studied three key processes that determine NOD activity, namely i) ligand migration into the active site ii) stabilization of the coordinated oxygen and iii) intra-protein electron transfer (ET). Our results allowed us to determine key factors related to all three processes like the presence of a long hydrophobic tunnel for ligand migration, the presence of a water mediated hydrogen bond to stabilize the coordinated oxygen and therefore achieve a high affinity, and the best possible ET paths between the FAD and the heme, where water molecules play an important role. Taken together the presented results close an important gap in our understanding of the wide and diverse globin structural-functional relationships.
Collapse
Affiliation(s)
- Dardo N Ferreiro
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
| | | | | | | |
Collapse
|
20
|
Trana EN, Nocek JM, Knutson AK, Hoffman BM. Evolving the [myoglobin, cytochrome b(5)] complex from dynamic toward simple docking: charging the electron transfer reactive patch. Biochemistry 2012; 51:8542-53. [PMID: 23067206 DOI: 10.1021/bi301134f] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
We describe photoinitiated electron transfer (ET) from a suite of Zn-substituted myoglobin (Mb) variants to cytochrome b(5) (b(5)). An electrostatic interface redesign strategy has led to the introduction of positive charges into the vicinity of the heme edge through D/E → K charge-reversal mutation combinations at "hot spot" residues (D44, D60, and E85), augmented by the elimination of negative charges from Mb or b(5) by neutralization of heme propionates. These variations create an unprecedentedly large range in the product of the ET partners' total charges (-5 < -q(Mb)q(b(5)) < 40). The binding affinity (K(a)) increases 1000-fold as -q(Mb)q(b(5)) increases through this range and exhibits a surprisingly simple, exponential dependence on -q(Mb)q(b(5)). This is explained in terms of electrostatic interactions between a "charged reactive patch" (crp) on each partner's surface, defined as a compact region around the heme edge that (i) contains the total protein charge of each variant and (ii) encompasses a major fraction of the "reactive region" (Rr) comprising surface atoms with large matrix elements for electron tunneling to the heme. As -q(Mb)q(b(5)) increases, the complex undergoes a transition from fast to slow-exchange dynamics on the triplet ET time scale, with a correlated progression in the rate constants for intracomplex (k(et)) and bimolecular (k(2)) ET. This progression is analyzed by integrating the crp and Rr descriptions of ET into the textbook steady-state treatment of reversible binding between partners that undergo intracomplex ET and found to encompass the full range of behaviors predicted by the model. The generality of this approach is demonstrated by its application to the extensive body of data for the ET complex between the photosynthetic reaction center and cytochrome c(2). Deviations from this model also are discussed.
Collapse
Affiliation(s)
- Ethan N Trana
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | | | | | | |
Collapse
|
21
|
Lederer F. Another look at the interaction between mitochondrial cytochrome c and flavocytochrome b (2). EUROPEAN BIOPHYSICS JOURNAL: EBJ 2011; 40:1283-99. [PMID: 21503671 DOI: 10.1007/s00249-011-0697-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 02/28/2011] [Accepted: 03/16/2011] [Indexed: 11/29/2022]
Abstract
Yeast flavocytochrome b (2) tranfers reducing equivalents from lactate to oxygen via cytochrome c and cytochrome c oxidase. The enzyme catalytic cycle includes FMN reduction by lactate and reoxidation by intramolecular electron transfer to heme b (2). Each subunit of the soluble tetrameric enzyme consists of an N terminal b (5)-like heme-binding domain and a C terminal flavodehydrogenase. In the crystal structure, FMN and heme are face to face, and appear to be in a suitable orientation and at a suitable distance for exchanging electrons. But in one subunit out of two, the heme domain is disordered and invisible. This raises a central question: is this mobility required for interaction with the physiological acceptor cytochrome c, which only receives electrons from the heme and not from the FMN? The present review summarizes the results of the variety of methods used over the years that shed light on the interactions between the flavin and heme domains and between the enzyme and cytochrome c. The conclusion is that one should consider the interaction between the flavin and heme domains as a transient one, and that the cytochrome c and the flavin domain docking areas on the heme b (2) domain must overlap at least in part. The heme domain mobility is an essential component of the flavocytochrome b (2) functioning. In this respect, the enzyme bears similarity to a variety of redox enzyme systems, in particular those in which a cytochrome b (5)-like domain is fused to proteins carrying other redox functions.
