1
|
Zhang Q, Yang L, Wang K, Guo L, Ning H, Wang S, Gong Y. Terahertz waves regulate the mechanical unfolding of tau pre-mRNA hairpins. iScience 2023; 26:107572. [PMID: 37664616 PMCID: PMC10470126 DOI: 10.1016/j.isci.2023.107572] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/14/2023] [Accepted: 08/05/2023] [Indexed: 09/05/2023] Open
Abstract
Intermolecular interactions, including hydrogen bonds, dominate the pairing and unpairing of nucleic acid chains in the transfer process of genetic information. The energy of THz waves just matches with the weak interactions, so THz waves may interact with biomolecules. Here, the dynamic effects of THz electromagnetic (EM) waves on the mechanical unfolding process of RNA hairpins (WT-30nt and its mutants, rHP, SARS-CoV-2, and SRV-1 SF206) are investigated using steered molecular dynamics (SMD) simulations. The results show that THz waves can either promote the unfolding of the double helix of the RNA hairpin during the initial unfolding phase (4-21.8 THz) or significantly enhance (23.8 and 25.5 THz) or weaken (37.4 and 41.2 THz) its structural stability during unfolding. Our findings have important implications for applying THz waves to regulate dynamic deconvolution processes, such as gene replication, transcription, and translation.
Collapse
Affiliation(s)
- Qin Zhang
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China
| | - Lixia Yang
- School of Physics, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China
| | - Kaicheng Wang
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China
| | - Lianghao Guo
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China
| | - Hui Ning
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China
| | - Shaomeng Wang
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China
| | - Yubin Gong
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China
| |
Collapse
|
2
|
Ramachandran V, Mainan A, Roy S. Dynamic effects of the spine of hydrated magnesium on viral RNA pseudoknot structure. Phys Chem Chem Phys 2022; 24:24570-24581. [PMID: 36193826 DOI: 10.1039/d2cp01075e] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In the cellular environment, a viral RNA Pseudoknot (PK) structure is responsive to its prevailing ion atmosphere created by a mixture of monovalent and divalent cations. We investigate the influence of such a mixed-salt environment on RNA-PK structure at an atomic resolution through three sets of 1.5 μs explicit solvent molecular dynamics (MD) simulations and also by building a dynamic counterion-condensation (DCC) model at varying divalent Mg2+ concentrations. The DCC model includes explicit interaction of the ligand and adjacent chelated Mg2+ by extending the recently developed generalized Manning condensation model. Its implementation within an all-atom structure-based molecular dynamics framework bolsters its opportunity to explore large-length scale and long-timescale phenomena associated with complex RNA systems immersed in its dynamic ion environment. In the present case of RNA-PK, both explicit MD and DCC simulations reveal a spine of hydrated-Mg2+ to induce stem-I and stem-II closure where the minor groove between these stems is akin to breathing. Mg2+ mediated minor-groove narrowing is coupled with local base-flipping dynamics of a base triple and quadruple, changing the stem structure of such RNA. Contrary to the conversational view of the indispensable need for Mg2+ for the tertiary structure of RNA, the study warns about the plausible detrimental effect of specific Mg2+-phosphate interactions on the RNA-PK structure beyond a certain concentration of Mg2+.
Collapse
Affiliation(s)
- Vysakh Ramachandran
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India.
| | - Avijit Mainan
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India.
| | - Susmita Roy
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India.
| |
Collapse
|
3
|
Chang KC, Wen JD. Programmed -1 ribosomal frameshifting from the perspective of the conformational dynamics of mRNA and ribosomes. Comput Struct Biotechnol J 2021; 19:3580-3588. [PMID: 34257837 PMCID: PMC8246090 DOI: 10.1016/j.csbj.2021.06.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/11/2021] [Accepted: 06/12/2021] [Indexed: 11/01/2022] Open
Abstract
Programmed -1 ribosomal frameshifting (-1 PRF) is a translation mechanism that regulates the relative expression level of two proteins encoded on the same messenger RNA (mRNA). This regulation is commonly used by viruses such as coronaviruses and retroviruses but rarely by host human cells, and for this reason, it has long been considered as a therapeutic target for antiviral drug development. Understanding the molecular mechanism of -1 PRF is one step toward this goal. Minus-one PRF occurs with a certain efficiency when translating ribosomes encounter the specialized mRNA signal consisting of the frameshifting site and a downstream stimulatory structure, which impedes translocation of the ribosome. The impeded ribosome can still undergo profound conformational changes to proceed with translocation; however, some of these changes may be unique and essential to frameshifting. In addition, most stimulatory structures exhibit conformational dynamics and sufficient mechanical strength, which, when under the action of ribosomes, may in turn further promote -1 PRF efficiency. In this review, we discuss how the dynamic features of ribosomes and mRNA stimulatory structures may influence the occurrence of -1 PRF and propose a hypothetical frameshifting model that recapitulates the role of conformational dynamics.
