1
|
Kumar P, Saini M, Dehiya BS, Sindhu A, Kumar V, Kumar R, Lamberti L, Pruncu CI, Thakur R. Comprehensive Survey on Nanobiomaterials for Bone Tissue Engineering Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2019. [PMID: 33066127 PMCID: PMC7601994 DOI: 10.3390/nano10102019] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 02/06/2023]
Abstract
One of the most important ideas ever produced by the application of materials science to the medical field is the notion of biomaterials. The nanostructured biomaterials play a crucial role in the development of new treatment strategies including not only the replacement of tissues and organs, but also repair and regeneration. They are designed to interact with damaged or injured tissues to induce regeneration, or as a forest for the production of laboratory tissues, so they must be micro-environmentally sensitive. The existing materials have many limitations, including impaired cell attachment, proliferation, and toxicity. Nanotechnology may open new avenues to bone tissue engineering by forming new assemblies similar in size and shape to the existing hierarchical bone structure. Organic and inorganic nanobiomaterials are increasingly used for bone tissue engineering applications because they may allow to overcome some of the current restrictions entailed by bone regeneration methods. This review covers the applications of different organic and inorganic nanobiomaterials in the field of hard tissue engineering.
Collapse
Affiliation(s)
- Pawan Kumar
- Department of Materials Science and Nanotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal 131039, India; (M.S.); (B.S.D.)
| | - Meenu Saini
- Department of Materials Science and Nanotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal 131039, India; (M.S.); (B.S.D.)
| | - Brijnandan S. Dehiya
- Department of Materials Science and Nanotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal 131039, India; (M.S.); (B.S.D.)
| | - Anil Sindhu
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal 131039, India;
| | - Vinod Kumar
- Department of Bio and Nanotechnology, Guru Jambheshwar University of Science and Technology, Hisar 125001, India; (V.K.); (R.T.)
| | - Ravinder Kumar
- School of Mechanical Engineering, Lovely Professional University, Phagwara 144411, India
| | - Luciano Lamberti
- Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, 70125 Bari, Italy;
| | - Catalin I. Pruncu
- Department of Design, Manufacturing & Engineering Management, University of Strathclyde, Glasgow G1 1XJ, UK
- Department of Mechanical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Rajesh Thakur
- Department of Bio and Nanotechnology, Guru Jambheshwar University of Science and Technology, Hisar 125001, India; (V.K.); (R.T.)
| |
Collapse
|
2
|
Thwala MM, Dlamini LN. Photocatalytic reduction of Cr(VI) using Mg-doped WO 3 nanoparticles. ENVIRONMENTAL TECHNOLOGY 2020; 41:2277-2292. [PMID: 31181985 DOI: 10.1080/09593330.2019.1629635] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 06/05/2019] [Indexed: 06/09/2023]
Abstract
The hydrothermal synthesis method was employed for the fabrication of pristine tungsten trioxide (WO3) and that of varying dopant percentages (1, 3 and 5% m/m) of magnesium (Mg-WO3). The optical and structural properties of the synthesized materials were characterized using DRS, XRD, FTIR, TEM, BET, FESEM, XPS, PL, and Raman. Rectangular shaped nanostructures were observed through FESEM, wherein confirmed as monoclinic with the aid of XRD, FTIR and Raman analysis. Visualization of the doping was carried out using HRTEM imagery, which was also confirmed by a slight increase (0.0069 nm) of d spacing. As a consequence, band gaps were diminished and band edge positions were shifted. Band edge position shifts were confirmed via XPS analysis (0.08 eV). The point of zero charge was observed to shift towards positive upon doping at working pH 1 and 3.75 pH was the highest recorded. The rate of recombination was greatly reduced upon doping was observed through PL analysis. This was supported by DFT calculations, in which case the reduction of the rate of recombination was attributed to the introduction of Mg orbital. An improved efficiency was observed via the photo reduction of Cr(VI) metal ion in waste water, in which case, 97% reduction was attained.
