1
|
Fitzpatrick PF. Conservation of mechanism in flavoprotein-catalyzed amine oxidation. Arch Biochem Biophys 2025; 764:110242. [PMID: 39613287 DOI: 10.1016/j.abb.2024.110242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/19/2024] [Accepted: 11/27/2024] [Indexed: 12/01/2024]
Abstract
The goals of this presentation are to summarize the present understanding of the mechanism of amine oxidation by flavoproteins and to examine the possibility that a member of the monoamine oxidase family catalyzes oxidation of a carbon-carbon bond. In the discussion of mechanism, the emphasis is on the protonation state of the amine substrate, since the once-controversial mechanism of oxidation appears to be resolved. The argument will be made that flavoproteins catalyzing amine oxidation preferentially bind the form of the substrate in which the reacting nitrogen is uncharged. The reaction of a member of L-6-hydroxynicotine oxidase, which has been proposed to oxidize a carbon-carbon bond in its substrate during nicotine catabolism, is then discussed. Analysis of the reaction product establishes that the enzyme catalyzes oxidation of a carbon-nitrogen. The effects of site-directed mutagenesis and analysis of the substrate specificity identify the key residues for substrate binding.
Collapse
Affiliation(s)
- Paul F Fitzpatrick
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, 78229, USA.
| |
Collapse
|
2
|
Liu L, Wang N, He C, Wei Y, Wang J, Wang X. Construction of heterogeneous MOF-on-MOF for highly efficient gaseous iodine sequestration under static conditions. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136017. [PMID: 39362121 DOI: 10.1016/j.jhazmat.2024.136017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/18/2024] [Accepted: 09/29/2024] [Indexed: 10/05/2024]
Abstract
Considering the unexpected nuclear power waste emission and potential nuclear leakage, the exploration of robust materials for the effective capture and storage of radioactive iodine is of great importance but still remains a challenge. In this work, we report the rational synthesis of functionalized NH2-UiO-66-on-ZIF-67 architecture to enhance the static adsorption and retention of volatile iodine. Such MOF-on-MOF heterostructures was fabricated through seeding ZIF-67 core on the surface of NH2-UiO-66 satellite via a facile polyvinylpyrrolidone (PVP) regulated internal extended growth strategies. NH2-UiO-66-on-ZIF-67 exhibited unique core-satellite structure, which significantly promotes the binding interactions with iodine through synergizing of the N-rich imidazole moieties and surface functionalized amino groups within the porosity channels. As a result, the as fabricated NH2-UiO-66-on-ZIF-67 achieves enhanced mass diffusion and high capture capacity of 3600 mg/g for iodine vapor under static sorption conditions. Moreover, water vapor in humid conditions (relative humidity of 18 %) has almost no effect on the static iodine adsorption performance of the material. This study sheds light on a reliable MOF-on-MOF hybrid strategy for effective radioiodine treatment to ensure the safety nuclear waste management.
Collapse
Affiliation(s)
- Linshuai Liu
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, PR China
| | - Nannan Wang
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, PR China
| | - Chunlin He
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, PR China
| | - Yuezhou Wei
- School of Nuclear Science and Technology, University of South China, Hengyang 421001, PR China
| | - Jingjing Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710129, PR China.
| | - Xinpeng Wang
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, PR China.
| |
Collapse
|
3
|
Rajić M, Prah A, Stare J. Deciphering the Two-Step Hydride Mechanism of Monoamine Oxidase Flavoenzymes. ACS OMEGA 2024; 9:43046-43057. [PMID: 39464429 PMCID: PMC11500147 DOI: 10.1021/acsomega.4c06575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/25/2024] [Accepted: 09/30/2024] [Indexed: 10/29/2024]
Abstract
The complete two-step hydride transfer mechanism of amine oxidation involved in the metabolism of monoamine neurotransmitters was scrutinized by DFT calculations. In living organisms, this process is catalyzed by monoamine oxidase enzymes. Herein, we focus on some intriguing aspects of the reaction that may have been previously noticed but have not been clarified to date. The first step of the reaction includes the C-H bond cleavage on the methylene group vicinal to the amino group of the monoamine substrate and the subsequent transfer of hydrogen to the N5 atom of the flavin prosthetic group of the enzyme. We confirmed the nature of this step to be hydride transfer by evaluation of the pertinent HOMO-LUMO gap together with analysis of orbital contours alongside the intrinsic reaction coordinate profile. Next, we investigated the rather peculiar intermediate adduct that may form between the amine substrate and the flavin molecule, featuring an unusually long C-N bond of ∼1.62 Å. Although this bond is quite stable in the gas phase, the presence of just a few explicit water molecules facilitates its dissociation almost without energy input so that the amine-flavin intermediate can form an ionic pair instead. We attribute the existence of the unusual C-N bond to a fragile balance between opposing electronic structure effects, as evaluated by the natural bond orbital analysis. In line with this, the intermediate in the solution or in the enzyme active site can exist in two energetically almost equivalent forms, namely, as a covalently bound complex or as an ion pair, as suggested by previous studies. Finally, we characterized the transformation of the intermediate to the fully reduced flavin and imine products via proton transfer from the amino group to the flavin N1 atom, completing the reductive part of the catalytic cycle. Although we found that explicit solvation substantially boosts the kinetics of this step, the corresponding barrier is significantly lower than that in the hydride transfer step, confirming hydrogen abstraction as the rate-limiting step of amine oxidation and validating the two-step hydride transfer mechanism of monoamine oxidases.
Collapse
Affiliation(s)
- Martina Rajić
- Theory Department, Laboratory for Computational
Biochemistry and Drug Design, National Institute
of Chemistry, Hajdrihova
19, Ljubljana SI-1000, Slovenia
| | - Alja Prah
- Theory Department, Laboratory for Computational
Biochemistry and Drug Design, National Institute
of Chemistry, Hajdrihova
19, Ljubljana SI-1000, Slovenia
| | - Jernej Stare
- Theory Department, Laboratory for Computational
Biochemistry and Drug Design, National Institute
of Chemistry, Hajdrihova
19, Ljubljana SI-1000, Slovenia
| |
Collapse
|
4
|
Yadav S, Pal S, Pal NK, Din Reshi NU, Pal S, Bera JK. Switchable activity of a Ru catalyst bearing an annulated mesoionic carbene ligand for oxidation of primary amines. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Suman Yadav
- Department of Chemistry and Center for Environmental Science and Engineering Indian Institute of Technology Kanpur Kanpur India
| | - Saikat Pal
- Department of Chemistry and Center for Environmental Science and Engineering Indian Institute of Technology Kanpur Kanpur India
| | - Nilay Kumar Pal
- Department of Chemistry and Center for Environmental Science and Engineering Indian Institute of Technology Kanpur Kanpur India
| | - Noor U Din Reshi
- Department of Chemistry and Center for Environmental Science and Engineering Indian Institute of Technology Kanpur Kanpur India
| | - Sourav Pal
- Department of Chemistry and Center for Environmental Science and Engineering Indian Institute of Technology Kanpur Kanpur India
| | - Jitendra K. Bera
- Department of Chemistry and Center for Environmental Science and Engineering Indian Institute of Technology Kanpur Kanpur India
| |
Collapse
|
5
|
Abstract
We have structure, a wealth of kinetic data, thousands of chemical ligands and clinical information for the effects of a range of drugs on monoamine oxidase activity in vivo. We have comparative information from various species and mutations on kinetics and effects of inhibition. Nevertheless, there are what seem like simple questions still to be answered. This article presents a brief summary of existing experimental evidence the background and poses questions that remain intriguing for chemists and biochemists researching the chemical enzymology of and drug design for monoamine oxidases (FAD-containing EC 4.1.3.4).
