1
|
Maity B, Taher M, Mazumdar S, Ueno T. Artificial metalloenzymes based on protein assembly. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
2
|
Zhu J, Avakyan N, Kakkis AA, Hoffnagle AM, Han K, Li Y, Zhang Z, Choi TS, Na Y, Yu CJ, Tezcan FA. Protein Assembly by Design. Chem Rev 2021; 121:13701-13796. [PMID: 34405992 PMCID: PMC9148388 DOI: 10.1021/acs.chemrev.1c00308] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Proteins are nature's primary building blocks for the construction of sophisticated molecular machines and dynamic materials, ranging from protein complexes such as photosystem II and nitrogenase that drive biogeochemical cycles to cytoskeletal assemblies and muscle fibers for motion. Such natural systems have inspired extensive efforts in the rational design of artificial protein assemblies in the last two decades. As molecular building blocks, proteins are highly complex, in terms of both their three-dimensional structures and chemical compositions. To enable control over the self-assembly of such complex molecules, scientists have devised many creative strategies by combining tools and principles of experimental and computational biophysics, supramolecular chemistry, inorganic chemistry, materials science, and polymer chemistry, among others. Owing to these innovative strategies, what started as a purely structure-building exercise two decades ago has, in short order, led to artificial protein assemblies with unprecedented structures and functions and protein-based materials with unusual properties. Our goal in this review is to give an overview of this exciting and highly interdisciplinary area of research, first outlining the design strategies and tools that have been devised for controlling protein self-assembly, then describing the diverse structures of artificial protein assemblies, and finally highlighting the emergent properties and functions of these assemblies.
Collapse
Affiliation(s)
| | | | - Albert A. Kakkis
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Alexander M. Hoffnagle
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Kenneth Han
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Yiying Li
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Zhiyin Zhang
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Tae Su Choi
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Youjeong Na
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Chung-Jui Yu
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - F. Akif Tezcan
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| |
Collapse
|
3
|
Ferruz N, Noske J, Höcker B. Protlego: A Python package for the analysis and design of chimeric proteins. Bioinformatics 2021; 37:3182-3189. [PMID: 33901273 PMCID: PMC8504633 DOI: 10.1093/bioinformatics/btab253] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 03/05/2021] [Accepted: 04/19/2021] [Indexed: 01/03/2023] Open
Abstract
Motivation Duplication and recombination of protein fragments have led to the highly diverse protein space that we observe today. By mimicking this natural process, the design of protein chimeras via fragment recombination has proven experimentally successful and has opened a new era for the design of customizable proteins. The in silico building of structural models for these chimeric proteins, however, remains a manual task that requires a considerable degree of expertise and is not amenable for high-throughput studies. Energetic and structural analysis of the designed proteins often require the use of several tools, each with their unique technical difficulties and available in different programming languages or web servers. Results We implemented a Python package that enables automated, high-throughput design of chimeras and their structural analysis. First, it fetches evolutionarily conserved fragments from a built-in database (also available at fuzzle.uni-bayreuth.de). These relationships can then be represented via networks or further selected for chimera construction via recombination. Designed chimeras or natural proteins are then scored and minimized with the Charmm and Amber forcefields and their diverse structural features can be analyzed at ease. Here, we showcase Protlego’s pipeline by exploring the relationships between the P-loop and Rossmann superfolds, building and characterizing their offspring chimeras. We believe that Protlego provides a powerful new tool for the protein design community. Availability and implementation Protlego runs on the Linux platform and is freely available at (https://hoecker-lab.github.io/protlego/) with tutorials and documentation. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Noelia Ferruz
- Department of Biochemistry, University of Bayreuth, Bayreuth, Germany
| | - Jakob Noske
- Department of Biochemistry, University of Bayreuth, Bayreuth, Germany
| | - Birte Höcker
- Department of Biochemistry, University of Bayreuth, Bayreuth, Germany
| |
Collapse
|
4
|
Bozhanova NG, Gavrikov AS, Mishin AS, Meiler J. DiB-splits: nature-guided design of a novel fluorescent labeling split system. Sci Rep 2020; 10:11049. [PMID: 32632329 PMCID: PMC7338535 DOI: 10.1038/s41598-020-67095-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 05/27/2020] [Indexed: 11/18/2022] Open
Abstract
Fluorogen-activating proteins (FAPs) are innovative fluorescent probes combining advantages of genetically-encoded proteins such as green fluorescent protein and externally added fluorogens that allow for highly tunable and on demand fluorescent signaling. Previously, a panel of green- and red-emitting FAPs has been created from bacterial lipocalin Blc (named DiBs). Here we present a rational design as well as functional and structural characterization of the first self-assembling FAP split system, DiB-splits. This new system decreases the size of the FAP label to ~8-12 kDa while preserving DiBs' unique properties: strong increase in fluorescence intensity of the chromophore upon binding, binding affinities to the chromophore in nanomolar to low micromolar range, and high photostability of the protein-ligand complex. These properties allow for use of DiB-splits for wide-field, confocal, and super-resolution fluorescence microscopy. DiB-splits also represent an attractive starting point for further design of a protein-protein interaction detection system as well as novel FAP-based sensors.
Collapse
Affiliation(s)
- Nina G Bozhanova
- Department of Chemistry, Center for Structural Biology, Vanderbilt University, Nashville, TN, 37235, USA
| | - Alexey S Gavrikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Alexander S Mishin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Jens Meiler
- Department of Chemistry, Center for Structural Biology, Vanderbilt University, Nashville, TN, 37235, USA.