Collapse
Affiliation(s)
- Kai-Chun Chang
- Department of Bioengineering and Therapeutic Sciences, Schools of Medicine and Pharmacy, University of California, San Francisco, CA 94158, United States
| | - Jin-Der Wen
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei 10617, Taiwan
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei 10617, Taiwan
| |
Collapse
|
4
|
Zhang P, Wang D, Yang W, Marszalek PE. Piecewise All-Atom SMD Simulations Reveal Key Secondary Structures in Luciferase Unfolding Pathway. Biophys J 2020; 119:2251-2261. [PMID: 33130123 DOI: 10.1016/j.bpj.2020.10.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/24/2020] [Accepted: 10/14/2020] [Indexed: 01/08/2023] Open
Abstract
Although the folding of single-domain proteins is well characterized theoretically and experimentally, the folding of large multidomain proteins is less well known. Firefly luciferase, a 550 residue three-domain protein, has been commonly used as a substrate to study chaperone reactions and as a model system for the study of folding of long polypeptide chains, including related phenomena such as cotranslational folding. Despite being characterized by various experimental techniques, the atomic-level contributions of various secondary structures of luciferase to its fold's mechanical stability remain unknown. Here, we developed a piecewise approach for all-atom steered molecular dynamics simulations to examine specific secondary structures that resist mechanical unfolding while minimizing the amount of computational resources required by the large water box of standard all-atom steered molecular dynamics simulations. We validated the robustness of this approach with a small NI3C protein and used our approach to elucidate the specific secondary structures that provide the largest contributions to luciferase mechanostability. In doing so, we show that piecewise all-atom steered molecular dynamics simulations can provide novel atomic resolution details regarding mechanostability and can serve as a platform for novel mutagenesis studies as well as a point for comparison with high-resolution force spectroscopy experiments.
Collapse
Affiliation(s)
- Pan Zhang
- Department of Chemistry, Duke University, Durham, North Carolina
| | - David Wang
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina
| | - Weitao Yang
- Department of Chemistry, Duke University, Durham, North Carolina.
| | - Piotr E Marszalek
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina.
| |
Collapse
|
5
|
Murata A, Nakamori M, Nakatani K. Modulating RNA secondary and tertiary structures by mismatch binding ligands. Methods 2019; 167:78-91. [DOI: 10.1016/j.ymeth.2019.05.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 05/05/2019] [Accepted: 05/07/2019] [Indexed: 12/21/2022] Open
|
6
|
Yang YJ, Song L, Zhao XC, Zhang C, Wu WQ, You HJ, Fu H, Zhou EC, Zhang XH. A Universal Assay for Making DNA, RNA, and RNA-DNA Hybrid Configurations for Single-Molecule Manipulation in Two or Three Steps without Ligation. ACS Synth Biol 2019; 8:1663-1672. [PMID: 31264849 DOI: 10.1021/acssynbio.9b00241] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Despite having a great variety of topologies, most DNA, RNA, and RNA-DNA hybrid (RDH) configurations for single-molecule manipulation are composed of several single-stranded (ss) DNA and ssRNA strands, with functional labels at the two ends for surface tethering. On this basis, we developed a simple, robust, and universal amplification-annealing (AA) assay for making all these configurations in two or three steps without inefficient digestion and ligation reactions. As examples, we made ssDNA, short ssDNA with double-stranded (ds) DNA handles, dsDNA with ssDNA handles, replication-fork shaped DNA/RDH/RNA, DNA holiday junction, three-site multiple-labeled and nicked DNA, torsion-constrained RNA/RDH, and short ssRNA with RDH handles. In addition to single-molecule manipulation techniques including optical tweezers, magnetic tweezers, and atomic force microscopy, these configurations can be applied in other surface-tethering techniques as well.
Collapse
Affiliation(s)
- Ya-Jun Yang
- College of Life Sciences, the Institute for Advanced Studies, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan 430072, China
| | - Lun Song
- College of Life Sciences, the Institute for Advanced Studies, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan 430072, China
| | - Xiao-Cong Zhao
- College of Life Sciences, the Institute for Advanced Studies, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan 430072, China
| | - Chen Zhang
- College of Life Sciences, the Institute for Advanced Studies, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan 430072, China
| | - Wen-Qiang Wu
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Hui-Juan You
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hang Fu
- College of Life Sciences, the Institute for Advanced Studies, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan 430072, China
| | - Er-Chi Zhou
- College of Life Sciences, the Institute for Advanced Studies, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan 430072, China
| | - Xing-Hua Zhang
- College of Life Sciences, the Institute for Advanced Studies, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan 430072, China
| |
Collapse
|
7
|
Matsumoto S, Caliskan N, Rodnina MV, Murata A, Nakatani K. Small synthetic molecule-stabilized RNA pseudoknot as an activator for -1 ribosomal frameshifting. Nucleic Acids Res 2019; 46:8079-8089. [PMID: 30085309 PMCID: PMC6144811 DOI: 10.1093/nar/gky689] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 07/31/2018] [Indexed: 12/02/2022] Open
Abstract
Programmed –1 ribosomal frameshifting (−1PRF) is a recoding mechanism to make alternative proteins from a single mRNA transcript. −1PRF is stimulated by cis-acting signals in mRNA, a seven-nucleotide slippery sequence and a downstream secondary structure element, which is often a pseudoknot. In this study we engineered the frameshifting pseudoknot from the mouse mammary tumor virus to respond to a rationally designed small molecule naphthyridine carbamate tetramer (NCTn). We demonstrate that NCTn can stabilize the pseudoknot structure in mRNA and activate –1PRF both in vitro and in human cells. The results illustrate how NCTn-inducible –1PRF may serve as an important component of the synthetic biology toolbox for the precise control of gene expression using small synthetic molecules.