Collapse
Affiliation(s)
- M M Thwala
- Department of Applied Chemistry, University of Johannesburg, Johannesburg, South Africa
| | - L N Dlamini
- Department of Applied Chemistry, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
3
|
Lin HY, Wang YF, Tian Y, Liu GC, Luan J. From coordination polymer to carbon nanotube: Preparation, characterization and rapid adsorption capacity toward organic pollutants. JOURNAL OF CHEMICAL RESEARCH 2020. [DOI: 10.1177/1747519820907562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A CuI coordination polymer based on the N,N’-bis(3-pyridinecarboxamide)-1,4-butane (3-dpyb) ligand, namely [Cu(3-dpyb)0.5Cl], is hydrothermally synthesized and structurally characterized, and is used as a catalyst precursor to synthesize multi-walled carbon nanotubes. Interestingly, the as-grown multi-walled carbon nanotubes exhibit high performance in removing dyes from solution and can serve as a low-cost and fast adsorbent. In addition, the adsorption behavior of this new adsorbent fits well with the Freundlich isotherm and the pseudo-second-order kinetic model.
Collapse
Affiliation(s)
- Hong-Yan Lin
- College of Chemistry and Chemical Engineering, Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, Bohai University, Jinzhou, P.R. China
| | - Yi-Fei Wang
- No. 1 High School of Dalian Development Area, Dalian, P.R. China
| | - Yuan Tian
- College of Chemistry and Chemical Engineering, Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, Bohai University, Jinzhou, P.R. China
| | - Guo-Cheng Liu
- College of Chemistry and Chemical Engineering, Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, Bohai University, Jinzhou, P.R. China
| | - Jian Luan
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, P.R. China
| |
Collapse
|
4
|
Gopalan Sibi M, Verma D, Kim J. Magnetic core–shell nanocatalysts: promising versatile catalysts for organic and photocatalytic reactions. CATALYSIS REVIEWS 2020. [DOI: 10.1080/01614940.2019.1659555] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Malayil Gopalan Sibi
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Gyeong Gi-Do, Republic of Korea
- School of Mechanical Engineering, Sungkyunkwan University, Gyeong Gi-Do, Republic of Korea
- School of Chemical Engineering, Sungkyunkwan University, Gyeong Gi-Do, Republic of Korea
| | - Deepak Verma
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Gyeong Gi-Do, Republic of Korea
- School of Mechanical Engineering, Sungkyunkwan University, Gyeong Gi-Do, Republic of Korea
- School of Chemical Engineering, Sungkyunkwan University, Gyeong Gi-Do, Republic of Korea
| | - Jaehoon Kim
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Gyeong Gi-Do, Republic of Korea
- School of Mechanical Engineering, Sungkyunkwan University, Gyeong Gi-Do, Republic of Korea
- School of Chemical Engineering, Sungkyunkwan University, Gyeong Gi-Do, Republic of Korea
| |
Collapse
|
5
|
Luo C, Wan D, Jia J, Li D, Pan C, Liao L. A rational design for the separation of metallic and semiconducting single-walled carbon nanotubes using a magnetic field. NANOSCALE 2016; 8:13017-13024. [PMID: 27315328 DOI: 10.1039/c6nr03928f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The separation of metallic (m-) and semiconducting (s-) single-walled carbon nanotubes (SWNTs) without causing contamination and damage is a major challenge for SWNT-based devices. As a facile and nondestructive tool, the use of a magnetic field could be an ideal strategy to separate m-/s-SWNTs, based on the difference of magnetic susceptibilities. Here, we designed a novel magnetic field-assisted floating catalyst chemical vapor deposition system to separate m-/s-SWNTs. Briefly, m-SWNTs are attracted toward the magnetic pole, leaving s-SWNTs on the substrate. By using this strategy, s-SWNTs with a purity of 99% could be obtained, which is enough to construct high-performance transistors with a mobility of 230 cm(2) V(-1) s(-1) and an on/off ratio of 10(6). We also established a model to quantitatively calculate the percentage of m-SWNTs on the substrate and this model shows a good match with the experimental data. Furthermore, our rational design also provides a new avenue for the growth of SWNTs with specific chirality and manipulated arrangement due to the difference of magnetic susceptibilities between different diameters, chiralities, and types.