- Institute for Drug Discovery, Leipzig University, Leipzig, SAC 04103, Germany.
| |
Collapse
|
5
|
Ferruz N, Lobos F, Lemm D, Toledo-Patino S, Farías-Rico JA, Schmidt S, Höcker B. Identification and Analysis of Natural Building Blocks for Evolution-Guided Fragment-Based Protein Design. J Mol Biol 2020; 432:3898-3914. [PMID: 32330481 PMCID: PMC7322520 DOI: 10.1016/j.jmb.2020.04.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 04/12/2020] [Accepted: 04/13/2020] [Indexed: 12/15/2022]
Abstract
Natural evolution has generated an impressively diverse protein universe via duplication and recombination from a set of protein fragments that served as building blocks. The application of these concepts to the design of new proteins using subdomain-sized fragments from different folds has proven to be experimentally successful. To better understand how evolution has shaped our protein universe, we performed an all-against-all comparison of protein domains representing all naturally existing folds and identified conserved homologous protein fragments. Overall, we found more than 1000 protein fragments of various lengths among different folds through similarity network analysis. These fragments are present in very different protein environments and represent versatile building blocks for protein design. These data are available in our web server called F(old P)uzzle (fuzzle.uni-bayreuth.de), which allows to individually filter the dataset and create customized networks for folds of interest. We believe that our results serve as an invaluable resource for structural and evolutionary biologists and as raw material for the design of custom-made proteins.
Collapse
Affiliation(s)
- Noelia Ferruz
- Department of Biochemistry, University of Bayreuth, Bayreuth, Germany
| | - Francisco Lobos
- Department of Biochemistry, University of Bayreuth, Bayreuth, Germany; Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Dominik Lemm
- Department of Biochemistry, University of Bayreuth, Bayreuth, Germany
| | - Saacnicteh Toledo-Patino
- Department of Biochemistry, University of Bayreuth, Bayreuth, Germany; Max Planck Institute for Developmental Biology, Tübingen, Germany
| | | | - Steffen Schmidt
- Max Planck Institute for Developmental Biology, Tübingen, Germany; Computational Biochemistry, University of Bayreuth, Bayreuth, Germany.
| | - Birte Höcker
- Department of Biochemistry, University of Bayreuth, Bayreuth, Germany; Max Planck Institute for Developmental Biology, Tübingen, Germany.
| |
Collapse
|
6
|
Duran AM, Meiler J. Computational design of membrane proteins using RosettaMembrane. Protein Sci 2018; 27:341-355. [PMID: 29090504 PMCID: PMC5734395 DOI: 10.1002/pro.3335] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 10/27/2017] [Accepted: 10/30/2017] [Indexed: 11/11/2022]
Abstract
Computational membrane protein design is challenging due to the small number of high-resolution structures available to elucidate the physical basis of membrane protein structure, multiple functionally important conformational states, and a limited number of high-throughput biophysical assays to monitor function. However, structural determination of membrane proteins has made tremendous progress in the past years. Concurrently the field of soluble computational design has made impressive inroads. These developments allow us to tackle the formidable challenge of designing functional membrane proteins. Herein, Rosetta is benchmarked for membrane protein design. We evaluate strategies to cope with the often reduced quality of experimental membrane protein structures. Further, we test the usage of symmetry in design protocols, which is particularly important as many membrane proteins exist as homo-oligomers. We compare a soluble scoring function with a scoring function optimized for membrane proteins, RosettaMembrane. Both scoring functions recovered around half of the native sequence when completely redesigning membrane proteins. However, RosettaMembrane recovered the most native-like amino acid property composition. While leucine was overrepresented in the inner and outer-hydrophobic regions of RosettaMembrane designs, it resulted in a native-like surface hydrophobicity indicating that it is currently the best option for designing membrane proteins with Rosetta.
Collapse
Affiliation(s)
- Amanda M. Duran
- Department of ChemistryVanderbilt UniversityNashvilleTennessee37235
- Center for Structural BiologyVanderbilt UniversityNashvilleTennessee37240
| | - Jens Meiler
- Department of ChemistryVanderbilt UniversityNashvilleTennessee37235
- Center for Structural BiologyVanderbilt UniversityNashvilleTennessee37240
| |
Collapse
|
7
|
Madsen J, Sinitskiy AV, Li J, Voth GA. Highly Coarse-Grained Representations of Transmembrane Proteins. J Chem Theory Comput 2017; 13:935-944. [PMID: 28043122 PMCID: PMC5312841 DOI: 10.1021/acs.jctc.6b01076] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Indexed: 01/04/2023]
Abstract
Numerous biomolecules and biomolecular complexes, including transmembrane proteins (TMPs), are symmetric or at least have approximate symmetries. Highly coarse-grained models of such biomolecules, aiming at capturing the essential structural and dynamical properties on resolution levels coarser than the residue scale, must preserve the underlying symmetry. However, making these models obey the correct physics is in general not straightforward, especially at the highly coarse-grained resolution where multiple (∼3-30 in the current study) amino acid residues are represented by a single coarse-grained site. In this paper, we propose a simple and fast method of coarse-graining TMPs obeying this condition. The procedure involves partitioning transmembrane domains into contiguous segments of equal length along the primary sequence. For the coarsest (lowest-resolution) mappings, it turns out to be most important to satisfy the symmetry in a coarse-grained model. As the resolution is increased to capture more detail, however, it becomes gradually more important to match modular repeats in the secondary structure (such as helix-loop repeats) instead. A set of eight TMPs of various complexity, functionality, structural topology, and internal symmetry, representing different classes of TMPs (ion channels, transporters, receptors, adhesion, and invasion proteins), has been examined. The present approach can be generalized to other systems possessing exact or approximate symmetry, allowing for reliable and fast creation of multiscale, highly coarse-grained mappings of large biomolecular assemblies.