Collapse
|
6
|
Yildiz I, Yildiz BS. Mechanistic study of L-6-hydroxynicotine oxidase by DFT and ONIOM methods. J Mol Model 2021; 27:53. [PMID: 33507404 DOI: 10.1007/s00894-020-04646-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/10/2020] [Indexed: 10/22/2022]
Abstract
L-6-Hydroxynicotine oxidase (LHNO) is a member of monoamine oxidase (MAO) family and catalyzes conversion of (S)-6-hydroxynicotine to 6-hydroxypseudooxynicotine during bacterial degradation of nicotine. Recent studies indicated that the enzyme catalyzes oxidation of carbon-nitrogen bond instead of previously proposed carbon-carbon bond. Based on kinetics and mutagenesis studies, Asn166, Tyr311, and Lys287 as well as an active site water molecule have roles in the catalysis of the enzyme. A number of studies including experimental and computational methods support hydride transfer mechanism in MAO family as a common mechanism in which a hydride ion transfer from amine substrate to flavin cofactor is the rate-limiting step. In this study, we formulated computational models to study the hydride transfer mechanism using crystal structure of enzyme-substrate complex. The calculations involved ONIOM and DFT methods, and we evaluated the geometry and energetics of the hydride transfer process while probing the roles of active site residues. Based on the calculations involving hydride, radical, and polar mechanisms, it was concluded that hydride transfer mechanism is the only viable mechanism for LHNO.
Collapse
Affiliation(s)
- Ibrahim Yildiz
- Chemistry Department, Khalifa University, PO Box 127788, Abu Dhabi, United Arab Emirates.
| | - Banu Sizirici Yildiz
- CIVE Department, Khalifa University, PO Box 127788, Abu Dhabi, United Arab Emirates
| |
Collapse
|
7
|
Kubicskó K, Farkas Ö. Quantum chemical (QM:MM) investigation of the mechanism of enzymatic reaction of tryptamine and N,N-dimethyltryptamine with monoamine oxidase A. Org Biomol Chem 2020; 18:9660-9674. [PMID: 33215182 DOI: 10.1039/d0ob01118e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The endogenous psychedelic (mind-altering) N,N-dimethyltryptamine (DMT) molecule has an important role in tissue protection, regeneration, and immunity via sigma-1 receptor activation as its natural ligand. The immunologic properties of DMT suggest this biogenic compound should be investigated thoroughly in other aspects as well. In our in silico project, we examined the metabolism of DMT and its primary analogue, the tryptamine (T), by the monoamine oxidase (MAO) flavoenzyme. MAO has two isoforms, MAO-A and MAO-B. MAOs perform the oxidation of various monoamines by their flavin adenine dinucleotide (FAD) cofactor. Two-layer QM:MM calculations at the ONIOM(M06-2X/6-31++G(d,p):UFF=QEq) level were performed including the whole enzyme to explore the potential energy surface (PES) of the reactions. Our findings reinforced that a hybrid mechanism, a mixture of pure H+ and H- transfer pathways, describes precisely the rate-determining step of amine oxidation as suggested by earlier works. Additionally, our results show that the oxidation of tertiary amine DMT requires a lower activation barrier than the primary amine T. This may reflect a general rule, thus we recommend further investigations. Furthermore, we demonstrated that at pH 7.4 the protonated form of these substrates enter the enzyme. As the deprotonation of substrates is crucial, we presumed protonated cofactor, FADH+, may form. Surprisingly, the activation barriers are much lower compared to FAD with both substrates. Therefore, we suggest further investigations in this direction.
Collapse
Affiliation(s)
- Károly Kubicskó
- Institute of Chemistry, Eötvös Loránd University, Budapest, Hungary.
| | | |
Collapse
|
8
|
Pająk M. Kinetic and solvent isotope effects in oxidation of halogen derivatives of tyramine catalyzed by monoamine oxidase A. J Biochem 2020; 167:49-54. [PMID: 31647557 DOI: 10.1093/jb/mvz089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 10/19/2019] [Indexed: 11/13/2022] Open
Abstract
The isotope effects approach was used to elucidate the mechanism of oxidative deamination of 3'-halotyramines, catalyzed by monoamine oxidase A (EC 1.4.3.4). The numerical values of kinetic isotope effect (KIE) and solvent isotope effect (SIE) were established using a non-competitive spectrophotometric technique. Based upon KIE and SIE values, some of the mechanistic details of investigated reaction were discussed.
Collapse
Affiliation(s)
- Małgorzata Pająk
- Department of Chemistry, Warsaw University, Pasteur 1 Str, Warsaw, Poland
| |
Collapse
|
9
|
Path Integral Calculation of the Hydrogen/Deuterium Kinetic Isotope Effect in Monoamine Oxidase A-Catalyzed Decomposition of Benzylamine. Molecules 2019; 24:molecules24234359. [PMID: 31795294 PMCID: PMC6930584 DOI: 10.3390/molecules24234359] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/21/2019] [Accepted: 11/24/2019] [Indexed: 12/03/2022] Open
Abstract
Monoamine oxidase A (MAO A) is a well-known enzyme responsible for the oxidative deamination of several important monoaminergic neurotransmitters. The rate-limiting step of amine decomposition is hydride anion transfer from the substrate α–CH2 group to the N5 atom of the flavin cofactor moiety. In this work, we focus on MAO A-catalyzed benzylamine decomposition in order to elucidate nuclear quantum effects through the calculation of the hydrogen/deuterium (H/D) kinetic isotope effect. The rate-limiting step of the reaction was simulated using a multiscale approach at the empirical valence bond (EVB) level. We applied path integral quantization using the quantum classical path method (QCP) for the substrate benzylamine as well as the MAO cofactor flavin adenine dinucleotide. The calculated H/D kinetic isotope effect of 6.5 ± 1.4 is in reasonable agreement with the available experimental values.
Collapse
|
10
|
Jones HBL, Crean RM, Mullen A, Kendrick EG, Bull SD, Wells SA, Carbery DR, MacMillan F, van der Kamp MW, Pudney CR. Exposing the Interplay Between Enzyme Turnover, Protein Dynamics, and the Membrane Environment in Monoamine Oxidase B. Biochemistry 2019; 58:2362-2372. [PMID: 30964996 DOI: 10.1021/acs.biochem.9b00213] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
There is an increasing realization that structure-based drug design may show improved success by understanding the ensemble of conformations accessible to an enzyme and how the environment affects this ensemble. Human monoamine oxidase B (MAO-B) catalyzes the oxidation of amines and is inhibited for the treatment of both Parkinson's disease and depression. Despite its clinical importance, its catalytic mechanism remains unclear, and routes to drugging this target would be valuable. Evidence of a radical in either the transition state or the resting state of MAO-B is present throughout the literature and is suggested to be a flavin semiquinone, a tyrosyl radical, or both. Here we see evidence of a resting-state flavin semiquinone, via absorption redox studies and electron paramagnetic resonance, suggesting that the anionic semiquinone is biologically relevant. On the basis of enzyme kinetic studies, enzyme variants, and molecular dynamics simulations, we find evidence for the importance of the membrane environment in mediating the activity of MAO-B and that this mediation is related to the protein dynamics of MAO-B. Further, our MD simulations identify a hitherto undescribed entrance for substrate binding, membrane modulated substrate access, and indications for half-site reactivity: only one active site is accessible to binding at a time. Our study combines both experimental and computational evidence to illustrate the subtle interplay between enzyme activity and protein dynamics and the immediate membrane environment. Understanding key biomedical enzymes to this level of detail will be crucial to inform strategies (and binding sites) for rational drug design for these targets.