Collapse
Affiliation(s)
- Chengzhi Luo
- School of Physics and Technology, and MOE Key Laboratory of Artificial Micro- and Nano-structures, Wuhan University, Wuhan 430072, China.
| | | | | | | | | | | |
Collapse
|
6
|
Abstract
Endohedral and exohedral assembly of magnetic nanoparticles (MNPs) and carbon nanotubes (CNTs) recently gave birth to a large body of new hybrid nanomaterials (MNPs-CNTs) featuring properties that are otherwise not in reach with only the graphitic or metallic cores themselves. These materials feature enhanced magnetically guided motions (rotation and translation), magnetic saturation and coercivity, large surface area, and thermal stability. By guiding the reader through the most significant examples in this Concept paper, we describe how researchers in the field engineered and exploited the synergistic combination of these two types of nanoparticles in a large variety of current and potential applications, such as magnetic fluid hyperthermia therapeutics and in magnetic resonance imaging to name a few.
Collapse
Affiliation(s)
- Antoine Stopin
- Department of Chemistry and Namur Research College (NARC), University of Namur, Rue de Bruxelles 61, 5000 Namur (Belgium)
| | - Florent Pineux
- Department of Chemistry and Namur Research College (NARC), University of Namur, Rue de Bruxelles 61, 5000 Namur (Belgium)
| | - Riccardo Marega
- Department of Chemistry and Namur Research College (NARC), University of Namur, Rue de Bruxelles 61, 5000 Namur (Belgium)
| | - Davide Bonifazi
- Department of Chemistry and Namur Research College (NARC), University of Namur, Rue de Bruxelles 61, 5000 Namur (Belgium). .,Department of Pharmaceutical and Chemical Sciences and INSTM UdR Trieste, University of Trieste, Piazzale Europa 1, 34127 Trieste (Italy).
| |
Collapse
|
7
|
Strong magnetic field-assisted growth of carbon nanofibers and its microstructural transformation mechanism. Sci Rep 2015; 5:9062. [PMID: 25761381 PMCID: PMC4357007 DOI: 10.1038/srep09062] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 02/16/2015] [Indexed: 11/26/2022] Open
Abstract
It is well-known that electric and magnetic fields can control the growth direction, morphology and microstructure of one-dimensional carbon nanomaterials (1-DCNMs), which plays a key role for its potential applications in micro-nano-electrics and devices. In this paper, we introduce a novel process for controlling growth of carbon nanofibers (CNFs) with assistance of a strong magnetic field (up to 0.5 T in the center) in a chemical vapor deposition (CVD) system. The results reveal that: 1) The CNFs get bundled when grown in the presence of a strong magnetic field and slightly get aligned parallel to the direction of the magnetic field; 2) The CNFs diameter become narrowed and homogenized with increase of the magnetic field; 3) With the increase of the magnetic field, the microstructure of CNFs is gradually changed, i.e., the strong magnetic field makes the disordered “solid-cored” CNFs transform into a kind of bamboo-liked carbon nanotubes; 4) We propose a mechanism that the reason for these variations and transformation is due to diamagnetic property of carbon atoms, so that it has direction selectivity in the precipitation process.
Collapse
|
8
|
Ruan Z, Rong W, Zhan X, Li Q, Li Z. POSS containing organometallic polymers: synthesis, characterization and solid-state pyrolysis behavior. Polym Chem 2014. [DOI: 10.1039/c4py00555d] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Fu Y, Carlberg B, Lindahl N, Lindvall N, Bielecki J, Matic A, Song Y, Hu Z, Lai Z, Ye L, Sun J, Zhang Y, Zhang Y, Liu J. Templated growth of covalently bonded three-dimensional carbon nanotube networks originated from graphene. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2012; 24:1576-1581. [PMID: 22344864 DOI: 10.1002/adma.201104408] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 01/18/2012] [Indexed: 05/31/2023]
Abstract
A template-assisted method that enables the growth of covalently bonded three-dimensional carbon nanotubes (CNTs) originating from graphene at a large scale is demonstrated. Atomic force microscopy-based mechanical tests show that the covalently bonded CNT structure can effectively distribute external loading throughout the network to improve the mechanical strength of the material.