Collapse
Affiliation(s)
| | | | | | - Gregory A. Voth
- Department of Chemistry,
Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
8
|
Recurring sequence-structure motifs in (βα) 8-barrel proteins and experimental optimization of a chimeric protein designed based on such motifs. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1865:165-175. [PMID: 27836620 DOI: 10.1016/j.bbapap.2016.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 11/04/2016] [Accepted: 11/06/2016] [Indexed: 11/22/2022]
Abstract
An interesting way of generating novel artificial proteins is to combine sequence motifs from natural proteins, mimicking the evolutionary path suggested by natural proteins comprising recurring motifs. We analyzed the βα and αβ modules of TIM barrel proteins by structure alignment-based sequence clustering. A number of preferred motifs were identified. A chimeric TIM was designed by using recurring elements as mutually compatible interfaces. The foldability of the designed TIM protein was then significantly improved by six rounds of directed evolution. The melting temperature has been improved by more than 20°C. A variety of characteristics suggested that the resulting protein is well-folded. Our analysis provided a library of peptide motifs that is potentially useful for different protein engineering studies. The protein engineering strategy of using recurring motifs as interfaces to connect partial natural proteins may be applied to other protein folds.
Collapse
|
9
|
Using natural sequences and modularity to design common and novel protein topologies. Curr Opin Struct Biol 2016; 38:26-36. [PMID: 27270240 DOI: 10.1016/j.sbi.2016.05.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 05/13/2016] [Accepted: 05/18/2016] [Indexed: 02/07/2023]
Abstract
Protein design is still a challenging undertaking, often requiring multiple attempts or iterations for success. Typically, the source of failure is unclear, and scoring metrics appear similar between successful and failed cases. Nevertheless, the use of sequence statistics, modularity and symmetry from natural proteins, combined with computational design both at the coarse-grained and atomistic levels is propelling a new wave of design efforts to success. Here we highlight recent examples of design, showing how the wealth of natural protein sequence and topology data may be leveraged to reduce the search space and increase the likelihood of achieving desired outcomes.
Collapse
|
10
|
Figueroa M, Sleutel M, Vandevenne M, Parvizi G, Attout S, Jacquin O, Vandenameele J, Fischer AW, Damblon C, Goormaghtigh E, Valerio-Lepiniec M, Urvoas A, Durand D, Pardon E, Steyaert J, Minard P, Maes D, Meiler J, Matagne A, Martial JA, Van de Weerdt C. The unexpected structure of the designed protein Octarellin V.1 forms a challenge for protein structure prediction tools. J Struct Biol 2016; 195:19-30. [PMID: 27181418 DOI: 10.1016/j.jsb.2016.05.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 04/19/2016] [Accepted: 05/12/2016] [Indexed: 12/26/2022]
Abstract
Despite impressive successes in protein design, designing a well-folded protein of more 100 amino acids de novo remains a formidable challenge. Exploiting the promising biophysical features of the artificial protein Octarellin V, we improved this protein by directed evolution, thus creating a more stable and soluble protein: Octarellin V.1. Next, we obtained crystals of Octarellin V.1 in complex with crystallization chaperons and determined the tertiary structure. The experimental structure of Octarellin V.1 differs from its in silico design: the (αβα) sandwich architecture bears some resemblance to a Rossman-like fold instead of the intended TIM-barrel fold. This surprising result gave us a unique and attractive opportunity to test the state of the art in protein structure prediction, using this artificial protein free of any natural selection. We tested 13 automated webservers for protein structure prediction and found none of them to predict the actual structure. More than 50% of them predicted a TIM-barrel fold, i.e. the structure we set out to design more than 10years ago. In addition, local software runs that are human operated can sample a structure similar to the experimental one but fail in selecting it, suggesting that the scoring and ranking functions should be improved. We propose that artificial proteins could be used as tools to test the accuracy of protein structure prediction algorithms, because their lack of evolutionary pressure and unique sequences features.
Collapse
Affiliation(s)
- Maximiliano Figueroa
- GIGA-Research, Molecular Biomimetics and Protein Engineering, University of Liège, Liège, Belgium.
| | - Mike Sleutel
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Marylene Vandevenne
- GIGA-Research, Molecular Biomimetics and Protein Engineering, University of Liège, Liège, Belgium
| | - Gregory Parvizi
- GIGA-Research, Molecular Biomimetics and Protein Engineering, University of Liège, Liège, Belgium
| | - Sophie Attout
- GIGA-Research, Molecular Biomimetics and Protein Engineering, University of Liège, Liège, Belgium
| | - Olivier Jacquin
- GIGA-Research, Molecular Biomimetics and Protein Engineering, University of Liège, Liège, Belgium
| | - Julie Vandenameele
- Laboratoire d'Enzymologie et Repliement des Protéines, Centre for Protein Engineering, University of Liège, Liège, Belgium
| | - Axel W Fischer
- Department of Chemistry, Center for Structural Biology, Vanderbilt University, Nashville, TN, United States
| | | | - Erik Goormaghtigh
- Laboratory for the Structure and Function of Biological Membranes, Center for Structural Biology and Bioinformatics, Université Libre de Bruxelles, Brussels, Belgium
| | - Marie Valerio-Lepiniec
- Institute for Integrative Biology of the Cell (I2BC), UMT 9198, CEA, CNRS, Université Paris-Sud, Orsay, France
| | - Agathe Urvoas
- Institute for Integrative Biology of the Cell (I2BC), UMT 9198, CEA, CNRS, Université Paris-Sud, Orsay, France
| | - Dominique Durand
- Institute for Integrative Biology of the Cell (I2BC), UMT 9198, CEA, CNRS, Université Paris-Sud, Orsay, France
| | - Els Pardon
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium; Structural Biology Research Center, VIB, Pleinlaan 2, 1050 Brussels, Belgium
| | - Jan Steyaert
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium; Structural Biology Research Center, VIB, Pleinlaan 2, 1050 Brussels, Belgium
| | - Philippe Minard
- Institute for Integrative Biology of the Cell (I2BC), UMT 9198, CEA, CNRS, Université Paris-Sud, Orsay, France
| | - Dominique Maes
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Jens Meiler
- Department of Chemistry, Center for Structural Biology, Vanderbilt University, Nashville, TN, United States
| | - André Matagne
- Laboratoire d'Enzymologie et Repliement des Protéines, Centre for Protein Engineering, University of Liège, Liège, Belgium
| | - Joseph A Martial
- GIGA-Research, Molecular Biomimetics and Protein Engineering, University of Liège, Liège, Belgium
| | - Cécile Van de Weerdt
- GIGA-Research, Molecular Biomimetics and Protein Engineering, University of Liège, Liège, Belgium.
