1
|
Desbois A, Valton J, Moreau Y, Torelli S, Nivière V. Conformational H-bonding modulation of the iron active site cysteine ligand of superoxide reductase: absorption and resonance Raman studies. Phys Chem Chem Phys 2021; 23:4636-4645. [PMID: 33527107 DOI: 10.1039/d0cp03898a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Superoxide reductases (SORs) are mononuclear non-heme iron enzymes involved in superoxide radical detoxification in some microorganisms. Their atypical active site is made of an iron atom pentacoordinated by four equatorial nitrogen atoms from histidine residues and one axial sulfur atom from a cysteinate residue, which plays a central role in catalysis. In most SORs, the residue immediately following the cysteinate ligand is an asparagine, which belongs to the second coordination sphere and is expected to have a critical influence on the properties of the active site. In this work, in order to investigate the role of this asparagine residue in the Desulfoarculus baarsii enzyme (Asn117), we carried out, in comparison with the wild-type enzyme, absorption and resonance Raman (RR) studies on a SOR mutant in which Asn117 was changed into an alanine. RR analysis was developed in order to assign the different bands using excitation in the (Cys116)-S-→ Fe3+ charge transfer band. By investigating the correlation between the (Cys116)-S-→ Fe3+ charge transfer band maximum with the frequency of each RR band in different SOR forms, we assessed the contribution of the ν(Fe-S) vibration among the different RR bands. The data showed that Asn117, by making hydrogen bond interactions with Lys74 and Tyr76, allows a rigidification of the backbone of the Cys116 ligand, as well as that of the neighboring residues Ile118 and His119. Such a structural role of Asn117 has a deep impact on the S-Fe bond. It results in a tight control of the H-bond distance between the Ile118 and His119 NH peptidic moiety with the cysteine sulfur ligand, which in turn enables fine-tuning of the S-Fe bond strength, an essential property for the SOR active site. This study illustrates the intricate roles of second coordination sphere residues to adjust the ligand to metal bond properties in the active site of metalloenzymes.
Collapse
Affiliation(s)
- Alain Desbois
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, F-91198, Gif-sur-Yvette Cedex, France
| | | | | | | | | |
Collapse
|
2
|
Martins MC, Romão CV, Folgosa F, Borges PT, Frazão C, Teixeira M. How superoxide reductases and flavodiiron proteins combat oxidative stress in anaerobes. Free Radic Biol Med 2019; 140:36-60. [PMID: 30735841 DOI: 10.1016/j.freeradbiomed.2019.01.051] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 01/14/2019] [Accepted: 01/31/2019] [Indexed: 12/31/2022]
Abstract
Microbial anaerobes are exposed in the natural environment and in their hosts, even if transiently, to fluctuating concentrations of oxygen and its derived reactive species, which pose a considerable threat to their anoxygenic lifestyle. To counteract these stressful conditions, they contain a multifaceted array of detoxifying systems that, in conjugation with cellular repairing mechanisms and in close crosstalk with metal homeostasis, allow them to survive in the presence of O2 and reactive oxygen species. Some of these systems are shared with aerobes, but two families of enzymes emerged more recently that, although not restricted to anaerobes, are predominant in anaerobic microbes. These are the iron-containing superoxide reductases, and the flavodiiron proteins, endowed with O2 and/or NO reductase activities, which are the subject of this Review. A detailed account of their physicochemical, physiological and molecular mechanisms will be presented, highlighting their unique properties in allowing survival of anaerobes in oxidative stress conditions, and comparing their properties with the most well-known detoxifying systems.