Collapse
Affiliation(s)
- Saki Matsumoto
- Department of Regulatory Bioorganic Chemistry, The Institute of Scientific and Industrial Research (ISIR), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Neva Caliskan
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research, Josef-Schneider-Str.2/D15, 97080, Würzburg, Germany
| | - Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Asako Murata
- Department of Regulatory Bioorganic Chemistry, The Institute of Scientific and Industrial Research (ISIR), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Kazuhiko Nakatani
- Department of Regulatory Bioorganic Chemistry, The Institute of Scientific and Industrial Research (ISIR), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| |
Collapse
|
8
|
Walder R, Van Patten WJ, Ritchie DB, Montange RK, Miller TW, Woodside MT, Perkins TT. High-Precision Single-Molecule Characterization of the Folding of an HIV RNA Hairpin by Atomic Force Microscopy. NANO LETTERS 2018; 18:6318-6325. [PMID: 30234311 DOI: 10.1021/acs.nanolett.8b02597] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The folding of RNA into a wide range of structures is essential for its diverse biological functions from enzymatic catalysis to ligand binding and gene regulation. The unfolding and refolding of individual RNA molecules can be probed by single-molecule force spectroscopy (SMFS), enabling detailed characterization of the conformational dynamics of the molecule as well as the free-energy landscape underlying folding. Historically, high-precision SMFS studies of RNA have been limited to custom-built optical traps. Although commercial atomic force microscopes (AFMs) are widely deployed and offer significant advantages in ease-of-use over custom-built optical traps, traditional AFM-based SMFS lacks the sensitivity and stability to characterize individual RNA molecules precisely. Here, we developed a high-precision SMFS assay to study RNA folding using a commercial AFM and applied it to characterize a small RNA hairpin from HIV that plays a key role in stimulating programmed ribosomal frameshifting. We achieved rapid data acquisition in a dynamic assay, unfolding and then refolding the same individual hairpin more than 1,100 times in 15 min. In comparison to measurements using optical traps, our AFM-based assay featured a stiffer force probe and a less compliant construct, providing a complementary measurement regime that dramatically accelerated equilibrium folding dynamics. Not only did kinetic analysis of equilibrium trajectories of the HIV RNA hairpin yield the traditional parameters used to characterize folding by SMFS (zero-force rate constants and distances to the transition state), but we also reconstructed the full 1D projection of the folding free-energy landscape comparable to state-of-the-art studies using dual-beam optical traps, a first for this RNA hairpin and AFM studies of nucleic acids in general. Looking forward, we anticipate that the ease-of-use of our high-precision assay implemented on a commercial AFM will accelerate studying folding of diverse nucleic acid structures.
Collapse
Affiliation(s)
- Robert Walder
- JILA, National Institute of Standards and Technology, and University of Colorado , Boulder , Colorado 80309 , United States
| | - William J Van Patten
- JILA, National Institute of Standards and Technology, and University of Colorado , Boulder , Colorado 80309 , United States
| | - Dustin B Ritchie
- Department of Physics , University of Alberta , Edmonton AB T6G 2E1 , Canada
| | - Rebecca K Montange
- JILA, National Institute of Standards and Technology, and University of Colorado , Boulder , Colorado 80309 , United States
| | - Ty W Miller
- JILA, National Institute of Standards and Technology, and University of Colorado , Boulder , Colorado 80309 , United States
| | - Michael T Woodside
- Department of Physics , University of Alberta , Edmonton AB T6G 2E1 , Canada
| | - Thomas T Perkins
- JILA, National Institute of Standards and Technology, and University of Colorado , Boulder , Colorado 80309 , United States
- Department of Molecular, Cellular, and Developmental Biology , University of Colorado , Boulder , Colorado 80309 , United States
| |
Collapse
|
9
|
Monovalent ions modulate the flux through multiple folding pathways of an RNA pseudoknot. Proc Natl Acad Sci U S A 2018; 115:E7313-E7322. [PMID: 30012621 PMCID: PMC6077692 DOI: 10.1073/pnas.1717582115] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The assembly mechanism of RNA, vital to describing its functions, depends on both the sequence and the metal ion concentration. How the latter influences the folding trajectories remains an important unsolved problem. Here, we examine the folding pathways of an RNA pseudoknot (PK) with key functional roles in transcription and translation, using a combination of experiments and simulations. We demonstrate that the PK, consisting of two hairpins with differing stabilities, folds by parallel pathways. Surprisingly, the flux between them is modulated by monovalent salt concentration. Our work shows that the order of assembly of PKs is determined by the relative stability of the hairpins, implying that the folding landscape can be controlled by sequence and ion concentration. The functions of RNA pseudoknots (PKs), which are minimal tertiary structural motifs and an integral part of several ribozymes and ribonucleoprotein complexes, are determined by their structure, stability, and dynamics. Therefore, it is important to elucidate the general principles governing their thermodynamics/folding mechanisms. Here, we combine laser temperature-jump experiments and coarse-grained simulations to determine the folding/unfolding pathways of VPK, a variant of the mouse mammary tumor virus (MMTV) PK involved in ribosomal frameshifting. Fluorescent nucleotide analogs (2-aminopurine and pyrrolocytidine) placed at different stem/loop positions in the PK serve as local probes allowing us to monitor the order of assembly of VPK that has two constituent hairpins with different intrinsic stabilities. We show that at 50 mM KCl, the dominant folding pathway populates only the more stable hairpin intermediate; as the salt concentration is increased, a parallel folding pathway emerges involving the less stable hairpin as an alternate intermediate. Notably, the flux between the pathways is modulated by the ionic strength. Our findings support the principle that the order of PK structure formation is determined by the relative stabilities of the hairpins, which can be altered by sequence variations or salt concentrations. The experimental results of salt effects on the partitioning between the two folding pathways are in remarkable agreement with simulations that were performed with no adjustable parameters. Our study not only unambiguously demonstrates that VPK folds by parallel pathways but also showcases the power of combining experiments and simulations for a more enriched description of RNA self-assembly.