| |
Collapse
|
11
|
Huang PS, Feldmeier K, Parmeggiani F, Velasco DAF, Höcker B, Baker D. De novo design of a four-fold symmetric TIM-barrel protein with atomic-level accuracy. Nat Chem Biol 2015; 12:29-34. [PMID: 26595462 PMCID: PMC4684731 DOI: 10.1038/nchembio.1966] [Citation(s) in RCA: 179] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 10/07/2015] [Indexed: 12/26/2022]
Abstract
Despite efforts for over 25 years, de novo protein design has not succeeded in achieving the TIM-barrel fold. Here we describe the computational design of four-fold symmetrical (β/α)8 barrels guided by geometrical and chemical principles. Experimental characterization of 33 designs revealed the importance of side chain-backbone hydrogen bonds for defining the strand register between repeat units. The X-ray crystal structure of a designed thermostable 184-residue protein is nearly identical to that of the designed TIM-barrel model. PSI-BLAST searches do not identify sequence similarities to known TIM-barrel proteins, and sensitive profile-profile searches indicate that the design sequence is distant from other naturally occurring TIM-barrel superfamilies, suggesting that Nature has sampled only a subset of the sequence space available to the TIM-barrel fold. The ability to design TIM barrels de novo opens new possibilities for custom-made enzymes.
Collapse
Affiliation(s)
- Po-Ssu Huang
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA.,Institute for Protein Design, University of Washington, Seattle, Washington 98195, USA
| | - Kaspar Feldmeier
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Fabio Parmeggiani
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA.,Institute for Protein Design, University of Washington, Seattle, Washington 98195, USA
| | | | - Birte Höcker
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA.,Institute for Protein Design, University of Washington, Seattle, Washington 98195, USA.,Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
12
|
Designed protein reveals structural determinants of extreme kinetic stability. Proc Natl Acad Sci U S A 2015; 112:14605-10. [PMID: 26554002 DOI: 10.1073/pnas.1510748112] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The design of stable, functional proteins is difficult. Improved design requires a deeper knowledge of the molecular basis for design outcomes and properties. We previously used a bioinformatics and energy function method to design a symmetric superfold protein composed of repeating structural elements with multivalent carbohydrate-binding function, called ThreeFoil. This and similar methods have produced a notably high yield of stable proteins. Using a battery of experimental and computational analyses we show that despite its small size and lack of disulfide bonds, ThreeFoil has remarkably high kinetic stability and its folding is specifically chaperoned by carbohydrate binding. It is also extremely stable against thermal and chemical denaturation and proteolytic degradation. We demonstrate that the kinetic stability can be predicted and modeled using absolute contact order (ACO) and long-range order (LRO), as well as coarse-grained simulations; the stability arises from a topology that includes many long-range contacts which create a large and highly cooperative energy barrier for unfolding and folding. Extensive data from proteomic screens and other experiments reveal that a high ACO/LRO is a general feature of proteins with strong resistances to denaturation and degradation. These results provide tractable approaches for predicting resistance and designing proteins with sufficient topological complexity and long-range interactions to accommodate destabilizing functional features as well as withstand chemical and proteolytic challenge.
Collapse
|
13
|
Nagarajan D, Deka G, Rao M. Design of symmetric TIM barrel proteins from first principles. BMC BIOCHEMISTRY 2015; 16:18. [PMID: 26264284 PMCID: PMC4531894 DOI: 10.1186/s12858-015-0047-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 07/21/2015] [Indexed: 12/03/2022]
Abstract
Background Computational protein design is a rapidly maturing field within structural biology, with the goal of designing proteins with custom structures and functions. Such proteins could find widespread medical and industrial applications. Here, we have adapted algorithms from the Rosetta software suite to design much larger proteins, based on ideal geometric and topological criteria. Furthermore, we have developed techniques to incorporate symmetry into designed structures. For our first design attempt, we targeted the (α/β)8 TIM barrel scaffold. We gained novel insights into TIM barrel folding mechanisms from studying natural TIM barrel structures, and from analyzing previous TIM barrel design attempts. Methods Computational protein design and analysis was performed using the Rosetta software suite and custom scripts. Genes encoding all designed proteins were synthesized and cloned on the pET20-b vector. Standard circular dichroism and gel chromatographic experiments were performed to determine protein biophysical characteristics. 1D NMR and 2D HSQC experiments were performed to determine protein structural characteristics. Results Extensive protein design simulations coupled with ab initio modeling yielded several all-atom models of ideal, 4-fold symmetric TIM barrels. Four such models were experimentally characterized. The best designed structure (Symmetrin-1) contained a polar, histidine-rich pore, forming an extensive hydrogen bonding network. Symmetrin-1 was easily expressed and readily soluble. It showed circular dichroism spectra characteristic of well-folded alpha/beta proteins. Temperature melting experiments revealed cooperative and reversible unfolding, with a Tm of 44 °C and a Gibbs free energy of unfolding (ΔG°) of 8.0 kJ/mol. Urea denaturing experiments confirmed these observations, revealing a Cm of 1.6 M and a ΔG° of 8.3 kJ/mol. Symmetrin-1 adopted a monomeric conformation, with an apparent molecular weight of 32.12 kDa, and displayed well resolved 1D-NMR spectra. However, the HSQC spectrum revealed somewhat molten characteristics. Conclusions Despite the detection of molten characteristics, the creation of a soluble, cooperatively folding protein represents an advancement over previous attempts at TIM barrel design. Strategies to further improve Symmetrin-1 are elaborated. Our techniques may be used to create other large, internally symmetric proteins. Electronic supplementary material The online version of this article (doi:10.1186/s12858-015-0047-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Deepesh Nagarajan
- Biochemistry Department, Indian Institute of Science, Bangalore, India.