Collapse
Affiliation(s)
- Maria C Martins
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Célia V Romão
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Filipe Folgosa
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Patrícia T Borges
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Carlos Frazão
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Miguel Teixeira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal.
| |
Collapse
|
3
|
Affiliation(s)
- Kazuo Kobayashi
- The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
| |
Collapse
|
4
|
Romão CV, Matias PM, Sousa CM, Pinho FG, Pinto AF, Teixeira M, Bandeiras TM. Insights into the Structures of Superoxide Reductases from the Symbionts Ignicoccus hospitalis and Nanoarchaeum equitans. Biochemistry 2018; 57:5271-5281. [PMID: 29939726 DOI: 10.1021/acs.biochem.8b00334] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Superoxide reductases (SORs) are enzymes that detoxify the superoxide anion through its reduction to hydrogen peroxide and exist in both prokaryotes and eukaryotes. The substrate is transformed at an iron catalytic center, pentacoordinated in the ferrous state by four histidines and one cysteine. SORs have a highly conserved motif, (E)(K)HxP-, in which the glutamate is associated with a redox-driven structural change, completing the octahedral coordination of the iron in the ferric state, whereas the lysine may be responsible for stabilization and donation of a proton to catalytic intermediates. We aimed to understand at the structural level the role of these two residues, by determining the X-ray structures of the SORs from the hyperthermophilic archaea Ignicoccus hospitalis and Nanoarchaeum equitans that lack the quasi-conserved lysine and glutamate, respectively, but have catalytic rate constants similar to those of the canonical enzymes, as we previously demonstrated. Furthermore, we have determined the crystal structure of the E23A mutant of I. hospitalis SOR, which mimics several enzymes that lack both residues. The structures revealed distinct structural arrangements of the catalytic center that simulate several catalytic cycle intermediates, namely, the reduced and the oxidized forms, and the glutamate-free and deprotonated ferric forms. Moreover, the structure of the I. hospitalis SOR provides evidence for the presence of an alternative lysine close to the iron center in the reduced state that may be a functional substitute for the "canonical" lysine.
Collapse
Affiliation(s)
- Célia V Romão
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier , Universidade Nova de Lisboa , Av. da República , 2780-157 Oeiras , Portugal
| | - Pedro M Matias
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier , Universidade Nova de Lisboa , Av. da República , 2780-157 Oeiras , Portugal.,iBET , Instituto de Biologia Experimental e Tecnológica , Apartado 12 , 2781-901 Oeiras , Portugal
| | - Cristiana M Sousa
- iBET , Instituto de Biologia Experimental e Tecnológica , Apartado 12 , 2781-901 Oeiras , Portugal
| | - Filipa G Pinho
- iBET , Instituto de Biologia Experimental e Tecnológica , Apartado 12 , 2781-901 Oeiras , Portugal
| | - Ana F Pinto
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier , Universidade Nova de Lisboa , Av. da República , 2780-157 Oeiras , Portugal
| | - Miguel Teixeira
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier , Universidade Nova de Lisboa , Av. da República , 2780-157 Oeiras , Portugal
| | - Tiago M Bandeiras
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier , Universidade Nova de Lisboa , Av. da República , 2780-157 Oeiras , Portugal.,iBET , Instituto de Biologia Experimental e Tecnológica , Apartado 12 , 2781-901 Oeiras , Portugal
| |
Collapse
|
5
|
Liu Y, Wang X, Chen S, Fu S, Liu B. Iron-Catalyzed Intramolecular Perezone-Type [5 + 2] Cycloaddition: Access to Tricyclo[6.3.1.01,6]dodecane. Org Lett 2018; 20:2934-2938. [DOI: 10.1021/acs.orglett.8b00989] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yongjiang Liu
- Key Laboratory of Green Chemistry &Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiao Wang
- Key Laboratory of Green Chemistry &Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Song Chen
- Key Laboratory of Green Chemistry &Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Shaomin Fu
- Key Laboratory of Green Chemistry &Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Bo Liu