Collapse
Affiliation(s)
- Yifeng Fu
- Department of Microtechnology and Nanoscience, Chalmers University of Technology, Göteborg, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Zhang Q, Huang JQ, Zhao MQ, Qian WZ, Wei F. Carbon nanotube mass production: principles and processes. CHEMSUSCHEM 2011; 4:864-89. [PMID: 21732544 DOI: 10.1002/cssc.201100177] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Indexed: 05/18/2023]
Abstract
Our society requires new materials for a sustainable future, and carbon nanotubes (CNTs) are among the most important advanced materials. This Review describes the state-of-the-art of CNT synthesis, with a focus on their mass-production in industry. At the nanoscale, the production of CNTs involves the self-assembly of carbon atoms into a one-dimensional tubular structure. We describe how this synthesis can be achieved on the macroscopic scale in processes akin to the continuous tonne-scale mass production of chemical products in the modern chemical industry. Our overview includes discussions on processing methods for high-purity CNTs, and the handling of heat and mass transfer problems. Manufacturing strategies for agglomerated and aligned single-/multiwalled CNTs are used as examples of the engineering science of CNT production, which includes an understanding of their growth mechanism, agglomeration mechanism, reactor design, and process intensification. We aim to provide guidelines for the production and commercialization of CNTs. Although CNTs can now be produced on the tonne scale, knowledge of the growth mechanism at the atomic scale, the relationship between CNT structure and application, and scale-up of the production of CNTs with specific chirality are still inadequate. A multidisciplinary approach is a prerequisite for the sustainable development of the CNT industry.
Collapse
Affiliation(s)
- Qiang Zhang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, PR China
| | | | | | | | | |
Collapse
|
11
|
Zhu M, Diao G. Review on the progress in synthesis and application of magnetic carbon nanocomposites. NANOSCALE 2011; 3:2748-67. [PMID: 21611651 DOI: 10.1039/c1nr10165j] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
This review focuses on the synthesis and application of nanostructured composites containing magnetic nanostructures and carbon-based materials. Great progress in fabrication of magnetic carbon nanocomposites has been made by developing methods including filling process, template-based synthesis, chemical vapor deposition, hydrothermal/solvothermal method, pyrolysis procedure, sol-gel process, detonation induced reaction, self-assembly method, etc. The applications of magnetic carbon nanocomposites expanded to a wide range of fields such as environmental treatment, microwave absorption, magnetic recording media, electrochemical sensor, catalysis, separation/recognization of biomolecules and drug delivery are discussed. Finally, some future trends and perspectives in this research area are outlined.
Collapse
Affiliation(s)
- Maiyong Zhu
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China
| | | |
Collapse
|
12
|
Sun L, Tian C, Wang L, Zou J, Mu G, Fu H. Magnetically separable porous graphitic carbon with large surface area as excellent adsorbents for metal ions and dye. ACTA ACUST UNITED AC 2011. [DOI: 10.1039/c1jm10470e] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Wei D, Liu Y. Controllable synthesis of graphene and its applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2010; 22:3225-41. [PMID: 20574948 DOI: 10.1002/adma.200904144] [Citation(s) in RCA: 202] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Graphene, a two-dimensional material, is regarded as one of the most promising candidates for future nanoelectronics due to its atomic thickness, excellent properties and widespread applications. As the first step to investigate its properties and finally to realize the practical applications, graphene must be synthesized in a controllable manner. Thus, controllable synthesis is of great significance, and received more and more attention recently. This Progress Report highlights recent advances in controllable synthesis of graphene, clarifies the problems, and prospects the future development in this field. The applications of the controllable synthesis are also discussed.
Collapse
Affiliation(s)
- Dacheng Wei
- Institute of Chemistry, Chinese Academy of Sciences, Beijing, P. R. China
| | | |
Collapse
|
14
|
Wei D, Liu Y, Zhang H, Huang L, Wu B, Chen J, Yu G. Scalable Synthesis of Few-Layer Graphene Ribbons with Controlled Morphologies by a Template Method and Their Applications in Nanoelectromechanical Switches. J Am Chem Soc 2009; 131:11147-54. [DOI: 10.1021/ja903092k] [Citation(s) in RCA: 202] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Dacheng Wei
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
| | - Yunqi Liu
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
| | - Hongliang Zhang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
| | - Liping Huang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
| | - Bin Wu
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
| | - Jianyi Chen
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
| | - Gui Yu
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
| |
Collapse
|