| | - Geeta Deka
- Molecular Biology Unit, Indian Institute of Science, Bangalore, India.
| | - Megha Rao
- Biochemistry Department, Indian Institute of Science, Bangalore, India.
| |
Collapse
|
14
|
Voet ARD, Noguchi H, Addy C, Simoncini D, Terada D, Unzai S, Park SY, Zhang KYJ, Tame JRH. Computational design of a self-assembling symmetrical β-propeller protein. Proc Natl Acad Sci U S A 2014; 111:15102-7. [PMID: 25288768 PMCID: PMC4210308 DOI: 10.1073/pnas.1412768111] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The modular structure of many protein families, such as β-propeller proteins, strongly implies that duplication played an important role in their evolution, leading to highly symmetrical intermediate forms. Previous attempts to create perfectly symmetrical propeller proteins have failed, however. We have therefore developed a new and rapid computational approach to design such proteins. As a test case, we have created a sixfold symmetrical β-propeller protein and experimentally validated the structure using X-ray crystallography. Each blade consists of 42 residues. Proteins carrying 2-10 identical blades were also expressed and purified. Two or three tandem blades assemble to recreate the highly stable sixfold symmetrical architecture, consistent with the duplication and fusion theory. The other proteins produce different monodisperse complexes, up to 42 blades (180 kDa) in size, which self-assemble according to simple symmetry rules. Our procedure is suitable for creating nano-building blocks from different protein templates of desired symmetry.
Collapse
Affiliation(s)
- Arnout R D Voet
- Structural Bioinformatics Team, Division of Structural and Synthetic Biology, Center for Life Science Technologies, RIKEN, 1-7-22 Suehiro, Yokohama, Kanagawa 230-0045, Japan; and Drug Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro, Yokohama, Kanagawa 230-0045, Japan
| | - Hiroki Noguchi
- Drug Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro, Yokohama, Kanagawa 230-0045, Japan
| | - Christine Addy
- Drug Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro, Yokohama, Kanagawa 230-0045, Japan
| | - David Simoncini
- Structural Bioinformatics Team, Division of Structural and Synthetic Biology, Center for Life Science Technologies, RIKEN, 1-7-22 Suehiro, Yokohama, Kanagawa 230-0045, Japan; and
| | - Daiki Terada
- Drug Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro, Yokohama, Kanagawa 230-0045, Japan
| | - Satoru Unzai
- Drug Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro, Yokohama, Kanagawa 230-0045, Japan
| | - Sam-Yong Park
- Drug Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro, Yokohama, Kanagawa 230-0045, Japan
| | - Kam Y J Zhang
- Structural Bioinformatics Team, Division of Structural and Synthetic Biology, Center for Life Science Technologies, RIKEN, 1-7-22 Suehiro, Yokohama, Kanagawa 230-0045, Japan; and
| | - Jeremy R H Tame
- Drug Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
15
|
Longo LM, Kumru OS, Middaugh CR, Blaber M. Evolution and design of protein structure by folding nucleus symmetric expansion. Structure 2014; 22:1377-84. [PMID: 25242458 DOI: 10.1016/j.str.2014.08.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 08/02/2014] [Accepted: 08/08/2014] [Indexed: 11/30/2022]
Abstract
Models of symmetric protein evolution typically invoke gene duplication and fusion events, in which repetition of a structural motif generates foldable, stable symmetric protein architecture. Success of such evolutionary processes suggests that the duplicated structural motif must be capable of nucleating protein folding. If correct, symmetric expansion of a folding nucleus sequence derived from an extant symmetric fold may be an elegant and computationally tractable solution to de novo protein design. We report the efficient de novo design of a β-trefoil protein by symmetric expansion of a β-trefoil folding nucleus, previously identified by ɸ-value analysis. The resulting protein, having exact sequence symmetry, exhibits superior folding properties compared to its naturally evolved progenitor-with the potential for redundant folding nuclei. In principle, folding nucleus symmetric expansion can be applied to any given symmetric protein fold (that is, nearly one-third of the known proteome) provided information of the folding nucleus is available.
Collapse
Affiliation(s)
- Liam M Longo
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306-4300, USA
| | - Ozan S Kumru
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047, USA
| | - C Russell Middaugh
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047, USA
| | - Michael Blaber
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306-4300, USA.
| |
Collapse
|
16
|
Höcker B. Design of proteins from smaller fragments-learning from evolution. Curr Opin Struct Biol 2014; 27:56-62. [PMID: 24865156 DOI: 10.1016/j.sbi.2014.04.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 04/29/2014] [Accepted: 04/29/2014] [Indexed: 10/25/2022]
Abstract
Nature has generated an impressive set of proteins with diverse folds and functions. It has been able to do so using mechanisms such as duplication and fusion as well as recombination of smaller protein fragments that serve as building blocks. These evolutionary mechanisms provide a template for the rational design of new proteins from fragments of existing proteins. Design by duplication and fusion has been explored for a number of symmetric protein folds, while design by rational recombination has just emerged. First experiments in recombining fragments from the same and different folds are proving successful in building new proteins that harbor easily evolvable properties originating from the parents. Overall, duplication and recombination of smaller fragments shows much potential for future applications in the design of proteins.
Collapse
Affiliation(s)
- Birte Höcker
- Max Planck Institute for Developmental Biology, Spemannstr. 35, 72076 Tübingen, Germany.
| |
Collapse
|
17
|
Engineering chimaeric proteins from fold fragments: 'hopeful monsters' in protein design. Biochem Soc Trans 2014; 41:1137-40. [PMID: 24059498 DOI: 10.1042/bst20130099] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Modern highly complex proteins evolved from much simpler and less specialized subunits. The same concept can be applied in protein engineering to construct new well-folded proteins. Hybrid proteins or chimaeras can be built from contemporary protein fragments through illegitimate recombination. Even parts from different globular folds can be fitted together using rational design methodologies. Furthermore, intrinsic functional properties encoded in the fold fragments allow rapid adaptation of the new proteins and thus provide interesting starting scaffolds for further redesign.