- Key Laboratory of Green Chemistry &Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
- State key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
6
|
David R, Jamet H, Nivière V, Moreau Y, Milet A. Iron Hydroperoxide Intermediate in Superoxide Reductase: Protonation or Dissociation First? MM Dynamics and QM/MM Metadynamics Study. J Chem Theory Comput 2017; 13:2987-3004. [DOI: 10.1021/acs.jctc.7b00126] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Rolf David
- DCM, Univ. Grenoble Alpes, F-38000 Grenoble, France
- CNRS, DCM, F-38000, Grenoble, France
- Laboratoire
de Chimie et Biologie des Métaux, CEA/DRF/BIG/CBM/MCT, CNRS
UMR 5249, Université Grenoble Alpes, Grenoble, France
| | - Hélène Jamet
- DCM, Univ. Grenoble Alpes, F-38000 Grenoble, France
- CNRS, DCM, F-38000, Grenoble, France
| | - Vincent Nivière
- Laboratoire
de Chimie et Biologie des Métaux, CEA/DRF/BIG/CBM/BioCat, CNRS
UMR 5249, Université Grenoble Alpes, Grenoble, France
| | - Yohann Moreau
- Laboratoire
de Chimie et Biologie des Métaux, CEA/DRF/BIG/CBM/MCT, CNRS
UMR 5249, Université Grenoble Alpes, Grenoble, France
| | - Anne Milet
- DCM, Univ. Grenoble Alpes, F-38000 Grenoble, France
- CNRS, DCM, F-38000, Grenoble, France
| |
Collapse
|
7
|
Fujikawa M, Kobayashi K, Tsutsui Y, Tanaka T, Kozawa T. Rational Tuning of Superoxide Sensitivity in SoxR, the [2Fe-2S] Transcription Factor: Implications of Species-Specific Lysine Residues. Biochemistry 2017; 56:403-410. [DOI: 10.1021/acs.biochem.6b01096] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Mayu Fujikawa
- The Institute of Scientific
and Industrial Research, Osaka University, Mihogaoka 8-1, Osaka, Ibaraki 567-0047, Japan
| | - Kazuo Kobayashi
- The Institute of Scientific
and Industrial Research, Osaka University, Mihogaoka 8-1, Osaka, Ibaraki 567-0047, Japan
| | - Yuko Tsutsui
- The Institute of Scientific
and Industrial Research, Osaka University, Mihogaoka 8-1, Osaka, Ibaraki 567-0047, Japan
| | - Takahiro Tanaka
- The Institute of Scientific
and Industrial Research, Osaka University, Mihogaoka 8-1, Osaka, Ibaraki 567-0047, Japan
| | - Takahiro Kozawa
- The Institute of Scientific
and Industrial Research, Osaka University, Mihogaoka 8-1, Osaka, Ibaraki 567-0047, Japan
| |
Collapse
|
8
|
Attia AAA, Cioloboc D, Lupan A, Silaghi-Dumitrescu R. Multiconfigurational and DFT analyses of the electromeric formulation and UV-vis absorption spectra of the superoxide adduct of ferrous superoxide reductase. J Inorg Biochem 2016; 165:49-53. [PMID: 27768962 DOI: 10.1016/j.jinorgbio.2016.09.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Revised: 09/14/2016] [Accepted: 09/29/2016] [Indexed: 11/29/2022]
Abstract
The putative initial adduct of ferrous superoxide reductase (SOR) with superoxide has been alternatively formulated as ferric-peroxo or ferrous-superoxo. The ~600-nm UV-vis absorption band proposed to be assigned to this adduct (either as sole intermediate in the SOR catalytic cycle, or as one of the two intermediates) has recently been interpreted as due to a ligand-to-metal charge transfer, involving thiolate and superoxide in a ferrous complex, contrary to an alternative assignment as a predominantly cysteine thiolate-to-ferric charge transfer in a ferric-peroxo electromer. In an attempt to clarify the electromeric formulation of this adduct, we report a computational study using a multiconfigurational complete active space self-consistent field (MC-CASSCF) wave function approach as well as modelling the UV-vis absorption spectra with time-dependent density functional theory (TD-DFT). The MC-CASSCF calculations disclose a weak interaction between iron and the dioxygenic ligand and a dominant configuration with an essentially ferrous-superoxo character. The computed UV-vis absorption spectra reveal a marked dependence on the choice of density functional - both in terms of location of bands and in terms of orbital contributors. For the main band in the visible region, besides the recently reported thiolate-to-superoxide charge transfer, a more salient, and less functional-dependent, feature is a thiolate-to-ferric iron charge transfer, consistent with a ferric-peroxo electromer. By contrast, the computed UV-vis spectra of a ferric-hydroperoxo SOR model match distinctly better (and with no qualitative dependence on the DFT methodology) the 600-nm band as due to a mainly thiolate-to-ferric character - supporting the assignment of the SOR "600-nm intermediate" as a S=5/2 ferric-hydroperoxo species.