Collapse
Affiliation(s)
| | | | - Anna Mullen
- School of Chemistry , University of East Anglia , Norwich Research Park , Norwich NR4 7TJ , United Kingdom
| | | | | | | | | | - Fraser MacMillan
- School of Chemistry , University of East Anglia , Norwich Research Park , Norwich NR4 7TJ , United Kingdom
| | - Marc W van der Kamp
- School of Biochemistry , University of Bristol , Biomedical Sciences Building, University Walk , Bristol BS8 1TD , United Kingdom
| | | |
Collapse
|
11
|
Tripathi RKP, Ayyannan SR. Monoamine oxidase-B inhibitors as potential neurotherapeutic agents: An overview and update. Med Res Rev 2019; 39:1603-1706. [PMID: 30604512 DOI: 10.1002/med.21561] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 12/13/2018] [Accepted: 12/15/2018] [Indexed: 12/23/2022]
Abstract
Monoamine oxidase (MAO) inhibitors have made significant contributions and remain an indispensable approach of molecular and mechanistic diversity for the discovery of antineurodegenerative drugs. However, their usage has been hampered by nonselective and/or irreversible action which resulted in drawbacks like liver toxicity, cheese effect, and so forth. Hence, the search for selective MAO inhibitors (MAOIs) has become a substantial focus in current drug discovery. This review summarizes our current understanding on MAO-A/MAO-B including their structure, catalytic mechanism, and biological functions with emphases on the role of MAO-B as a potential therapeutic target for the development of medications treating neurodegenerative disorders. It also highlights the recent developments in the discovery of potential MAO-B inhibitors (MAO-BIs) belonging to diverse chemical scaffolds, arising from intensive chemical-mechanistic and computational studies documented during past 3 years (2015-2018), with emphases on their potency and selectivity. Importantly, readers will gain knowledge of various newly established MAO-BI scaffolds and their development potentials. The comprehensive information provided herein will hopefully accelerate ideas for designing novel selective MAO-BIs with superior activity profiles and critical discussions will inflict more caution in the decision-making process in the MAOIs discovery.
Collapse
Affiliation(s)
- Rati Kailash Prasad Tripathi
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, India.,Department of Pharmaceutical Chemistry, Parul Institute of Pharmacy, Parul University, Vadodara, India
| | - Senthil Raja Ayyannan
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| |
Collapse
|
12
|
|
13
|
Pregeljc D, Jug U, Mavri J, Stare J. Why does the Y326I mutant of monoamine oxidase B decompose an endogenous amphetamine at a slower rate than the wild type enzyme? Reaction step elucidated by multiscale molecular simulations. Phys Chem Chem Phys 2018; 20:4181-4188. [PMID: 29360121 DOI: 10.1039/c7cp07069a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This work investigates the Y326I point mutation effect on the kinetics of oxidative deamination of phenylethylamine (PEA) catalyzed by the monoamine oxidase B (MAO B) enzyme. PEA is a neuromodulator capable of affecting the plasticity of the brain and is responsible for the mood enhancing effect caused by physical exercise. Due to a similar functionality, PEA is often regarded as an endogenous amphetamine. The rate limiting step of the deamination was simulated at the multiscale level, employing the Empirical Valence Bond approach for the quantum treatment of the involved valence states, whereas the environment (solvated protein) was represented with a classical force field. A comparison of the reaction free energy profiles delivered by simulation of the reaction in the wild type MAO B and its Y326I mutant yields an increase in the barrier by 1.06 kcal mol-1 upon mutation, corresponding to a roughly 6-fold decrease in the reaction rate. This is in excellent agreement with the experimental kinetic studies. Inspection of simulation trajectories reveals possible sources of the point mutation effect, namely vanishing favorable electrostatic interactions between PEA and a Tyr326 side chain and an increased amount of water molecules at the active site due to the replacement of tyrosine by a less spacious isoleucine residue, thereby increasing the dielectric shielding of the catalytic environment provided by the enzyme.
Collapse
Affiliation(s)
- Domen Pregeljc
- Theory Department, National Institute of Chemistry, Ljubljana, Slovenia.
| | | | | | | |
Collapse
|
14
|
Abe Y, Shoji M, Nishiya Y, Aiba H, Kishimoto T, Kitaura K. The reaction mechanism of sarcosine oxidase elucidated using FMO and QM/MM methods. Phys Chem Chem Phys 2017; 19:9811-9822. [DOI: 10.1039/c6cp08172j] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Monomeric sarcosine oxidase (MSOX) is a flavoprotein that oxidizes sarcosine to the corresponding imine product and is widely used in clinical diagnostics to test renal function.
Collapse
Affiliation(s)
| | - Mitsuo Shoji
- Center for Computational Sciences
- University of Tsukuba
- Tsukuba
- Japan
| | - Yoshiaki Nishiya
- Department of Life Science
- Faculty of Science and Engineering
- Setsunan University
- Neyagawa
- Japan
| | - Hiroshi Aiba
- Tsuruga Institute of Biotechnology
- TOYOBO Co., Ltd
- Tsuruga
- Japan
| | | | - Kazuo Kitaura
- Fukui Institute for Fundamental Chemistry
- Kyoto University
- Sakyou-ku
- Japan
| |
Collapse
|
15
|
Tormos JR, Suarez MB, Fitzpatrick PF. 13C kinetic isotope effects on the reaction of a flavin amine oxidase determined from whole molecule isotope effects. Arch Biochem Biophys 2016; 612:115-119. [PMID: 27815088 PMCID: PMC5257176 DOI: 10.1016/j.abb.2016.10.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 10/26/2016] [Accepted: 10/27/2016] [Indexed: 12/14/2022]
Abstract
A large number of flavoproteins catalyze the oxidation of amines. Because of the importance of these enzymes in metabolism, their mechanisms have previously been studied using deuterium, nitrogen, and solvent isotope effects. While these results have been valuable for computational studies to distinguish among proposed mechanisms, a measure of the change at the reacting carbon has been lacking. We describe here the measurement of a 13C kinetic isotope effect for a representative amine oxidase, polyamine oxidase. The isotope effect was determined by analysis of the isotopic composition of the unlabeled substrate, N, N'-dibenzyl-1,4-diaminopropane, to obtain a pH-independent value of 1.025. The availability of a 13C isotope effect for flavoprotein-catalyzed amine oxidation provides the first measure of the change in bond order at the carbon involved in this carbon-hydrogen bond cleavage and will be of value to understanding the transition state structure for this class of enzymes.