Collapse
Affiliation(s)
- Florence Lederer
- Laboratoire de Chimie Physique, Université Paris-Sud, Orsay Cedex, France.
| |
Collapse
|
22
|
Crowley PB, Chow E, Papkovskaia T. Protein Interactions in the Escherichia coli Cytosol: An Impediment to In-Cell NMR Spectroscopy. Chembiochem 2011; 12:1043-8. [PMID: 21448871 DOI: 10.1002/cbic.201100063] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Indexed: 12/29/2022]
|
23
|
|
24
|
Loget G, Chevance S, Poriel C, Simonneaux G, Lagrost C, Rault-Berthelot J. Direct Electron Transfer of Hemoglobin and Myoglobin at the Bare Glassy Carbon Electrode in an Aqueous BMI.BF4 Ionic-Liquid Mixture. Chemphyschem 2011; 12:411-8. [DOI: 10.1002/cphc.201000779] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Indexed: 11/10/2022]
|
25
|
Salverda J, Patil A, Mizzon G, Kuznetsova S, Zauner G, Akkilic N, Canters G, Davis J, Heering H, Aartsma T. Fluorescent Cyclic Voltammetry of Immobilized Azurin: Direct Observation of Thermodynamic and Kinetic Heterogeneity. Angew Chem Int Ed Engl 2010; 49:5776-9. [DOI: 10.1002/anie.201001298] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
26
|
Salverda J, Patil A, Mizzon G, Kuznetsova S, Zauner G, Akkilic N, Canters G, Davis J, Heering H, Aartsma T. Fluorescent Cyclic Voltammetry of Immobilized Azurin: Direct Observation of Thermodynamic and Kinetic Heterogeneity. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.201001298] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
27
|
Structural evidence for the functional importance of the heme domain mobility in flavocytochrome b2. J Mol Biol 2010; 400:518-30. [PMID: 20546754 DOI: 10.1016/j.jmb.2010.05.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 05/12/2010] [Accepted: 05/14/2010] [Indexed: 11/24/2022]
Abstract
Yeast flavocytochrome b(2) (Fcb2) is an L-lactate:cytochrome c oxidoreductase in the mitochondrial intermembrane space participating in cellular respiration. Each enzyme subunit consists of a cytochrome b(5)-like heme domain and a flavodehydrogenase (FDH) domain. In the Fcb2 crystal structure, the heme domain is mobile relative to the tetrameric FDH core in one out of two subunits. The monoclonal antibody B2B4, elicited against the holoenzyme, recognizes only the native heme domain in the holoenzyme. When bound, it suppresses the intramolecular electron transfer from flavin to heme b(2), hence cytochrome c reduction. We report here the crystal structure of the heme domain in complex with the Fab at 2.7 A resolution. The Fab epitope on the heme domain includes the two exposed propionate groups of the heme, which are hidden in the interface between the domains in the complete subunit. The structure discloses an unexpected plasticity of Fcb2 in the neighborhood of the heme cavity, in which the heme has rotated. The epitope overlaps with the docking area of the FDH domain onto the heme domain, indicating that the antibody displaces the heme domain in a movement of large amplitude. We suggest that the binding sites on the heme domain of cytochrome c and of the FDH domain also overlap and therefore that cytochrome c binding also requires the heme domain to move away from the FDH domain, so as to allow electron transfer between the two hemes. Based on this hypothesis, we propose a possible model of the Fcb2.cytochrome c complex. Interestingly, this model shares similarity with that of the cytochrome b(5) x cytochrome c complex, in which cytochrome c binds to the surface around the exposed heme edge of cytochrome b(5). The present results therefore support the idea that the heme domain mobility is an inherent component of the Fcb2 functioning.