Collapse
|
10
|
Shi YZ, Jin L, Feng CJ, Tan YL, Tan ZJ. Predicting 3D structure and stability of RNA pseudoknots in monovalent and divalent ion solutions. PLoS Comput Biol 2018; 14:e1006222. [PMID: 29879103 PMCID: PMC6007934 DOI: 10.1371/journal.pcbi.1006222] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 06/19/2018] [Accepted: 05/22/2018] [Indexed: 01/30/2023] Open
Abstract
RNA pseudoknots are a kind of minimal RNA tertiary structural motifs, and their three-dimensional (3D) structures and stability play essential roles in a variety of biological functions. Therefore, to predict 3D structures and stability of RNA pseudoknots is essential for understanding their functions. In the work, we employed our previously developed coarse-grained model with implicit salt to make extensive predictions and comprehensive analyses on the 3D structures and stability for RNA pseudoknots in monovalent/divalent ion solutions. The comparisons with available experimental data show that our model can successfully predict the 3D structures of RNA pseudoknots from their sequences, and can also make reliable predictions for the stability of RNA pseudoknots with different lengths and sequences over a wide range of monovalent/divalent ion concentrations. Furthermore, we made comprehensive analyses on the unfolding pathway for various RNA pseudoknots in ion solutions. Our analyses for extensive pseudokonts and the wide range of monovalent/divalent ion concentrations verify that the unfolding pathway of RNA pseudoknots is mainly dependent on the relative stability of unfolded intermediate states, and show that the unfolding pathway of RNA pseudoknots can be significantly modulated by their sequences and solution ion conditions.
Collapse
Affiliation(s)
- Ya-Zhou Shi
- Research Center of Nonlinear Science, School of Mathematics and Computer Science, Wuhan Textile University, Wuhan, China
- Department of Physics and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Lei Jin
- Department of Physics and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Chen-Jie Feng
- Department of Physics and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Ya-Lan Tan
- Department of Physics and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Zhi-Jie Tan
- Department of Physics and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China
| |
Collapse
|
11
|
Q Nguyen KK, Gomez YK, Bakhom M, Radcliffe A, La P, Rochelle D, Lee JW, Sorin EJ. Ensemble simulations: folding, unfolding and misfolding of a high-efficiency frameshifting RNA pseudoknot. Nucleic Acids Res 2017; 45:4893-4904. [PMID: 28115636 PMCID: PMC5416846 DOI: 10.1093/nar/gkx012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 01/11/2017] [Indexed: 12/11/2022] Open
Abstract
Massive all-atom molecular dynamics simulations were conducted across a distributed computing network to study the folding, unfolding, misfolding and conformational plasticity of the high-efficiency frameshifting double mutant of the 26 nt potato leaf roll virus RNA pseudoknot. Our robust sampling, which included over 40 starting structures spanning the spectrum from the extended unfolded state to the native fold, yielded nearly 120 μs of cumulative sampling time. Conformational microstate transitions on the 1.0 ns to 10.0 μs timescales were observed, with post-equilibration sampling providing detailed representations of the conformational free energy landscape and the complex folding mechanism inherent to the pseudoknot motif. Herein, we identify and characterize two alternative native structures, three intermediate states, and numerous misfolded states, the latter of which have not previously been characterized via atomistic simulation techniques. While in line with previous thermodynamics-based models of a general RNA folding mechanism, our observations indicate that stem-strand-sequence-separation may serve as an alternative predictor of the order of stem formation during pseudoknot folding. Our results contradict a model of frameshifting based on structural rigidity and resistance to mechanical unfolding, and instead strongly support more recent studies in which conformational plasticity is identified as a determining factor in frameshifting efficiency.