Collapse
Affiliation(s)
- José R Tormos
- Department of Chemistry and Biochemistry, St. Mary's University, San Antonio, TX 78228, United States
| | - Marina B Suarez
- Department of Geological Sciences, University of Texas-San Antonio, San Antonio, TX 78249, United States
| | - Paul F Fitzpatrick
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, TX 78229, United States.
| |
Collapse
|
16
|
Cakir K, Erdem SS, Atalay VE. ONIOM calculations on serotonin degradation by monoamine oxidase B: insight into the oxidation mechanism and covalent reversible inhibition. Org Biomol Chem 2016; 14:9239-9252. [PMID: 27605388 DOI: 10.1039/c6ob01175f] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Monoamine oxidase (MAO) is an enzyme which catalyzes the oxidation of neurotransmitter amines and regulates their level. There are two forms of the enzyme with 70% similarity, known as MAO-A and MAO-B. MAO inhibitors are used in the treatment of neurological disorders such as depression, Parkinson's and Alzheimer's diseases. Therefore, understanding the chemical steps of MAO catalyzed amine oxidation is crucial for rational drug design. However, despite many experimental studies and recent computational efforts in the literature, the amine oxidation mechanism by MAO enzymes is still controversial. The polar nucleophilic mechanism and hydride transfer mechanisms are under debate in recent QM/MM studies. In this study, the serotonin oxidation mechanism by MAO was explored via the ONIOM (QM : QM) methodology at the M06-2X/6-31+G(d,p):PM6 level. A modified MAO mechanism involving a covalent reversible inhibition step via formation of flavin N5 ylide was proposed. This mechanism can be used to modulate the potency and reversibility of novel mechanism-based covalent inhibitors by intelligent modifications of the structure of the inhibitors. NBO donor-acceptor analysis confirms that the rate-determining αC-H cleavage step is a hybrid of hydride and proton transfer where hydride transfer dominates over the proton transfer. The functional role of covalent FAD was also investigated by calculating the activation energy of noncovalent FAD models where a 22 fold decrease in the rate of catalysis was predicted. Geometrical features imply that the function of the covalent bond in FAD might be to maintain the correct geometry and conformation for a more efficient catalysis.
Collapse
Affiliation(s)
- Kubra Cakir
- Marmara University, Department of Chemistry, Faculty of Arts and Sciences, 34722 Göztepe, Istanbul, Turkey.
| | | | | |
Collapse
|
17
|
Ramsay RR. Molecular aspects of monoamine oxidase B. Prog Neuropsychopharmacol Biol Psychiatry 2016; 69:81-9. [PMID: 26891670 DOI: 10.1016/j.pnpbp.2016.02.005] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 02/06/2016] [Accepted: 02/11/2016] [Indexed: 02/07/2023]
Abstract
Monoamine oxidases (MAO) influence the monoamine levels in brain by virtue of their role in neurotransmitter breakdown. MAO B is the predominant form in glial cells and in platelets. MAO B structure, function and kinetics are described as a background for the effect of alterations in its activity on behavior. The need to inhibit MAO B to combat decreased brain amines continues to drive the search for new drugs. Reversible and irreversible inhibitors are now designed using data-mining, computational screening, docking and molecular dynamics. Multi-target ligands designed to combat the elevated activity of MAO B in Alzheimer's and Parkinson's Diseases incorporate MAO inhibition (usually irreversible) as well as iron chelation, antioxidant or neuroprotective properties. The main focus of drug design is the catalytic activity of MAO, but the imidazoline I2 site in the entrance cavity of MAO B is also a pharmacological target. Endogenous regulation of MAO B expression is discussed briefly in light of new studies measuring mRNA, protein, or activity in healthy and degenerative samples, including the effect of DNA methylation on the expression. Overall, this review focuses on examples of recent research on the molecular aspects of the expression, activity, and inhibition of MAO B.
Collapse
Affiliation(s)
- Rona R Ramsay
- Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews KY16 9ST, United Kingdom.
| |
Collapse
|
18
|
Vianello R, Domene C, Mavri J. The Use of Multiscale Molecular Simulations in Understanding a Relationship between the Structure and Function of Biological Systems of the Brain: The Application to Monoamine Oxidase Enzymes. Front Neurosci 2016; 10:327. [PMID: 27471444 PMCID: PMC4945635 DOI: 10.3389/fnins.2016.00327] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 06/28/2016] [Indexed: 01/17/2023] Open
Abstract
HIGHLIGHTS Computational techniques provide accurate descriptions of the structure and dynamics of biological systems, contributing to their understanding at an atomic level.Classical MD simulations are a precious computational tool for the processes where no chemical reactions take place.QM calculations provide valuable information about the enzyme activity, being able to distinguish among several mechanistic pathways, provided a carefully selected cluster model of the enzyme is considered.Multiscale QM/MM simulation is the method of choice for the computational treatment of enzyme reactions offering quantitative agreement with experimentally determined reaction parameters.Molecular simulation provide insight into the mechanism of both the catalytic activity and inhibition of monoamine oxidases, thus aiding in the rational design of their inhibitors that are all employed and antidepressants and antiparkinsonian drugs. Aging society and therewith associated neurodegenerative and neuropsychiatric diseases, including depression, Alzheimer's disease, obsessive disorders, and Parkinson's disease, urgently require novel drug candidates. Targets include monoamine oxidases A and B (MAOs), acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and various receptors and transporters. For rational drug design it is particularly important to combine experimental synthetic, kinetic, toxicological, and pharmacological information with structural and computational work. This paper describes the application of various modern computational biochemistry methods in order to improve the understanding of a relationship between the structure and function of large biological systems including ion channels, transporters, receptors, and metabolic enzymes. The methods covered stem from classical molecular dynamics simulations to understand the physical basis and the time evolution of the structures, to combined QM, and QM/MM approaches to probe the chemical mechanisms of enzymatic activities and their inhibition. As an illustrative example, the later will focus on the monoamine oxidase family of enzymes, which catalyze the degradation of amine neurotransmitters in various parts of the brain, the imbalance of which is associated with the development and progression of a range of neurodegenerative disorders. Inhibitors that act mainly on MAO A are used in the treatment of depression, due to their ability to raise serotonin concentrations, while MAO B inhibitors decrease dopamine degradation and improve motor control in patients with Parkinson disease. Our results give strong support that both MAO isoforms, A and B, operate through the hydride transfer mechanism. Relevance of MAO catalyzed reactions and MAO inhibition in the context of neurodegeneration will be discussed.