Collapse
|
28
|
Nocek JM, Knutson AK, Xiong P, Co NP, Hoffman BM. Photoinitiated singlet and triplet electron transfer across a redesigned [myoglobin, cytochrome b5] interface. J Am Chem Soc 2010; 132:6165-75. [PMID: 20392066 PMCID: PMC2868514 DOI: 10.1021/ja100499j] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We describe a strategy by which reactive binding of a weakly bound, 'dynamically docked (DD)' complex without a known structure can be strengthened electrostatically through optimized placement of surface charges, and discuss its use in modulating complex formation between myoglobin (Mb) and cytochrome b(5) (b(5)). The strategy employs paired Brownian dynamics (BD) simulations, one which monitors overall binding, the other reactive binding, to examine [X --> K] mutations on the surface of the partners, with a focus on single and multiple [D/E --> K] charge reversal mutations. This procedure has been applied to the [Mb, b(5)] complex, indicating mutations of Mb residues D44, D60, and E85 to be the most promising, with combinations of these showing a nonlinear enhancement of reactive binding. A novel method of displaying BD profiles shows that the 'hits' of b(5) on the surfaces of Mb(WT), Mb(D44K/D60K), and Mb(D44K/D60K/E85K) progressively coalesce into two 'clusters': a 'diffuse' cluster of hits that are distributed over the Mb surface and have negligible electrostatic binding energy and a 'reactive' cluster of hits with considerable stability that are localized near its heme edge, with short Fe-Fe distances favorable to electron transfer (ET). Thus, binding and reactivity progressively become correlated by the mutations. This finding relates to recent proposals that complex formation is a two-step process, proceeding through the formation of a weakly bound encounter complex to a well-defined bound complex. The design procedure has been tested through measurements of photoinitiated ET between the Zn-substituted forms of Mb(WT), Mb(D44K/D60K), and Mb(D44K/D60K/E85K) and Fe(3+)b(5). Both mutants convert the complex from the DD regime exhibited by Mb(WT), in which the transient complex is in fast kinetic exchange with its partners, k(off) >> k(et), to the slow-exchange regime, k(et) >> k(off), and both mutants exhibit rapid intracomplex ET from the triplet excited state to Fe(3+)b(5) (rate constant, k(et) approximately 10(6) s(-1)). The affinity constants of the mutant Mbs cannot be derived through conventional analysis procedures because intracomplex singlet ET quenching causes the triplet-ground absorbance difference to progressively decrease during a titration, but this effect has been incorporated into a new procedure for computing binding constants. Most importantly, these measurements reveal the presence of fast photoinduced singlet ET across the protein-protein interface, (1)k(et) approximately 2 x 10(8) s(-1).