Collapse
Affiliation(s)
- Amr A A Attia
- Department of Chemistry, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, Cluj-Napoca, Romania
| | - Daniela Cioloboc
- Department of Chemistry, University of Texas at San Antonio, San Antonio, TX 78249, United States
| | - Alexandru Lupan
- Department of Chemistry, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, Cluj-Napoca, Romania
| | - Radu Silaghi-Dumitrescu
- Department of Chemistry, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, Cluj-Napoca, Romania.
| |
Collapse
|
9
|
Mono- and binuclear non-heme iron chemistry from a theoretical perspective. J Biol Inorg Chem 2016; 21:619-44. [DOI: 10.1007/s00775-016-1357-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 04/29/2016] [Indexed: 10/21/2022]
|
10
|
Anneser MR, Haslinger S, Pöthig A, Cokoja M, D'Elia V, Högerl MP, Basset JM, Kühn FE. Binding of molecular oxygen by an artificial heme analogue: investigation on the formation of an Fe–tetracarbene superoxo complex. Dalton Trans 2016; 45:6449-55. [DOI: 10.1039/c6dt00538a] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reactivity of a heme-like organometallic Fe–NHC complex with O2 is studied. The formation of a superoxo Fe(iii) intermediate is observed. The reactivity of the intermediate in acetone and acetonitrile is described and the products are identified.
Collapse
Affiliation(s)
- Markus R. Anneser
- Chair of Inorganic Chemistry/Molecular Catalysis
- Catalysis Research Center
- Ernst-Otto-Fischer-Strasse 1 and Faculty of Chemistry
- D-85747 Garching bei München
- Germany
| | - Stefan Haslinger
- Chair of Inorganic Chemistry/Molecular Catalysis
- Catalysis Research Center
- Ernst-Otto-Fischer-Strasse 1 and Faculty of Chemistry
- D-85747 Garching bei München
- Germany
| | - Alexander Pöthig
- Chair of Inorganic Chemistry/Molecular Catalysis
- Catalysis Research Center
- Ernst-Otto-Fischer-Strasse 1 and Faculty of Chemistry
- D-85747 Garching bei München
- Germany
| | - Mirza Cokoja
- Chair of Inorganic Chemistry/Molecular Catalysis
- Catalysis Research Center
- Ernst-Otto-Fischer-Strasse 1 and Faculty of Chemistry
- D-85747 Garching bei München
- Germany
| | - Valerio D'Elia
- KAUST Catalysis Center
- King Abdullah University of Science and Technology
- Thuwal
- Kingdom of Saudi Arabia
- Department of Materials Science and Engineering
| | - Manuel P. Högerl
- KAUST Catalysis Center
- King Abdullah University of Science and Technology
- Thuwal
- Kingdom of Saudi Arabia
| | - Jean-Marie Basset
- KAUST Catalysis Center
- King Abdullah University of Science and Technology
- Thuwal
- Kingdom of Saudi Arabia
| | - Fritz E. Kühn
- Chair of Inorganic Chemistry/Molecular Catalysis
- Catalysis Research Center
- Ernst-Otto-Fischer-Strasse 1 and Faculty of Chemistry
- D-85747 Garching bei München
- Germany
| |
Collapse
|
11
|
Pinto AF, Romão CV, Pinto LC, Huber H, Saraiva LM, Todorovic S, Cabelli D, Teixeira M. Superoxide reduction by a superoxide reductase lacking the highly conserved lysine residue. J Biol Inorg Chem 2015; 20:155-164. [PMID: 25476860 DOI: 10.1007/s00775-014-1222-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 11/26/2014] [Indexed: 01/12/2023]
Abstract