Collapse
Affiliation(s)
- Robert Vianello
- Computational Organic Chemistry and Biochemistry Group, Ruđer Bošković InstituteZagreb, Croatia
| | - Carmen Domene
- Department of Chemistry, King's College LondonLondon, UK
- Chemistry Research Laboratory, University of OxfordOxford, UK
| | - Janez Mavri
- Department of Computational Biochemistry and Drug Design, National Institute of ChemistryLjubljana, Slovenia
| |
Collapse
|
19
|
Oanca G, Purg M, Mavri J, Shih JC, Stare J. Insights into enzyme point mutation effect by molecular simulation: phenylethylamine oxidation catalyzed by monoamine oxidase A. Phys Chem Chem Phys 2016; 18:13346-56. [PMID: 27121693 DOI: 10.1039/c6cp00098c] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The I335Y point mutation effect on the kinetics of phenylethylamine decomposition catalyzed by monoamine oxidase A was elucidated by means of molecular simulation. The established empirical valence bond methodology was used in conjunction with the free energy perturbation sampling technique and a classical force field representing the state of reactants and products. The methodology allows for the simulation of chemical reactions, in the present case the breaking of the α-C-H bond in a phenylethylamine substrate and the subsequent hydrogen transfer to the flavin cofactor, resulting in the formation of the N-H bond on flavin. The empirical parameters were calibrated against the experimental data for the simulated reaction in a wild type protein and then used for the calculation of the reaction free energy profile in the I335Y mutant. In very good agreement with the measured kinetic data, mutation increases the free energy barrier for the rate limiting step by slightly more than 1 kcal mol(-1) and consequently decreases the rate constant by about an order of magnitude. The magnitude of the computed effect slightly varies with simulation settings, but always remains in reasonable agreement with the experiment. Analysis of trajectories reveals a major change in the interaction between phenyl rings of the substrate and the neighboring Phe352 residue upon the I335Y mutation due to the increased local polarity, leading to an attenuated quadrupole interaction between the rings and destabilization of the transition state. Additionally, the increased local polarity in the mutant allows for a larger number of water molecules to be present near the active site, effectively shielding the catalytic effect of the enzyme and contributing to the increased barrier.
Collapse
Affiliation(s)
- Gabriel Oanca
- Laboratory of Biocomputing and Bioinformatics, National Institute of Chemistry, Ljubljana, Slovenia.
| | | | | | | | | |
Collapse
|
20
|
Mavri J, Matute RA, Chu ZT, Vianello R. Path Integral Simulation of the H/D Kinetic Isotope Effect in Monoamine Oxidase B Catalyzed Decomposition of Dopamine. J Phys Chem B 2016; 120:3488-92. [DOI: 10.1021/acs.jpcb.6b00894] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Janez Mavri
- Laboratory
for Biocomputing and Bioinformatics, National Institute of Chemistry, Hajdrihova 19, SI−1000 Ljubljana, Slovenia
| | - Ricardo A. Matute
- University of Southern California, Department of Chemistry
SGM 418, 3620 McClintock
Avenue Los Angeles, California 90089-1062, United States
| | - Zhen T. Chu
- University of Southern California, Department of Chemistry
SGM 418, 3620 McClintock
Avenue Los Angeles, California 90089-1062, United States
| | - Robert Vianello
- Computational
Organic Chemistry and Biochemistry Group, Ruđer Bošković Institute, Bijenička 54, HR−10000 Zagreb, Croatia
| |
Collapse
|
21
|
Zapata-Torres G, Fierro A, Barriga-González G, Salgado JC, Celis-Barros C. Revealing Monoamine Oxidase B Catalytic Mechanisms by Means of the Quantum Chemical Cluster Approach. J Chem Inf Model 2015; 55:1349-60. [PMID: 26091526 DOI: 10.1021/acs.jcim.5b00140] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Two of the possible catalytic mechanisms for neurotransmitter oxidative deamination by monoamine oxidase B (MAO B), namely, polar nucleophilic and hydride transfer, were addressed in order to comprehend the nature of their rate-determining step. The Quantum Chemical Cluster Approach was used to obtain transition states of MAO B complexed with phenylethylamine (PEA), benzylamine (BA), and p-nitrobenzylamine (NBA). The choice of these amines relies on their importance to address MAO B catalytic mechanisms so as to help us to answer questions such as why BA is a better substrate than NBA or how para-substitution affects substrate's reactivity. Transition states were later validated by comparison with the experimental free energy barriers. From a theoretical point of view, and according to the our reported transition states, their calculated barriers and structural and orbital differences obtained by us among these compounds, we propose that good substrates such as BA and PEA might follow the hydride transfer pathway while poor substrates such as NBA prefer the polar nucleophilic mechanism, which might suggest that MAO B can act by both mechanisms. The low free energy barriers for BA and PEA reflect the preference that MAO B has for hydride transfer over the polar nucleophilic mechanism when catalyzing the oxidative deamination of neurotransmitters.
Collapse
Affiliation(s)
- Gerald Zapata-Torres
- †Molecular Graphics Suite, Department of Inorganic and Analytical Chemistry, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| | - Angélica Fierro
- ‡Facultad de Química, Departamento de Química Orgánica, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - German Barriga-González
- §Universidad Andres Bello, Facultad de Ciencias Exactas, Departamento de Ciencias Quimicas, Avenida República 275, 8370146 Santiago, Chile
| | - J Cristian Salgado
- ∥Laboratory of Process Modeling and Distributed Computing, Department of Chemical Engineering and Biotechnology, University of Chile, Beauchef 850, Santiago, Chile
| | - Cristian Celis-Barros
- §Universidad Andres Bello, Facultad de Ciencias Exactas, Departamento de Ciencias Quimicas, Avenida República 275, 8370146 Santiago, Chile
| |
Collapse
|
22
|
Murray AT, Dowley MJH, Pradaux-Caggiano F, Baldansuren A, Fielding AJ, Tuna F, Hendon CH, Walsh A, Lloyd-Jones GC, John MP, Carbery DR. Catalytic Amine Oxidation under Ambient Aerobic Conditions: Mimicry of Monoamine Oxidase B. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201503654] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
23
|
Murray AT, Dowley MJH, Pradaux-Caggiano F, Baldansuren A, Fielding AJ, Tuna F, Hendon CH, Walsh A, Lloyd-Jones GC, John MP, Carbery DR. Catalytic Amine Oxidation under Ambient Aerobic Conditions: Mimicry of Monoamine Oxidase B. Angew Chem Int Ed Engl 2015; 54:8997-9000. [PMID: 26087676 PMCID: PMC4524416 DOI: 10.1002/anie.201503654] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Indexed: 11/10/2022]
Abstract
The flavoenzyme monoamine oxidase (MAO) regulates mammalian behavioral patterns by modulating neurotransmitters such as adrenaline and serotonin. The mechanistic basis which underpins this enzyme is far from agreed upon. Reported herein is that the combination of a synthetic flavin and alloxan generates a catalyst system which facilitates biomimetic amine oxidation. Mechanistic and electron paramagnetic (EPR) spectroscopic data supports the conclusion that the reaction proceeds through a radical manifold. This data provides the first example of a biorelevant synthetic model for monoamine oxidase B activity.