Collapse
Affiliation(s)
| | | | - Peng Xiong
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Tech K148, Evanston, IL 60208
| | - Nadia Petlakh Co
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Tech K148, Evanston, IL 60208
| | - Brian M. Hoffman
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Tech K148, Evanston, IL 60208
| |
Collapse
|
29
|
Blanco-Rodríguez AM, Busby M, Ronayne K, Towrie M, Grădinaru C, Sudhamsu J, Sýkora J, Hof M, Záliš S, Di Bilio AJ, Crane BR, Gray HB, Vlček A. Relaxation Dynamics of Pseudomonas aeruginosa ReI(CO)3(α-diimine)(HisX)+ (X = 83, 107, 109, 124, 126)CuII Azurins. J Am Chem Soc 2009; 131:11788-800. [DOI: 10.1021/ja902744s] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ana María Blanco-Rodríguez
- School of Biological and Chemical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, United Kingdom, Central Laser Facility, CCLRC Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX, United Kingdom, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Dolejškova 3, 182 23 Prague, Czech Republic, and Beckman Institute, California Institute
| | - Michael Busby
- School of Biological and Chemical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, United Kingdom, Central Laser Facility, CCLRC Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX, United Kingdom, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Dolejškova 3, 182 23 Prague, Czech Republic, and Beckman Institute, California Institute
| | - Kate Ronayne
- School of Biological and Chemical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, United Kingdom, Central Laser Facility, CCLRC Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX, United Kingdom, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Dolejškova 3, 182 23 Prague, Czech Republic, and Beckman Institute, California Institute
| | - Michael Towrie
- School of Biological and Chemical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, United Kingdom, Central Laser Facility, CCLRC Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX, United Kingdom, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Dolejškova 3, 182 23 Prague, Czech Republic, and Beckman Institute, California Institute
| | - Cristian Grădinaru
- School of Biological and Chemical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, United Kingdom, Central Laser Facility, CCLRC Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX, United Kingdom, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Dolejškova 3, 182 23 Prague, Czech Republic, and Beckman Institute, California Institute
| | - Jawahar Sudhamsu
- School of Biological and Chemical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, United Kingdom, Central Laser Facility, CCLRC Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX, United Kingdom, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Dolejškova 3, 182 23 Prague, Czech Republic, and Beckman Institute, California Institute
| | - Jan Sýkora
- School of Biological and Chemical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, United Kingdom, Central Laser Facility, CCLRC Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX, United Kingdom, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Dolejškova 3, 182 23 Prague, Czech Republic, and Beckman Institute, California Institute
| | - Martin Hof
- School of Biological and Chemical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, United Kingdom, Central Laser Facility, CCLRC Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX, United Kingdom, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Dolejškova 3, 182 23 Prague, Czech Republic, and Beckman Institute, California Institute
| | - Stanislav Záliš
- School of Biological and Chemical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, United Kingdom, Central Laser Facility, CCLRC Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX, United Kingdom, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Dolejškova 3, 182 23 Prague, Czech Republic, and Beckman Institute, California Institute
| | - Angel J. Di Bilio
- School of Biological and Chemical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, United Kingdom, Central Laser Facility, CCLRC Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX, United Kingdom, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Dolejškova 3, 182 23 Prague, Czech Republic, and Beckman Institute, California Institute
| | - Brian R. Crane
- School of Biological and Chemical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, United Kingdom, Central Laser Facility, CCLRC Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX, United Kingdom, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Dolejškova 3, 182 23 Prague, Czech Republic, and Beckman Institute, California Institute
| | - Harry B. Gray
- School of Biological and Chemical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, United Kingdom, Central Laser Facility, CCLRC Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX, United Kingdom, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Dolejškova 3, 182 23 Prague, Czech Republic, and Beckman Institute, California Institute
| | - Antonín Vlček
- School of Biological and Chemical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, United Kingdom, Central Laser Facility, CCLRC Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX, United Kingdom, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Dolejškova 3, 182 23 Prague, Czech Republic, and Beckman Institute, California Institute
| |
Collapse
|
30
|
Xiong P, Nocek JM, Griffin AKK, Wang J, Hoffman BM. Electrostatic redesign of the [myoglobin, cytochrome b5] interface to create a well-defined docked complex with rapid interprotein electron transfer. J Am Chem Soc 2009; 131:6938-9. [PMID: 19419145 PMCID: PMC2844781 DOI: 10.1021/ja902131d] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cyt b(5) is the electron-carrier "repair" protein that reduces met-Mb and met-Hb to their O(2)-carrying ferroheme forms. Studies of electron transfer (ET) between Mb and cyt b(5) revealed that they react on a "Dynamic Docking" (DD) energy landscape on which binding and reactivity are uncoupled: binding is weak and involves an ensemble of nearly isoenergetic configurations, only a few of which are reactive; those few contribute negligibly to binding. We set the task of redesigning the surface of Mb so that its reaction with cyt b(5) instead would occur on a conventional "simple docking" (SD) energy landscape, on which a complex exhibits a well-defined (set of) reactive binding configuration(s), with binding and reactivity thus no longer being decoupled. We prepared a myoglobin (Mb) triple mutant (D44K/D60K/E85K; Mb(+6)) substituted with Zn-deuteroporphyrin and monitored cytochrome b(5) (cyt b(5)) binding and electron transfer (ET) quenching of the (3)ZnMb(+6) triplet state. In contrast, to Mb(WT), the three charge reversals around the "front-face" heme edge of Mb(+6) have directed cyt b(5) to a surface area of Mb adjacent to its heme, created a well-defined, most-stable structure that supports good ET pathways, and apparently coupled binding and ET: both K(a) and k(et) are increased by the same factor of approximately 2 x 10(2), creating a complex that exhibits a large ET rate constant, k(et) = 10(6 1) s(-1), and is in slow exchange (k(off) << k(et)). In short, these mutations indeed appear to have created the sought-for conversion from DD to simple docking (SD) energy landscapes.