Collapse
|
18
|
Myers-Turnbull D, Bliven SE, Rose PW, Aziz ZK, Youkharibache P, Bourne PE, Prlić A. Systematic detection of internal symmetry in proteins using CE-Symm. J Mol Biol 2014; 426:2255-68. [PMID: 24681267 DOI: 10.1016/j.jmb.2014.03.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 03/17/2014] [Accepted: 03/18/2014] [Indexed: 11/26/2022]
Abstract
Symmetry is an important feature of protein tertiary and quaternary structures that has been associated with protein folding, function, evolution, and stability. Its emergence and ensuing prevalence has been attributed to gene duplications, fusion events, and subsequent evolutionary drift in sequence. This process maintains structural similarity and is further supported by this study. To further investigate the question of how internal symmetry evolved, how symmetry and function are related, and the overall frequency of internal symmetry, we developed an algorithm, CE-Symm, to detect pseudo-symmetry within the tertiary structure of protein chains. Using a large manually curated benchmark of 1007 protein domains, we show that CE-Symm performs significantly better than previous approaches. We use CE-Symm to build a census of symmetry among domain superfamilies in SCOP and note that 18% of all superfamilies are pseudo-symmetric. Our results indicate that more domains are pseudo-symmetric than previously estimated. We establish a number of recurring types of symmetry-function relationships and describe several characteristic cases in detail. With the use of the Enzyme Commission classification, symmetry was found to be enriched in some enzyme classes but depleted in others. CE-Symm thus provides a methodology for a more complete and detailed study of the role of symmetry in tertiary protein structure [availability: CE-Symm can be run from the Web at http://source.rcsb.org/jfatcatserver/symmetry.jsp. Source code and software binaries are also available under the GNU Lesser General Public License (version 2.1) at https://github.com/rcsb/symmetry. An interactive census of domains identified as symmetric by CE-Symm is available from http://source.rcsb.org/jfatcatserver/scopResults.jsp].
Collapse
Affiliation(s)
- Douglas Myers-Turnbull
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Spencer E Bliven
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Peter W Rose
- San Diego Supercomputer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Zaid K Aziz
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| | | | - Philip E Bourne
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA.
| | - Andreas Prlić
- San Diego Supercomputer Center, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
19
|
Longo LM, Blaber M. Symmetric protein architecture in protein design: top-down symmetric deconstruction. Methods Mol Biol 2014; 1216:161-182. [PMID: 25213415 DOI: 10.1007/978-1-4939-1486-9_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Top-down symmetric deconstruction (TDSD) is a joint experimental and computational approach to generate a highly stable, functionally benign protein scaffold for intended application in subsequent functional design studies. By focusing on symmetric protein folds, TDSD can leverage the dramatic reduction in sequence space achieved by applying a primary structure symmetric constraint to the design process. Fundamentally, TDSD is an iterative symmetrization process, in which the goal is to maintain or improve properties of thermodynamic stability and folding cooperativity inherent to a starting sequence (the "proxy"). As such, TDSD does not attempt to solve the inverse protein folding problem directly, which is computationally intractable. The present chapter will take the reader through all of the primary steps of TDSD-selecting a proxy, identifying potential mutations, establishing a stability/folding cooperativity screen-relying heavily on a successful TDSD solution for the common β-trefoil fold.
Collapse
Affiliation(s)
- Liam M Longo
- Department of Biomedical Sciences, College of Medicine, Florida State University, 1115 West Call Street, Tallahassee, FL, 32306-4300, USA
| | | |
Collapse
|
20
|
Longo L, Lee J, Tenorio C, Blaber M. Alternative Folding Nuclei Definitions Facilitate the Evolution of a Symmetric Protein Fold from a Smaller Peptide Motif. Structure 2013; 21:2042-50. [DOI: 10.1016/j.str.2013.09.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 09/09/2013] [Accepted: 09/11/2013] [Indexed: 11/25/2022]
|
21
|
Simonson T, Gaillard T, Mignon D, Schmidt am Busch M, Lopes A, Amara N, Polydorides S, Sedano A, Druart K, Archontis G. Computational protein design: the Proteus software and selected applications. J Comput Chem 2013; 34:2472-84. [PMID: 24037756 DOI: 10.1002/jcc.23418] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 07/08/2013] [Accepted: 07/28/2013] [Indexed: 12/13/2022]
Abstract
We describe an automated procedure for protein design, implemented in a flexible software package, called Proteus. System setup and calculation of an energy matrix are done with the XPLOR modeling program and its sophisticated command language, supporting several force fields and solvent models. A second program provides algorithms to search sequence space. It allows a decomposition of the system into groups, which can be combined in different ways in the energy function, for both positive and negative design. The whole procedure can be controlled by editing 2-4 scripts. Two applications consider the tyrosyl-tRNA synthetase enzyme and its successful redesign to bind both O-methyl-tyrosine and D-tyrosine. For the latter, we present Monte Carlo simulations where the D-tyrosine concentration is gradually increased, displacing L-tyrosine from the binding pocket and yielding the binding free energy difference, in good agreement with experiment. Complete redesign of the Crk SH3 domain is presented. The top 10000 sequences are all assigned to the correct fold by the SUPERFAMILY library of Hidden Markov Models. Finally, we report the acid/base behavior of the SNase protein. Sidechain protonation is treated as a form of mutation; it is then straightforward to perform constant-pH Monte Carlo simulations, which yield good agreement with experiment. Overall, the software can be used for a wide range of application, producing not only native-like sequences but also thermodynamic properties with errors that appear comparable to other current software packages.