Collapse
Affiliation(s)
| | - Myles J H Dowley
- Department of Chemistry, University of Bath, Claverton Down, Bath (UK)
| | | | - Amgalanbaatar Baldansuren
- EPSRC National EPR Facility, Photon Science Institute, School of Chemistry, University of Manchester, Oxford Road, Manchester (UK)
| | - Alistair J Fielding
- EPSRC National EPR Facility, Photon Science Institute, School of Chemistry, University of Manchester, Oxford Road, Manchester (UK)
| | - Floriana Tuna
- EPSRC National EPR Facility, Photon Science Institute, School of Chemistry, University of Manchester, Oxford Road, Manchester (UK)
| | | | - Aron Walsh
- Department of Chemistry, University of Bath, Claverton Down, Bath (UK)
| | - Guy C Lloyd-Jones
- School of Chemistry, Joseph Black Building, West Mains Road, Edinburgh EH9 3 JJ (UK)
| | - Matthew P John
- GlaxoSmithKline Research and Development, Gunnels Wood Road, Stevenage (UK)
| | - David R Carbery
- Department of Chemistry, University of Bath, Claverton Down, Bath (UK).
| |
Collapse
|
24
|
Zenn RK, Abad E, Kästner J. Influence of the Environment on the Oxidative Deamination of p-Substituted Benzylamines in Monoamine Oxidase. J Phys Chem B 2015; 119:3678-86. [DOI: 10.1021/jp512470a] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Roland K. Zenn
- Institute of Theoretical
Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Enrique Abad
- Institute of Theoretical
Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Johannes Kästner
- Institute of Theoretical
Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| |
Collapse
|
25
|
Alabugin IV, Bresch S, dos Passos Gomes G. Orbital hybridization: a key electronic factor in control of structure and reactivity. J PHYS ORG CHEM 2014. [DOI: 10.1002/poc.3382] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Igor V. Alabugin
- Department of Chemistry and Biochemistry; Florida State University; Tallahassee FL 32306-4390 USA
| | - Stefan Bresch
- Department of Chemistry and Biochemistry; Florida State University; Tallahassee FL 32306-4390 USA
| | - Gabriel dos Passos Gomes
- Department of Chemistry and Biochemistry; Florida State University; Tallahassee FL 32306-4390 USA
| |
Collapse
|
26
|
Repič M, Vianello R, Purg M, Duarte F, Bauer P, Kamerlin SCL, Mavri J. Empirical valence bond simulations of the hydride transfer step in the monoamine oxidase B catalyzed metabolism of dopamine. Proteins 2014; 82:3347-55. [PMID: 25220264 DOI: 10.1002/prot.24690] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 09/10/2014] [Indexed: 01/05/2023]
Abstract
Monoamine oxidases (MAOs) A and B are flavoenzymes responsible for the metabolism of biogenic amines such as dopamine, serotonin and noradrenaline. In this work, we present a comprehensive study of the rate-limiting step of dopamine degradation by MAO B, which consists in the hydride transfer from the methylene group of the substrate to the flavin moiety of the FAD prosthetic group. This article builds on our previous quantum chemical study of the same reaction using a cluster model (Vianello et al., Eur J Org Chem 2012; 7057), but now considering the full dimensionality of the hydrated enzyme with extensive configurational sampling. We show that MAO B is specifically tuned to catalyze the hydride transfer step from the substrate to the flavin moiety of the FAD prosthetic group and that it lowers the activation barrier by 12.3 kcal mol⁻¹ compared to the same reaction in aqueous solution, a rate enhancement of more than nine orders of magnitude. Taking into account the deprotonation of the substrate prior to the hydride transfer reaction, the activation barrier in the enzyme is calculated to be 16.1 kcal mol⁻¹, in excellent agreement with the experimental value of 16.5 kcal mol⁻¹. Additionally, we demonstrate that the protonation state of the active site residue Lys296 does not have an influence on the hydride transfer reaction.
Collapse
Affiliation(s)
- Matej Repič
- Laboratory for Biocomputing and Bioinformatics, National Institute of Chemistry, Hajdrihova 19, SI-1000, Ljubljana, Slovenia
| | | | | | | | | | | | | |
Collapse
|
27
|
Fitzpatrick PF. Combining solvent isotope effects with substrate isotope effects in mechanistic studies of alcohol and amine oxidation by enzymes. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1854:1746-55. [PMID: 25448013 DOI: 10.1016/j.bbapap.2014.10.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 10/17/2014] [Accepted: 10/20/2014] [Indexed: 10/24/2022]
Abstract
Oxidation of alcohols and amines is catalyzed by multiple families of flavin- and pyridine nucleotide-dependent enzymes. Measurement of solvent isotope effects provides a unique mechanistic probe of the timing of the cleavage of the OH and NH bonds, necessary information for a complete description of the catalytic mechanism. The inherent ambiguities in interpretation of solvent isotope effects can be significantly decreased if isotope effects arising from isotopically labeled substrates are measured in combination with solvent isotope effects. The application of combined solvent and substrate (mainly deuterium) isotope effects to multiple enzymes is described here to illustrate the range of mechanistic insights that such an approach can provide. This article is part of a Special Issue entitled: Enzyme Transition States from Theory and Experiment.
Collapse
Affiliation(s)
- Paul F Fitzpatrick
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, TX 78212, USA.
| |
Collapse
|
28
|
Alabugin IV, Bresch S, Manoharan M. Hybridization trends for main group elements and expanding the Bent's rule beyond carbon: more than electronegativity. J Phys Chem A 2014; 118:3663-77. [PMID: 24773162 DOI: 10.1021/jp502472u] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Trends in hybridization were systematically analyzed through the combination of DFT calculations with NBO analysis for the five elements X (X = B, C, N, O, and F) in 75 HnX-YHm compounds, where Y spans the groups 13-17 of the periods 2-4. This set of substrates probes the flexibility of the hybridization at five atoms X through variations in electronegativity, polarizability, and orbital size of Y. The results illustrate the scope and limitations of the Bent's rule, the classic correlation between electronegativity and hybridization, commonly used in analyzing structural effects in carbon compounds. The rehybridization effects are larger for fluorine- and oxygen-bonds than they are in the similar bonds to carbon. For bonds with the larger elements Y of the lower periods, trends in orbital hybridization depend strongly on both electronegativity and orbital size. For charged species, the effects of substituent orbital size in the more polarizable bonds to heavier elements show a particularly strong response to the charge introduction at the central atom. In the final section, we provide an example of the interplay between hybridization effects with molecular structure and reactivity. In particular, the ability to change hybridization without changes in polarization provides an alternative way to control structure and reactivity, as illustrated by the strong correlation of strain in monosubstituted cyclopropanes with hybridization in the bond to the substituent.
Collapse
Affiliation(s)
- Igor V Alabugin
- Department of Chemistry and Biochemistry, Florida State University , Tallahassee, Florida 32306-4390, United States
| | | | | |
Collapse
|
29
|
Monoamine oxidase A and B substrates: probing the pathway for drug development. Future Med Chem 2014; 6:697-717. [DOI: 10.4155/fmc.14.23] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Drug-discovery and -development efforts focused on the MAOs have increased at an accelerated rate over the past decade. Since the first crystal structure of human MAO-B was solved in 2002, over 40 additional structures have been reported and have helped define new, or confirm speculative, binding modes of inhibitors. The detailed mechanism of the MAO-catalyzed oxidation of amine substrates has not been fully elucidated, but its significance is central in the development of new mechanism-based inactivators. Novel fungal MAO-N variants derived from directed evolution strategies are enabling the production of new chiral amine products. Robust assays have been established for measuring MAO status in tissue and cells, while improved MAO radioligands are being deployed for PET imaging studies. This review will attempt to highlight the more recent and salient aspects of MAO research in drug discovery and development, with emphasis on substrates 'probing the pathway'.