Collapse
Affiliation(s)
- Peng Xiong
- Northwestern University, Department of Chemistry, 2145 Sheridan Road, Evanston, IL 60208
| | - Judith M. Nocek
- Northwestern University, Department of Chemistry, 2145 Sheridan Road, Evanston, IL 60208
| | - Amanda K. K. Griffin
- Northwestern University, Department of Chemistry, 2145 Sheridan Road, Evanston, IL 60208
| | - Jingyun Wang
- Northwestern University, Department of Chemistry, 2145 Sheridan Road, Evanston, IL 60208
| | - Brian M. Hoffman
- Northwestern University, Department of Chemistry, 2145 Sheridan Road, Evanston, IL 60208
| |
Collapse
|
31
|
The courtship of proteins: Understanding the encounter complex. FEBS Lett 2009; 583:1060-6. [DOI: 10.1016/j.febslet.2009.02.046] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Revised: 02/25/2009] [Accepted: 02/27/2009] [Indexed: 11/15/2022]
|
32
|
Patel AD, Nocek JM, Hoffman BM. Kinetic-dynamic model for conformational control of an electron transfer photocycle: mixed-metal hemoglobin hybrids. J Phys Chem B 2008; 112:11827-37. [PMID: 18717535 PMCID: PMC2672620 DOI: 10.1021/jp8054679] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
It is becoming increasingly clear that the transfer of an electron across a protein-protein interface is coupled to the dynamics of conformational conversion between and within ensembles of interface conformations. Electron transfer (ET) reactions in conformationally mobile systems provide a "clock" against which the rapidity of a dynamic process may be measured, and we here report a simple kinetic (master equation) model that self-consistently incorporates conformational dynamics into an ET photocycle comprised of a photoinitiated "forward" step and thermal return to ground. This kinetic/dynamic (KD) model assumes an ET complex exists as multiple interconverting conformations which partition into an ET-optimized (reactive; R) population and a less-reactive population ( S). We take the members of each population to be equivalent by constraining them to have the same conformational energy, the same average rate constant for conversion to members of the other population, and the same rate constants for forward and back ET. The result is a mapping of a complicated energy surface onto the simple "gating", two-well surface, but with rate constants that are defined microscopically. This model successfully describes the changes in the ET photocycle within the "predocked" mixed-metal hemoglobin (Hb) hybrid, [alpha(Zn), beta(Fe3+N 3 (-))], as conformational kinetics are modulated by variations in viscosity (eta = 1-15 cP; 20 degrees C). The description reveals how the conformational "routes" by which a hybrid progresses through a photocycle differ in different dynamic regimes. Even at eta = 1 cP, the populations are not in fast exchange, and ET involves a complex interplay between conformational and ET processes; at intermediate viscosities the hybrid exhibits "differential dynamics" in which the forward and back ET processes involve different initial ensembles of configurational substates; by eta = 15 cP, the slow-exchange limit is approached. Even at low viscosity, the ET-coupled motions are fairly slow, with rate constants of <10 (3) s (-1). Current ideas about Hb function lead to the testable hypothesis that ET in the hybrid may be coupled to allosteric fluctuations of the two [alpha 1, beta 2] dimers of Hb.