Superoxide reductases (SORs) are the most recently identified superoxide detoxification systems, being found in microorganisms from the three domains of life. These enzymes are characterized by a catalytic mononuclear iron site, with one cysteine and four histidine ligands of the ferrous active form. A lysine residue in the -EKHVP- motif, located close to the active site, has been considered to be essential for the enzyme function, by contributing to the positive surface patch that attracts the superoxide anion and by controlling the chemistry of the catalytic mechanism through a hydrogen bond network. However, we show here that this residue is substituted by non-equivalent amino acids in several putative SORs from Archaea and unicellular Eukarya. In this work, we focus on mechanistic and spectroscopic studies of one of these less common enzymes, the SOR from the hyperthermophilic Crenarchaeon Ignicoccus hospitalis. We employ pulse radiolysis fast kinetics and spectroscopic approaches to study the wild-type enzyme (-E23T24HVP-), and two mutants, T24K and E23A, the later mimicking enzymes lacking both the lysine and glutamate (a ferric ion ligand) of the motif. The efficiency of the wild-type protein and mutants in reducing superoxide is comparable to other SORs, revealing the robustness of these enzymes to single mutations.
Collapse
Affiliation(s)
- Ana F Pinto
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Apartado 127, 2781-901, Oeiras, Portugal.,Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheeles väg 2, 17177, Stockholm, Sweden
| | - Célia V Romão
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Apartado 127, 2781-901, Oeiras, Portugal
| | - Liliana C Pinto
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Apartado 127, 2781-901, Oeiras, Portugal
| | - Harald Huber
- Lehrstuhl fuer Mikrobiologie, Universität Regensburg, 93053, Regensburg, Germany
| | - Lígia M Saraiva
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Apartado 127, 2781-901, Oeiras, Portugal
| | - Smilja Todorovic
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Apartado 127, 2781-901, Oeiras, Portugal
| | - Diane Cabelli
- Chemistry Department, Brookhaven National Laboratory, Upton, NY, 11973-5000, USA
| | - Miguel Teixeira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Apartado 127, 2781-901, Oeiras, Portugal.
| |
Collapse
|
12
|
Bonnot F, Tremey E, von Stetten D, Rat S, Duval S, Carpentier P, Clemancey M, Desbois A, Nivière V. Formation of High-Valent Iron-Oxo Species in Superoxide Reductase: Characterization by Resonance Raman Spectroscopy. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201400356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
13
|
Bonnot F, Tremey E, von Stetten D, Rat S, Duval S, Carpentier P, Clemancey M, Desbois A, Nivière V. Formation of High-Valent Iron-Oxo Species in Superoxide Reductase: Characterization by Resonance Raman Spectroscopy. Angew Chem Int Ed Engl 2014; 53:5926-30. [DOI: 10.1002/anie.201400356] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 03/13/2014] [Indexed: 11/11/2022]
|
14
|
Sheng Y, Abreu IA, Cabelli DE, Maroney MJ, Miller AF, Teixeira M, Valentine JS. Superoxide dismutases and superoxide reductases. Chem Rev 2014; 114:3854-918. [PMID: 24684599 PMCID: PMC4317059 DOI: 10.1021/cr4005296] [Citation(s) in RCA: 669] [Impact Index Per Article: 60.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Indexed: 11/30/2022]
Affiliation(s)
- Yuewei Sheng
- Department
of Chemistry and Biochemistry, University
of California Los Angeles, Los
Angeles, California 90095, United States
| | - Isabel A. Abreu
- Instituto
de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
- Instituto
de Biologia Experimental e Tecnológica, Av. da República,
Qta. do Marquês, Estação Agronómica Nacional,
Edificio IBET/ITQB, 2780-157, Oeiras, Portugal
| | - Diane E. Cabelli
- Chemistry
Department, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Michael J. Maroney
- Department
of Chemistry, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