Collapse
|
30
|
Wang J, Lu S, Cao X, Gu H. Common metal of copper(0) as an efficient catalyst for preparation of nitriles and imines by controlling additives. Chem Commun (Camb) 2014; 50:5637-40. [DOI: 10.1039/c4cc01389a] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
31
|
Abad E, Zenn RK, Kästner J. Reaction Mechanism of Monoamine Oxidase from QM/MM Calculations. J Phys Chem B 2013; 117:14238-46. [DOI: 10.1021/jp4061522] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Enrique Abad
- Computational Biochemistry
Group, Institute of Theoretical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Roland K. Zenn
- Computational Biochemistry
Group, Institute of Theoretical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Johannes Kästner
- Computational Biochemistry
Group, Institute of Theoretical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| |
Collapse
|
32
|
A comparative computational investigation on the proton and hydride transfer mechanisms of monoamine oxidase using model molecules. Comput Biol Chem 2013; 47:181-91. [PMID: 24121676 DOI: 10.1016/j.compbiolchem.2013.08.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Revised: 08/16/2013] [Accepted: 08/19/2013] [Indexed: 12/18/2022]
Abstract
Monoamine oxidase (MAO) enzymes regulate the level of neurotransmitters by catalyzing the oxidation of various amine neurotransmitters, such as serotonin, dopamine and norepinephrine. Therefore, they are the important targets for drugs used in the treatment of depression, Parkinson, Alzeimer and other neurodegenerative disorders. Elucidation of MAO-catalyzed amine oxidation will provide new insights into the design of more effective drugs. Various amine oxidation mechanisms have been proposed for MAO so far, such as single electron transfer mechanism, polar nucleophilic mechanism and hydride mechanism. Since amine oxidation reaction of MAO takes place between cofactor flavin and the amine substrate, we focus on the small model structures mimicking flavin and amine substrates so that three model structures were employed. Reactants, transition states and products of the polar nucleophilic (proton transfer), the water-assisted proton transfer and the hydride transfer mechanisms were fully optimized employing various semi-empirical, ab initio and new generation density functional theory (DFT) methods. Activation energy barriers related to these mechanisms revealed that hydride transfer mechanism is more feasible.
Collapse
|
33
|
Akyüz MA, Erdem SS. Computational modeling of the direct hydride transfer mechanism for the MAO catalyzed oxidation of phenethylamine and benzylamine: ONIOM (QM/QM) calculations. J Neural Transm (Vienna) 2013; 120:937-45. [PMID: 23619993 DOI: 10.1007/s00702-013-1027-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 04/15/2013] [Indexed: 11/28/2022]
Abstract
Monoamine oxidases are two isozymic flavoenzymes which are the important targets for drugs used in the treatment of depression, Parkinson and Alzheimer's diseases. The catalytic reaction taking place between the cofactor FAD and amine substrate is still not completely understood. Herein we employed quantum chemical methods on the recently proposed direct hydride transfer mechanism including full active site residues of MAO isoforms in the calculations. Activation free energy barriers of direct hydride transfer mechanism for MAO-A and MAO-B were calculated by ONIOM (our own n-layered integrated molecular orbital + molecular mechanics) method with QM/QM (quantum mechanics:quantum mechanics) approach employing several density functional theory functionals, B3LYP, WB97XD, CAM-B3LYP and M06-2X, for the high layer. The formation of very recently proposed αC-flavin N5 adduct inside the enzyme has been investigated. ONIOM (M06-2X/6-31+G(d,p):PM6) results revealed that such an adduct may form only in MAO-B suggesting slightly different hydride transfer mechanisms for MAO-A and MAO-B.
Collapse
Affiliation(s)
- Mehmet Ali Akyüz
- Department of Chemistry, Faculty of Arts and Sciences, Marmara University, Göztepe, 34722, Istanbul, Turkey
| | | |
Collapse
|
34
|
Do MAO A and MAO B utilize the same mechanism for the C-H bond cleavage step in catalysis? Evidence suggesting differing mechanisms. J Neural Transm (Vienna) 2013; 120:847-51. [PMID: 23417310 DOI: 10.1007/s00702-013-0991-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 02/05/2013] [Indexed: 10/27/2022]
Abstract
The detailed molecular mechanism proposed for the MAO-catalyzed oxidation of amines has been controversial with the basic assumption that both MAO A and MAO B follow the same pathway for the C-H bond cleavage step. Using the mechanistic approach of investigation of electronic effects of various benzylamine ring substituents in experiments at pH 9.0, human MAO A exhibits a kinetic behavior characteristic of an H(+) abstraction, while human MAO B exhibits kinetic properties characteristic of a H(-) abstraction. These results lead to the conclusion that the assumption that MAO A and MAO B follow identical mechanisms is incorrect.
Collapse
|
35
|
Liu Y, Mukherjee A, Nahumi N, Ozbil M, Brown D, Angeles-Boza AM, Dooley DM, Prabhakar R, Roth JP. Experimental and Computational Evidence of Metal-O2 Activation and Rate-Limiting Proton-Coupled Electron Transfer in a Copper Amine Oxidase. J Phys Chem B 2012; 117:218-29. [DOI: 10.1021/jp3121484] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Yi Liu
- Department of Chemistry, Johns Hopkins University, 3400 North
Charles Street, Baltimore, Maryland 21218, United States
| | - Arnab Mukherjee
- Department of Chemistry, Johns Hopkins University, 3400 North
Charles Street, Baltimore, Maryland 21218, United States
| | - Nadav Nahumi
- Department of Chemistry, Johns Hopkins University, 3400 North
Charles Street, Baltimore, Maryland 21218, United States
| | - Mehmet Ozbil
- Department of Chemistry, University of Miami, 1301 Memorial Drive,
Coral Gables, Florida 33146, United States
| | - Doreen Brown
- Department of Chemistry
and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Alfredo M. Angeles-Boza
- Department of Chemistry, Johns Hopkins University, 3400 North
Charles Street, Baltimore, Maryland 21218, United States
| | - David M. Dooley
- Department of Chemistry
and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Rajeev Prabhakar
- Department of Chemistry, University of Miami, 1301 Memorial Drive,
Coral Gables, Florida 33146, United States
| | - Justine P. Roth
- Department of Chemistry, Johns Hopkins University, 3400 North
Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
36
|
Adachi MS, Taylor AB, Hart PJ, Fitzpatrick PF. Mechanistic and structural analyses of the roles of active site residues in yeast polyamine oxidase Fms1: characterization of the N195A and D94N enzymes. Biochemistry 2012; 51:8690-7. [PMID: 23034052 PMCID: PMC3548949 DOI: 10.1021/bi3011434] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Flavoprotein Fms1 from Saccharomyces cerevisiae catalyzes the oxidation of spermine in the biosynthetic pathway for pantothenic acid. The same reaction is catalyzed by the mammalian polyamine and spermine oxidases. The active site of Fms1 contains three amino acid residues positioned to interact with the polyamine substrate, His67, Asn195, and Asp94. These three residues form a hydrogen-bonding triad with Asn195 being the central residue. Previous studies of the effects of mutating His67 are consistent with that residue being important both for interacting with the substrate and for maintaining the hydrogen bonds in the triad [Adachi, M. S., Taylor, A. B., Hart, P. J., and Fitzpatrick, P. F. (2012) Biochemistry 51, 4888-4897]. The N195A and D94N enzymes have now been characterized to evaluate their roles in catalysis. Both mutations primarily affect the reductive half-reaction. With N(1)-acetylspermine as the substrate, the rate constant for flavin reduction decreases ~450-fold for both mutations; the effects with spermine as the substrate are smaller, 20-40-fold. The k(cat)/K(amine)- and k(cat)-pH profiles with N(1)-acetylspermine are only slightly changed from the profiles for the wild-type enzyme, consistent with the pK(a) values arising from the amine substrate or product and not from active site residues. The structure of the N195A enzyme was determined at a resolution of 2.0 Å. The structure shows a molecule of tetraethylene glycol in the active site and establishes that the mutation has no effect on the protein structure. Overall, the results are consistent with the role of Asn195 and Asp94 being to properly position the polyamine substrate for oxidation.