Collapse
Affiliation(s)
- Khai K Q Nguyen
- Department of Chemistry & Biochemistry, California State University Long Beach, Long Beach, CA 90840, USA.,Department of Computer Engineering & Computer Science, California State University Long Beach, Long Beach, CA 90840, USA
| | - Yessica K Gomez
- Department of Chemistry & Biochemistry, California State University Long Beach, Long Beach, CA 90840, USA.,Department of Physics & Astronomy, California State University Long Beach, Long Beach, CA 90840, USA
| | - Mona Bakhom
- Department of Chemistry & Biochemistry, California State University Long Beach, Long Beach, CA 90840, USA
| | - Amethyst Radcliffe
- Department of Physics & Astronomy, California State University Long Beach, Long Beach, CA 90840, USA
| | - Phuc La
- Department of Chemistry & Biochemistry, California State University Long Beach, Long Beach, CA 90840, USA
| | - Dakota Rochelle
- Department of Chemistry & Biochemistry, California State University Long Beach, Long Beach, CA 90840, USA
| | - Ji Won Lee
- Department of Chemistry & Biochemistry, California State University Long Beach, Long Beach, CA 90840, USA
| | - Eric J Sorin
- Department of Chemistry & Biochemistry, California State University Long Beach, Long Beach, CA 90840, USA
| |
Collapse
|
12
|
Zhong Z, Yang L, Zhang H, Shi J, Vandana JJ, Lam DTUH, Olsthoorn RCL, Lu L, Chen G. Mechanical unfolding kinetics of the SRV-1 gag-pro mRNA pseudoknot: possible implications for -1 ribosomal frameshifting stimulation. Sci Rep 2016; 6:39549. [PMID: 28000744 PMCID: PMC5175198 DOI: 10.1038/srep39549] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 11/24/2016] [Indexed: 12/19/2022] Open
Abstract
Minus-one ribosomal frameshifting is a translational recoding mechanism widely utilized by many RNA viruses to generate accurate ratios of structural and catalytic proteins. An RNA pseudoknot structure located in the overlapping region of the gag and pro genes of Simian Retrovirus type 1 (SRV-1) stimulates frameshifting. However, the experimental characterization of SRV-1 pseudoknot (un)folding dynamics and the effect of the base triple formation is lacking. Here, we report the results of our single-molecule nanomanipulation using optical tweezers and theoretical simulation by steered molecular dynamics. Our results directly reveal that the energetic coupling between loop 2 and stem 1 via minor-groove base triple formation enhances the mechanical stability. The terminal base pair in stem 1 (directly in contact with a translating ribosome at the slippery site) also affects the mechanical stability of the pseudoknot. The -1 frameshifting efficiency is positively correlated with the cooperative one-step unfolding force and inversely correlated with the one-step mechanical unfolding rate at zero force. A significantly improved correlation was observed between -1 frameshifting efficiency and unfolding rate at forces of 15-35 pN, consistent with the fact that the ribosome is a force-generating molecular motor with helicase activity. No correlation was observed between thermal stability and -1 frameshifting efficiency.
Collapse
Affiliation(s)
- Zhensheng Zhong
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| | - Lixia Yang
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| | - Haiping Zhang
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore
| | - Jiahao Shi
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| | - J. Jeya Vandana
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| | - Do Thuy Uyen Ha Lam
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
- St Andrew’s Junior College, 5 Sorby Adams Drive, 357691 Singapore
| | - René C. L. Olsthoorn
- Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Lanyuan Lu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore
| | - Gang Chen
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| |
Collapse
|
13
|
Hori N, Denesyuk NA, Thirumalai D. Salt Effects on the Thermodynamics of a Frameshifting RNA Pseudoknot under Tension. J Mol Biol 2016; 428:2847-59. [PMID: 27315694 DOI: 10.1016/j.jmb.2016.06.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 06/06/2016] [Accepted: 06/07/2016] [Indexed: 12/24/2022]
Abstract
Because of the potential link between -1 programmed ribosomal frameshifting and response of a pseudoknot (PK) RNA to force, a number of single-molecule pulling experiments have been performed on PKs to decipher the mechanism of programmed ribosomal frameshifting. Motivated in part by these experiments, we performed simulations using a coarse-grained model of RNA to describe the response of a PK over a range of mechanical forces (fs) and monovalent salt concentrations (Cs). The coarse-grained simulations quantitatively reproduce the multistep thermal melting observed in experiments, thus validating our model. The free energy changes obtained in simulations are in excellent agreement with experiments. By varying f and C, we calculated the phase diagram that shows a sequence of structural transitions, populating distinct intermediate states. As f and C are changed, the stem-loop tertiary interactions rupture first, followed by unfolding of the 3'-end hairpin (I⇌F). Finally, the 5'-end hairpin unravels, producing an extended state (E⇌I). A theoretical analysis of the phase boundaries shows that the critical force for rupture scales as (logCm)(α) with α=1(0.5) for E⇌I (I⇌F) transition. This relation is used to obtain the preferential ion-RNA interaction coefficient, which can be quantitatively measured in single-molecule experiments, as done previously for DNA hairpins. A by-product of our work is the suggestion that the frameshift efficiency is likely determined by the stability of the 5'-end hairpin that the ribosome first encounters during translation.
Collapse
Affiliation(s)
- Naoto Hori
- Biophysics Program, Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA
| | - Natalia A Denesyuk
- Biophysics Program, Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA
| | - D Thirumalai
- Biophysics Program, Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
14
|
-1 Programmed Ribosomal Frameshifting as a Force-Dependent Process. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 139:45-72. [PMID: 26970190 PMCID: PMC7102820 DOI: 10.1016/bs.pmbts.2015.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
-1 Programmed ribosomal frameshifting is a translational recoding event in which ribosomes slip backward along messenger RNA presumably due to increased tension disrupting the codon-anticodon interaction at the ribosome's coding site. Single-molecule physical methods and recent experiments characterizing the physical properties of mRNA's slippery sequence as well as the mechanical stability of downstream mRNA structure motifs that give rise to frameshifting are discussed. Progress in technology, experimental assays, and data analysis methods hold promise for accurate physical modeling and quantitative understanding of -1 programmed ribosomal frameshifting.
Collapse
|
15
|
Gupta A, Bansal M. The role of sequence in altering the unfolding pathway of an RNA pseudoknot: a steered molecular dynamics study. Phys Chem Chem Phys 2016; 18:28767-28780. [DOI: 10.1039/c6cp04617g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
This work highlights a sequence dependent unfolding pathway of an RNA pseudoknot under force-induced pulling conditions.