Collapse
Affiliation(s)
- Thomas Simonson
- Laboratoire de Biochimie (CNRS UMR7654), Department of Biology, Ecole Polytechnique, Palaiseau, 91128, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Combs SA, Deluca SL, Deluca SH, Lemmon GH, Nannemann DP, Nguyen ED, Willis JR, Sheehan JH, Meiler J. Small-molecule ligand docking into comparative models with Rosetta. Nat Protoc 2013; 8:1277-98. [PMID: 23744289 DOI: 10.1038/nprot.2013.074] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Structure-based drug design is frequently used to accelerate the development of small-molecule therapeutics. Although substantial progress has been made in X-ray crystallography and nuclear magnetic resonance (NMR) spectroscopy, the availability of high-resolution structures is limited owing to the frequent inability to crystallize or obtain sufficient NMR restraints for large or flexible proteins. Computational methods can be used to both predict unknown protein structures and model ligand interactions when experimental data are unavailable. This paper describes a comprehensive and detailed protocol using the Rosetta modeling suite to dock small-molecule ligands into comparative models. In the protocol presented here, we review the comparative modeling process, including sequence alignment, threading and loop building. Next, we cover docking a small-molecule ligand into the protein comparative model. In addition, we discuss criteria that can improve ligand docking into comparative models. Finally, and importantly, we present a strategy for assessing model quality. The entire protocol is presented on a single example selected solely for didactic purposes. The results are therefore not representative and do not replace benchmarks published elsewhere. We also provide an additional tutorial so that the user can gain hands-on experience in using Rosetta. The protocol should take 5-7 h, with additional time allocated for computer generation of models.
Collapse
Affiliation(s)
- Steven A Combs
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Li Z, Yang Y, Zhan J, Dai L, Zhou Y. Energy functions in de novo protein design: current challenges and future prospects. Annu Rev Biophys 2013; 42:315-35. [PMID: 23451890 DOI: 10.1146/annurev-biophys-083012-130315] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In the past decade, a concerted effort to successfully capture specific tertiary packing interactions produced specific three-dimensional structures for many de novo designed proteins that are validated by nuclear magnetic resonance and/or X-ray crystallographic techniques. However, the success rate of computational design remains low. In this review, we provide an overview of experimentally validated, de novo designed proteins and compare four available programs, RosettaDesign, EGAD, Liang-Grishin, and RosettaDesign-SR, by assessing designed sequences computationally. Computational assessment includes the recovery of native sequences, the calculation of sizes of hydrophobic patches and total solvent-accessible surface area, and the prediction of structural properties such as intrinsic disorder, secondary structures, and three-dimensional structures. This computational assessment, together with a recent community-wide experiment in assessing scoring functions for interface design, suggests that the next-generation protein-design scoring function will come from the right balance of complementary interaction terms. Such balance may be found when more negative experimental data become available as part of a training set.
Collapse
Affiliation(s)
- Zhixiu Li
- School of Informatics, Indiana University-Purdue University, Indianapolis, Indiana 46202, USA
| | | | | | | | | |
Collapse
|
24
|
Gangadhara BN, Laine JM, Kathuria SV, Massi F, Matthews CR. Clusters of branched aliphatic side chains serve as cores of stability in the native state of the HisF TIM barrel protein. J Mol Biol 2013; 425:1065-81. [PMID: 23333740 DOI: 10.1016/j.jmb.2013.01.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2012] [Revised: 01/01/2013] [Accepted: 01/03/2013] [Indexed: 01/31/2023]
Abstract
Imidazole-3-glycerol phosphate synthase is a heterodimeric allosteric enzyme that catalyzes consecutive reactions in imidazole biosynthesis through its HisF and HisH subunits. The unusually slow unfolding reaction of the isolated HisF TIM barrel domain from the thermophilic bacteria, Thermotoga maritima, enabled an NMR-based site-specific analysis of the main-chain hydrogen bonds that stabilize its native conformation. Very strong protection against exchange with solvent deuterium in the native state was found in a subset of buried positions in α-helices and pervasively in the underlying β-strands associated with a pair of large clusters of isoleucine, leucine and valine (ILV) side chains located in the α7(βα)8(βα)1-2 and α2(βα)3-6β7 segments of the (βα)8 barrel. The most densely packed region of the large cluster, α3(βα)4-6β7, correlates closely with the core of stability previously observed in computational, protein engineering and NMR dynamics studies, demonstrating a key role for this cluster in determining the thermodynamic and structural properties of the native state of HisF. When considered with the results of previous studies where ILV clusters were found to stabilize the hydrogen-bonded networks in folding intermediates for other TIM barrel proteins, it appears that clusters of branched aliphatic side chains can serve as cores of stability across the entire folding reaction coordinate of one of the most common motifs in biology.
Collapse
Affiliation(s)
- Basavanapura N Gangadhara
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | | | | | | | | |
Collapse
|
25
|
Doyle CM, Rumfeldt JA, Broom HR, Broom A, Stathopulos PB, Vassall KA, Almey JJ, Meiering EM. Energetics of oligomeric protein folding and association. Arch Biochem Biophys 2012; 531:44-64. [PMID: 23246784 DOI: 10.1016/j.abb.2012.12.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 11/29/2012] [Accepted: 12/05/2012] [Indexed: 12/11/2022]
Abstract
In nature, proteins most often exist as complexes, with many of these consisting of identical subunits. Understanding of the energetics governing the folding and misfolding of such homooligomeric proteins is central to understanding their function and misfunction, in disease or biotechnology. Much progress has been made in defining the mechanisms and thermodynamics of homooligomeric protein folding. In this review, we outline models as well as calorimetric and spectroscopic methods for characterizing oligomer folding, and describe extensive results obtained for diverse proteins, ranging from dimers to octamers and higher order aggregates. To our knowledge, this area has not been reviewed comprehensively in years, and the collective progress is impressive. The results provide evolutionary insights into the development of subunit interfaces, mechanisms of oligomer folding, and contributions of oligomerization to protein stability, function and regulation. Thermodynamic analyses have also proven valuable for understanding protein misfolding and aggregation mechanisms, suggesting new therapeutic avenues. Successful recent designs of novel, functional proteins demonstrate increased understanding of oligomer folding. Further rigorous analyses using multiple experimental and computational approaches are still required, however, to achieve consistent and accurate prediction of oligomer folding energetics. Modeling the energetics remains challenging but is a promising avenue for future advances.