Collapse
Affiliation(s)
- Mariya S. Adachi
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, TX 78229
| | - Alexander B. Taylor
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, TX 78229
| | - P. John Hart
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, TX 78229
- Department of Veterans Affairs, Audie Murphy Division, Geriatric Research, Education, and Clinical Center, South Texas Veterans Health Care System, San Antonio, TX 78229
| | - Paul F. Fitzpatrick
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, TX 78229
| |
Collapse
|
37
|
Vianello R, Repič M, Mavri J. How are Biogenic Amines Metabolized by Monoamine Oxidases? European J Org Chem 2012. [DOI: 10.1002/ejoc.201201122] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
38
|
Yuan H, Xin Y, Hamelberg D, Gadda G. Insights on the Mechanism of Amine Oxidation Catalyzed by d-Arginine Dehydrogenase Through pH and Kinetic Isotope Effects. J Am Chem Soc 2011; 133:18957-65. [DOI: 10.1021/ja2082729] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hongling Yuan
- Department of Chemistry, ‡Department of Biology, and §The Center for Biotechnology and Drug Design, Georgia State University, Atlanta, Georgia 30302-4098, United States
| | - Yao Xin
- Department of Chemistry, ‡Department of Biology, and §The Center for Biotechnology and Drug Design, Georgia State University, Atlanta, Georgia 30302-4098, United States
| | - Donald Hamelberg
- Department of Chemistry, ‡Department of Biology, and §The Center for Biotechnology and Drug Design, Georgia State University, Atlanta, Georgia 30302-4098, United States
| | - Giovanni Gadda
- Department of Chemistry, ‡Department of Biology, and §The Center for Biotechnology and Drug Design, Georgia State University, Atlanta, Georgia 30302-4098, United States
| |
Collapse
|
39
|
Ames BD, Haynes SW, Gao X, Evans BS, Kelleher NL, Tang Y, Walsh CT. Complexity generation in fungal peptidyl alkaloid biosynthesis: oxidation of fumiquinazoline A to the heptacyclic hemiaminal fumiquinazoline C by the flavoenzyme Af12070 from Aspergillus fumigatus. Biochemistry 2011; 50:8756-69. [PMID: 21899262 DOI: 10.1021/bi201302w] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The human pathogen Aspergillus fumigatus makes a series of fumiquinazoline (FQ) peptidyl alkaloids of increasing scaffold complexity using L-Trp, 2 equiv of L-Ala, and the non-proteinogenic amino acid anthranilate as building blocks. The FQ gene cluster encodes two non-ribosomal peptide synthetases (NRPS) and two flavoproteins. The trimodular NRPS Af12080 assembles FQF (the first level of complexity) while the next two enzymes, Af12060 and Af12050, act in tandem in an oxidative annulation sequence to couple alanine to the indole side chain of FQF to yield the imidazolindolone-containing FQA. In this study we show that the fourth enzyme, the monocovalent flavoprotein Af12070, introduces a third layer of scaffold complexity by converting FQA to the spirohemiaminal FQC, presumably by catalyzing the formation of a transient imine within the pyrazinone ring (and therefore acting in an unprecedented manner as an FAD-dependent amide oxidase). FQC subsequently converts nonenzymatically to the known cyclic aminal FQD. We also investigated the effect of substrate structure on Af12070 activity and subsequent cyclization with a variety of FQA analogues, including an FQA diastereomer (2'-epi-FQA), which is an intermediate in the fungal biosynthesis of the tremorgenic tryptoquialanine. 2'-epi-FQA is processed by Af12070 to epi-FQD, not epi-FQC, illustrating that the delicate balance in product cyclization regiochemistry can be perturbed by a remote stereochemical center.
Collapse
Affiliation(s)
- Brian D Ames
- Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | | | | | | | | | | | | |
Collapse
|
40
|
Wang J, Edmondson DE. ²H kinetic isotope effects and pH dependence of catalysis as mechanistic probes of rat monoamine oxidase A: comparisons with the human enzyme. Biochemistry 2011; 50:7710-7. [PMID: 21819071 DOI: 10.1021/bi200951z] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Monoamine oxidase A (MAO A) is a mitochondrial outer membrane-bound flavoenzyme important in the regulation of serotonin and dopamine levels. Because the rat is extensively used as an animal model in drug studies, it is important to understand how rat MAO A behaves in comparison with the more extensively studied human enzyme. For many reversible inhibitors, rat MAO A exhibits K(i) values similar to those of human MAO A. The pH profile of k(cat) for rat MAO A shows a pK(a) of 8.2 ± 0.1 for the benzylamine ES complex and pK(a) values of 7.5 ± 0.1 and 7.6 ± 0.1 for the ES complexes with p-CF(3)-(1)H- and p-CF(3)-(2)H-benzylamine, respectively. In contrast to the human enzyme, the rat enzyme exhibits a single pK(a) value (8.3 ± 0.1) with k(cat)/K(m) for benzylamine versus pH and pK(a) values of 7.8 ± 0.1 and 8.1 ± 0.2 for the ascending limbs, respectively, of k(cat)/K(m) versus pH profiles for p-CF(3)-(1)H- and p-CF(3)-(2)H-benzylamine and 9.3 ± 0.1 and 9.1 ± 0.2 for the descending limbs, respectively. The oxidation of para-substituted benzylamine substrate analogues by rat MAO A has large deuterium kinetic isotope effects on k(cat) and on k(cat)/K(m). These effects are pH-independent and range from 7 to 14, demonstrating a rate-limiting α-C-H bond cleavage step in catalysis. Quantitative structure-activity correlations of log k(cat) with the electronic substituent parameter (σ) at pH 7.5 and 9.0 show a dominant contribution with positive ρ values (1.2-1.3) and a pH-independent negative contribution from the steric term. Quantitative structure-activity relationship analysis of the binding affinities of the para-substituted benzylamine analogues for rat MAO A shows an increased van der Waals volume (V(w)) increases the affinity of the deprotonated amine for the enzyme. These results demonstrate that rat MAO A exhibits functional properties similar but not identical with those of the human enzyme and provide additional support for C-H bond cleavage via a polar nucleophilic mechanism.
Collapse
Affiliation(s)
- Jin Wang
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | | |
Collapse
|