Collapse
Affiliation(s)
- Asmita Gupta
- Molecular Biophysics Unit
- Indian Institute of Science
- Bangalore-560012
- India
| | - Manju Bansal
- Molecular Biophysics Unit
- Indian Institute of Science
- Bangalore-560012
- India
| |
Collapse
|
16
|
Engel MC, Ritchie DB, Foster DAN, Beach KSD, Woodside MT. Reconstructing folding energy landscape profiles from nonequilibrium pulling curves with an inverse Weierstrass integral transform. PHYSICAL REVIEW LETTERS 2014; 113:238104. [PMID: 25526163 DOI: 10.1103/physrevlett.113.238104] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Indexed: 05/18/2023]
Abstract
The energy landscapes that drive structure formation in biopolymers are difficult to measure. Here we validate experimentally a novel method to reconstruct landscape profiles from single-molecule pulling curves using an inverse Weierstrass transform (IWT) of the Jarzysnki free-energy integral. The method was applied to unfolding measurements of a DNA hairpin, replicating the results found by the more-established weighted histogram (WHAM) and inverse Boltzmann methods. Applying both WHAM and IWT methods to reconstruct the folding landscape for a RNA pseudoknot having a stiff energy barrier, we found that landscape features with sharper curvature than the force probe stiffness could not be recovered with the IWT method. The IWT method is thus best for analyzing data from stiff force probes such as atomic force microscopes.
Collapse
Affiliation(s)
- Megan C Engel
- Department of Physics, University of Alberta, Edmonton, Alberta, T6G 2E1 Canada
| | - Dustin B Ritchie
- Department of Physics, University of Alberta, Edmonton, Alberta, T6G 2E1 Canada
| | - Daniel A N Foster
- Department of Physics, University of Alberta, Edmonton, Alberta, T6G 2E1 Canada
| | - Kevin S D Beach
- Department of Physics, University of Alberta, Edmonton, Alberta, T6G 2E1 Canada and Department of Physics and Astronomy, University of Mississippi, University, Mississippi 38677 USA
| | - Michael T Woodside
- Department of Physics, University of Alberta, Edmonton, Alberta, T6G 2E1 Canada and National Institute for Nanotechnology, National Research Council, Edmonton, Alberta, T6G 2M9 Canada
| |
Collapse
|
17
|
Single-molecule measurements of the CCR5 mRNA unfolding pathways. Biophys J 2014; 106:244-52. [PMID: 24411256 DOI: 10.1016/j.bpj.2013.09.036] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 08/13/2013] [Accepted: 09/04/2013] [Indexed: 01/07/2023] Open
Abstract
Secondary or tertiary structure in an mRNA, such as a pseudoknot, can create a physical barrier that requires the ribosome to generate additional force to translocate. The presence of such a barrier can dramatically increase the probability that the ribosome will shift into an alternate reading frame, in which a different set of codons is recognized. The detailed biophysical mechanism by which frameshifting is induced remains unknown. Here we employ optical trapping techniques to investigate the structure of a -1 programmed ribosomal frameshift (-1 PRF) sequence element located in the CCR5 mRNA, which encodes a coreceptor for HIV-1 and is, to our knowledge, the first known human -1 PRF signal of nonviral origin. We begin by presenting a set of computationally predicted structures that include pseudoknots. We then employ what we believe to be new analytical techniques for measuring the effective free energy landscapes of biomolecules. We find that the -1 PRF element manifests several distinct unfolding pathways when subject to end-to-end force, one of which is consistent with a proposed pseudoknot conformation, and another of which we have identified as a folding intermediate. The dynamic ensemble of conformations that CCR5 mRNA exhibits in the single-molecule experiments may be a significant feature of the frameshifting mechanism.
Collapse
|
18
|
Bailey BL, Visscher K, Watkins J. A stochastic model of translation with -1 programmed ribosomal frameshifting. Phys Biol 2014; 11:016009. [PMID: 24501223 DOI: 10.1088/1478-3975/11/1/016009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Many viruses produce multiple proteins from a single mRNA sequence by encoding overlapping genes. One mechanism to decode both genes, which reside in alternate reading frames, is -1 programmed ribosomal frameshifting. Although recognized for over 25 years, the molecular and physical mechanism of -1 frameshifting remains poorly understood. We have developed a mathematical model that treats mRNA translation and associated -1 frameshifting as a stochastic process in which the transition probabilities are based on the energetics of local molecular interactions. The model predicts both the location and efficiency of -1 frameshift events in HIV-1. Moreover, we compute -1 frameshift efficiencies upon mutations in the viral mRNA sequence and variations in relative tRNA abundances, predictions that are directly testable in experiment.
Collapse
Affiliation(s)
- Brenae L Bailey
- Program in Applied Mathematics, University of Arizona, Tucson, AZ 85721, USA
| | | | | |
Collapse
|
19
|
Wu YJ, Wu CH, Yeh AYC, Wen JD. Folding a stable RNA pseudoknot through rearrangement of two hairpin structures. Nucleic Acids Res 2014; 42:4505-15. [PMID: 24459133 PMCID: PMC3985624 DOI: 10.1093/nar/gkt1396] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Folding messenger RNA into specific structures is a common regulatory mechanism involved in translation. In Escherichia coli, the operator of the rpsO gene transcript folds into a pseudoknot or double-hairpin conformation. S15, the gene product, binds only to the pseudoknot, thereby repressing its own synthesis when it is present in excess in the cell. The two RNA conformations have been proposed to exist in equilibrium. However, it remained unclear how structural changes can be achieved between these two topologically distinct conformations. We used optical tweezers to study the structural dynamics and rearrangements of the rpsO operator RNA at the single-molecule level. We discovered that the two RNA structures can be interchanged spontaneously and the pseudoknot can exist in conformations that exhibit various levels of stability. Conversion from the double hairpin to a pseudoknot through potential hairpin–hairpin interactions favoured the high-stability conformation. By contrast, mutations that blocked the formation of a hairpin typically resulted in alternative low-stability pseudoknots. These results demonstrate that specific tertiary interactions of RNA can be established and modulated based on the interactions and rearrangements between secondary structural components. Our findings provide new insight into the RNA folding pathway that leads to a regulatory conformation for target protein binding.