Collapse
Affiliation(s)
- Ami D Patel
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| | | | | |
Collapse
|
33
|
Macchiarulo A, Camaioni E, Nuti R, Pellicciari R. Highlights at the gate of tryptophan catabolism: a review on the mechanisms of activation and regulation of indoleamine 2,3-dioxygenase (IDO), a novel target in cancer disease. Amino Acids 2008; 37:219-29. [PMID: 18612775 DOI: 10.1007/s00726-008-0137-3] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Accepted: 06/19/2008] [Indexed: 12/14/2022]
Abstract
Indoleamine 2,3-dioxygenase (IDO) catalyzes the first and rate-limiting step of Kynurenine pathway along the major route of Tryptophan catabolism. The scientific interest in the enzyme has been growing since the observations of the involvement of IDO in the mechanisms of immune tolerance and in the mechanisms of tumor immuno-editing process. In view of this latter observation, in particular, preclinical studies of small molecule inhibitors of the enzyme have indicated the feasibility to thwart the immuno-editing process and to enhance the efficacy of current chemotherapeutic agents, supporting the notion that IDO is a novel target in cancer disease.This review covers the structural and conformational aspects of substrate recognition by IDO, including the catalytic mechanism and the so-far puzzling mechanisms of enzyme activation. Furthermore, we discuss the recent advances of medicinal chemistry in the field of IDO inhibitors.
Collapse
Affiliation(s)
- Antonio Macchiarulo
- Dipartimento di Chimica e Tecnologia del Farmaco, Università di Perugia, via del Liceo 1, 06123 Perugia, Italy
| | | | | | | |
Collapse
|
34
|
Sobrado P, Goren MA, James D, Amundson CK, Fox BG. A Protein Structure Initiative approach to expression, purification, and in situ delivery of human cytochrome b5 to membrane vesicles. Protein Expr Purif 2008; 58:229-41. [PMID: 18226920 PMCID: PMC2277500 DOI: 10.1016/j.pep.2007.11.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2007] [Revised: 11/26/2007] [Accepted: 11/30/2007] [Indexed: 11/18/2022]
Abstract
A specialized vector backbone from the Protein Structure Initiative was used to express full-length human cytochrome b5 as a C-terminal fusion to His8-maltose binding protein in Escherichia coli. The fusion protein could be completely cleaved by tobacco etch virus protease, and a yield of approximately 18 mg of purified full-length human cytochrome b5 per liter of culture medium was obtained (2.3mg per g of wet weight bacterial cells). In situ proteolysis of the fusion protein in the presence of chemically defined synthetic liposomes allowed facile spontaneous delivery of the functional peripheral membrane protein into a defined membrane environment without prior exposure to detergents or other lipids. The utility of this approach as a delivery method for production and incorporation of monotopic (peripheral) membrane proteins is discussed.
Collapse
Affiliation(s)
- Pablo Sobrado
- Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin, Room 141B, 433 Babcock Drive, Madison, WI 53706, USA
| | | | | | | | | |
Collapse
|
35
|
Dürr UH, Waskell L, Ramamoorthy A. The cytochromes P450 and b5 and their reductases—Promising targets for structural studies by advanced solid-state NMR spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:3235-59. [DOI: 10.1016/j.bbamem.2007.08.007] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Accepted: 08/08/2007] [Indexed: 02/02/2023]
|
36
|
Abstract
Slow motions of proteins modulate electron-transfer rates during the early stages of photosynthesis.
Collapse
Affiliation(s)
| | - David N. Beratan
- French Family Science Center, Departments of Chemistry and Biochemistry, Duke University, Durham, NC 27708, USA.
| |
Collapse
|