Collapse
Affiliation(s)
- Colleen M Doyle
- Guelph-Waterloo Centre for Graduate Studies in Chemistry and Biochemistry, and Department of Chemistry, University of Waterloo, 200 University Ave. West, Waterloo, ON, Canada
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Shanmugaratnam S, Eisenbeis S, Höcker B. A highly stable protein chimera built from fragments of different folds. Protein Eng Des Sel 2012; 25:699-703. [PMID: 23081840 DOI: 10.1093/protein/gzs074] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Proteins increased in complexity during the course of evolution. Domains as well as subdomain-sized fragments were recruited and adapted to form new proteins and novel folds. This concept can be used in engineering to construct new proteins. We previously reported the combination of fragments from two ancient protein folds, a flavodoxin-like and a (βα)₈-barrel protein. Here we report two further attempts at engineering a chimeric protein from fragments of these folds. While one of the constructs showed a high tendency to aggregate, the other turned out to be a highly stable, well-structured protein. In terms of stability against heat and chemical denaturation this chimera, named NarLHisF, is superior to the earlier presented CheYHisF. This is the second instance of a chimera build from two different protein folds, which demonstrates how easily recombination can lead to the development and diversification of new proteins--a mechanism that most likely occurred frequently in the course of evolution. Based on the results of the failed and the successful chimera, we discuss important considerations for a general design strategy for fold chimeras.
Collapse
|
27
|
Carstensen L, Sperl JM, Bocola M, List F, Schmid FX, Sterner R. Conservation of the Folding Mechanism between Designed Primordial (βα)8-Barrel Proteins and Their Modern Descendant. J Am Chem Soc 2012; 134:12786-91. [DOI: 10.1021/ja304951v] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Linn Carstensen
- Institut für Biophysik
und physikalische Biochemie, Universität Regensburg, D-93040 Regensburg, Germany
| | - Josef M. Sperl
- Institut für Biophysik
und physikalische Biochemie, Universität Regensburg, D-93040 Regensburg, Germany
| | - Marco Bocola
- Institut für Biophysik
und physikalische Biochemie, Universität Regensburg, D-93040 Regensburg, Germany
| | - Felix List
- Institut für Biophysik
und physikalische Biochemie, Universität Regensburg, D-93040 Regensburg, Germany
| | - Franz X. Schmid
- Laboratorium für Biochemie
und Bayreuther Zentrum für Molekulare Biowissenschaften, Universität Bayreuth, D-95440 Bayreuth, Germany
| | - Reinhard Sterner
- Institut für Biophysik
und physikalische Biochemie, Universität Regensburg, D-93040 Regensburg, Germany
| |
Collapse
|
28
|
Blaber M, Lee J. Designing proteins from simple motifs: opportunities in Top-Down Symmetric Deconstruction. Curr Opin Struct Biol 2012; 22:442-50. [PMID: 22726756 DOI: 10.1016/j.sbi.2012.05.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 05/16/2012] [Accepted: 05/24/2012] [Indexed: 11/15/2022]
Abstract
The purpose of this review is to describe the development of 'top-down' approaches to protein design. It will be argued that a diverse number of studies over the past decade, involving many investigators, and focused upon elucidating the role of symmetry in protein evolution and design, are converging into a novel top-down approach to protein design. Top-down design methodologies have successfully produced comparatively simple polypeptide 'building blocks' (typically comprising 40-60 amino acids) useful in generating complex protein architecture, and have produced compelling data in support of macro-evolutionary pathways of protein structure. Furthermore, a distillation of the experimental approaches utilized in such studies suggests the potential for method formalism, one that may accelerate future success in this field.
Collapse
Affiliation(s)
- Michael Blaber
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306-4300, United States.
| | | |
Collapse
|
29
|
Eisenbeis S, Proffitt W, Coles M, Truffault V, Shanmugaratnam S, Meiler J, Höcker B. Potential of fragment recombination for rational design of proteins. J Am Chem Soc 2012; 134:4019-22. [PMID: 22329686 DOI: 10.1021/ja211657k] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
It is hypothesized that protein domains evolved from smaller intrinsically stable subunits via combinatorial assembly. Illegitimate recombination of fragments that encode protein subunits could have quickly led to diversification of protein folds and their functionality. This evolutionary concept presents an attractive strategy to protein engineering, e.g., to create new scaffolds for enzyme design. We previously combined structurally similar parts from two ancient protein folds, the (βα)(8)-barrel and the flavodoxin-like fold. The resulting "hopeful monster" differed significantly from the intended (βα)(8)-barrel fold by an extra β-strand in the core. In this study, we ask what modifications are necessary to form the intended structure and what potential this approach has for the rational design of functional proteins. Guided by computational design, we optimized the interface between the fragments with five targeted mutations yielding a stable, monomeric protein whose predicted structure was verified experimentally. We further tested binding of a phosphorylated compound and detected that some affinity was already present due to an intact phosphate-binding site provided by one fragment. The affinity could be improved quickly to the level of natural proteins by introducing two additional mutations. The study illustrates the potential of recombining protein fragments with unique properties to design new and functional proteins, offering both a possible pathway of protein evolution and a protocol to rapidly engineer proteins for new applications.
Collapse
Affiliation(s)
- Simone Eisenbeis
- Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076 Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|