Collapse
Affiliation(s)
- Yi-Ju Wu
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei 10617, Taiwan, Department of Life Science, National Taiwan University, Taipei 10617, Taiwan and Genome and Systems Biology Degree Program, National Taiwan University, Taipei 10617, Taiwan
| | | | | | | |
Collapse
|
20
|
Stephenson W, Keller S, Santiago R, Albrecht JE, Asare-Okai PN, Tenenbaum SA, Zuker M, Li PTX. Combining temperature and force to study folding of an RNA hairpin. Phys Chem Chem Phys 2014; 16:906-17. [DOI: 10.1039/c3cp52042k] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
21
|
Havrila M, Réblová K, Zirbel CL, Leontis NB, Šponer J. Isosteric and nonisosteric base pairs in RNA motifs: molecular dynamics and bioinformatics study of the sarcin-ricin internal loop. J Phys Chem B 2013; 117:14302-19. [PMID: 24144333 PMCID: PMC3946555 DOI: 10.1021/jp408530w] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The sarcin-ricin RNA motif (SR motif) is one of the most prominent recurrent RNA building blocks that occurs in many different RNA contexts and folds autonomously, that is, in a context-independent manner. In this study, we combined bioinformatics analysis with explicit-solvent molecular dynamics (MD) simulations to better understand the relation between the RNA sequence and the evolutionary patterns of the SR motif. A SHAPE probing experiment was also performed to confirm the fidelity of the MD simulations. We identified 57 instances of the SR motif in a nonredundant subset of the RNA X-ray structure database and analyzed their base pairing, base-phosphate, and backbone-backbone interactions. We extracted sequences aligned to these instances from large rRNA alignments to determine the frequency of occurrence for different sequence variants. We then used a simple scoring scheme based on isostericity to suggest 10 sequence variants with a highly variable expected degree of compatibility with the SR motif 3D structure. We carried out MD simulations of SR motifs with these base substitutions. Nonisosteric base substitutions led to unstable structures, but so did isosteric substitutions which were unable to make key base-phosphate interactions. The MD technique explains why some potentially isosteric SR motifs are not realized during evolution. We also found that the inability to form stable cWW geometry is an important factor in the case of the first base pair of the flexible region of the SR motif. A comparison of structural, bioinformatics, SHAPE probing, and MD simulation data reveals that explicit solvent MD simulations neatly reflect the viability of different sequence variants of the SR motif. Thus, MD simulations can efficiently complement bioinformatics tools in studies of conservation patterns of RNA motifs and provide atomistic insight into the role of their different signature interactions.
Collapse
Affiliation(s)
- Marek Havrila
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic
| | - Kamila Réblová
- CEITEC - Central European Institute of Technology, Masaryk University, Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic
| | - Craig L. Zirbel
- Department of Chemistry, Bowling Green State University, Bowling Green, OH 43403, USA
- Department of Mathematics and Statistics, Bowling Green State University, Bowling Green, OH 43403, USA
| | - Neocles B. Leontis
- Department of Chemistry, Bowling Green State University, Bowling Green, OH 43403, USA
- Department of Mathematics and Statistics, Bowling Green State University, Bowling Green, OH 43403, USA
| | - Jiří Šponer
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic
- CEITEC - Central European Institute of Technology, Masaryk University, Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
22
|
Yu CH, Teulade-Fichou MP, Olsthoorn RCL. Stimulation of ribosomal frameshifting by RNA G-quadruplex structures. Nucleic Acids Res 2013; 42:1887-92. [PMID: 24178029 PMCID: PMC3919603 DOI: 10.1093/nar/gkt1022] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Guanine-rich sequences can fold into four-stranded structures of stacked guanine-tetrads, so-called G-quadruplexes (G4). These unique motifs have been extensively studied on the DNA level; however, exploration of the biological roles of G4s at the RNA level is just emerging. Here we show that G4 RNA when introduced within coding regions are capable of stimulating -1 ribosomal frameshifting (-1 FS) in vitro and in cultured cells. Systematic manipulation of the loop length between each G-tract revealed that the -1 FS efficiency positively correlates with G4 stability. Addition of a G4-stabilizing ligand, PhenDC3, resulted in higher -1 FS. Further, we demonstrated that the G4s can stimulate +1 FS and stop codon readthrough as well. These results suggest a potentially novel translational gene regulation mechanism mediated by G4 RNA.
Collapse
Affiliation(s)
- Chien-Hung Yu
- Department of Molecular Genetics, Leiden Institute of Chemistry, Leiden University, PO Box 9502, Leiden, The Netherlands and Institut Curie, UMR 176-CNRS, Bât 110, Université Paris-Sud, 91405 Orsay, France
| | | | | |
Collapse
|
23
|
Programmed -1 frameshifting efficiency correlates with RNA pseudoknot conformational plasticity, not resistance to mechanical unfolding. Proc Natl Acad Sci U S A 2012; 109:16167-72. [PMID: 22988073 DOI: 10.1073/pnas.1204114109] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Programmed -1 frameshifting, whereby the reading frame of a ribosome on messenger RNA is shifted in order to generate an alternate gene product, is often triggered by a pseudoknot structure in the mRNA in combination with an upstream slippery sequence. The efficiency of frameshifting varies widely for different sites, but the factors that determine frameshifting efficiency are not yet fully understood. Previous work has suggested that frameshifting efficiency is related to the resistance of the pseudoknot against mechanical unfolding. We tested this hypothesis by studying the mechanical properties of a panel of pseudoknots with frameshifting efficiencies ranging from 2% to 30%: four pseudoknots from retroviruses, two from luteoviruses, one from a coronavirus, and a nonframeshifting bacteriophage pseudoknot. Using optical tweezers to apply tension across the RNA, we measured the distribution of forces required to unfold each pseudoknot. We found that neither the average unfolding force, nor the unfolding kinetics, nor the parameters describing the energy landscape for mechanical unfolding of the pseudoknot (energy barrier height and distance to the transition state) could be correlated to frameshifting efficiency. These results indicate that the resistance of pseudoknots to mechanical unfolding is not a primary determinant of frameshifting efficiency. However, increased frameshifting efficiency was correlated with an increased tendency to form alternate, incompletely folded structures, suggesting a more complex picture of the role of the pseudoknot involving the conformational dynamics.
Collapse
|
24
|
Lin Z, Gilbert RJC, Brierley I. Spacer-length dependence of programmed -1 or -2 ribosomal frameshifting on a U6A heptamer supports a role for messenger RNA (mRNA) tension in frameshifting. Nucleic Acids Res 2012; 40:8674-89. [PMID: 22743270 PMCID: PMC3458567 DOI: 10.1093/nar/gks629] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Programmed -1 ribosomal frameshifting is employed in the expression of a number of viral and cellular genes. In this process, the ribosome slips backwards by a single nucleotide and continues translation of an overlapping reading frame, generating a fusion protein. Frameshifting signals comprise a heptanucleotide slippery sequence, where the ribosome changes frame, and a stimulatory RNA structure, a stem-loop or RNA pseudoknot. Antisense oligonucleotides annealed appropriately 3' of a slippery sequence have also shown activity in frameshifting, at least in vitro. Here we examined frameshifting at the U6A slippery sequence of the HIV gag/pol signal and found high levels of both -1 and -2 frameshifting with stem-loop, pseudoknot or antisense oligonucleotide stimulators. By examining -1 and -2 frameshifting outcomes on mRNAs with varying slippery sequence-stimulatory RNA spacing distances, we found that -2 frameshifting was optimal at a spacer length 1-2 nucleotides shorter than that optimal for -1 frameshifting with all stimulatory RNAs tested. We propose that the shorter spacer increases the tension on the mRNA such that when the tRNA detaches, it more readily enters the -2 frame on the U6A heptamer. We propose that mRNA tension is central to frameshifting, whether promoted by stem-loop, pseudoknot or antisense oligonucleotide stimulator.
Collapse
Affiliation(s)
- Zhaoru Lin
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | | | | |
Collapse
|
25
|
Yoshizawa S. Micro and nanotechnological tools for study of RNA. Biochimie 2012; 94:1588-94. [PMID: 22484393 DOI: 10.1016/j.biochi.2012.03.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2012] [Accepted: 03/22/2012] [Indexed: 11/16/2022]
Abstract
Micro and nanotechnologies have originally contributed to engineering, especially in electronics. These technologies enable fabrication and assembly of materials at micrometer and nanometer scales and the manipulation of nano-objects. The power of these technologies has now been exploited in analyzes of biologically relevant molecules. In this review, the use of micro and nanotechnological tools in RNA research is described.
Collapse
Affiliation(s)
- Satoko Yoshizawa
- Centre de Génétique Moléculaire UPR 3404, CNRS, Université Paris-Sud, FRC3115 1 Ave de la Terrasse, 91190 Gif-sur-Yvette, France.
| |
Collapse
|
26
|
Ponmurugan M, Vemparala S. Transient-state fluctuationlike relation for the driving force on a biomolecule. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 84:060101. [PMID: 22304027 DOI: 10.1103/physreve.84.060101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Indexed: 05/31/2023]
Abstract
In experiments and simulations the force acting on a single biomolecular system has been observed as a fluctuating quantity if the system is driven under constant velocity. We ask the question that is analogous to transient state entropy production and work fluctuation relations whether the force fluctuations observed in the single biomolecular system satisfy a transient state fluctuationlike relation, and the answer is in the affirmative. Using a constant velocity pulling steered molecular dynamics simulation study for protein unfolding, we confirm that the force fluctuations of this single biomolecular system satisfy a transient-state fluctuationlike relation 1/γ(T,v) ln[P(v)(+f)/P(v)(-f)] = f. P(v)(±f) is the probability of positive and negative values of forces f = f · for a given unfolding velocity of magnitude v and the pulling direction n, nis the unit vector of n, and γ(T,v) is a factor that depends on initial equilibrium temperature T and the unfolding velocity. For different unfolding velocities we find that the system in the nonequilibrium pulling region displays substantial negative fluctuation in its unfolding force when velocity decreases. A negative value of force may indicate the emergence of refolding behavior during protein unfolding. We also find that γ(T,v) ~ T(-δ)v(α) and the system relaxation time τ(T,v) ~ T(δ)v(-(1+α), where α and δ are scaling exponents.
Collapse
Affiliation(s)
- M Ponmurugan
- The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai 600113, India.
| | | |
Collapse
|