| | - Anne-Frances Miller
- Department
of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055, United States
| | - Miguel Teixeira
- Instituto
de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Joan Selverstone Valentine
- Department
of Chemistry and Biochemistry, University
of California Los Angeles, Los
Angeles, California 90095, United States
- Department
of Bioinspired Sciences, Ewha Womans University, Seoul 120-750, Republic of Korea
| |
Collapse
|
15
|
Horch M, Pinto AF, Mroginski MA, Teixeira M, Hildebrandt P, Zebger I. Metal-induced histidine deprotonation in biocatalysis? Experimental and theoretical insights into superoxide reductase. RSC Adv 2014. [DOI: 10.1039/c4ra11976b] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
An experimental and theoretical case study on superoxide reductase explores the protonation states of iron-bound histidines and their relevance for metalloenzyme catalysis.
Collapse
Affiliation(s)
- Marius Horch
- Technische Universität Berlin
- Institut für Chemie
- 10623 Berlin, Germany
| | - Ana Filipa Pinto
- Instituto de Tecnologia Química e Biológica António Xavier
- Universidade Nova de Lisboa
- P-2780-157 Oeiras, Portugal
| | | | - Miguel Teixeira
- Instituto de Tecnologia Química e Biológica António Xavier
- Universidade Nova de Lisboa
- P-2780-157 Oeiras, Portugal
| | - Peter Hildebrandt
- Technische Universität Berlin
- Institut für Chemie
- 10623 Berlin, Germany
| | - Ingo Zebger
- Technische Universität Berlin
- Institut für Chemie
- 10623 Berlin, Germany
| |
Collapse
|
16
|
Kobayashi K, Fujikawa M, Kozawa T. Oxidative stress sensing by the iron-sulfur cluster in the transcription factor, SoxR. J Inorg Biochem 2013; 133:87-91. [PMID: 24332474 DOI: 10.1016/j.jinorgbio.2013.11.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 11/20/2013] [Accepted: 11/21/2013] [Indexed: 11/28/2022]
Abstract
All bacteria are continuously exposed to environmental and/or endogenously active oxygen and nitrogen compounds and radicals. To reduce the deleterious effects of these reactive species, most bacteria have evolved specific sensor proteins that regulate the expression of enzymes that detoxify these species and repair proteins. Some bacterial transcriptional regulators containing an iron-sulfur cluster are involved in coordinating these physiological responses. Mechanistic and structural information can show how these regulators function, in particular, how chemical interactions at the cluster drive subsequent regulatory responses. The [2Fe-2S] transcription factor SoxR (superoxide response) functions as a bacterial sensor of oxidative stress and nitric oxide (NO). This review focuses on the mechanisms by which SoxR proteins respond to oxidative stress.
Collapse
Affiliation(s)
- Kazuo Kobayashi
- The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan.
| | - Mayu Fujikawa
- The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
| | - Takahiro Kozawa
- The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
| |
Collapse
|
17
|
Müh F, Zouni A. The nonheme iron in photosystem II. PHOTOSYNTHESIS RESEARCH 2013; 116:295-314. [PMID: 24077892 DOI: 10.1007/s11120-013-9926-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 09/17/2013] [Indexed: 06/02/2023]
Abstract
Photosystem II (PSII), the light-driven water:plastoquinone (PQ) oxidoreductase of oxygenic photosynthesis, contains a nonheme iron (NHI) at its electron acceptor side. The NHI is situated between the two PQs QA and QB that serve as one-electron transmitter and substrate of the reductase part of PSII, respectively. Among the ligands of the NHI is a (bi)carbonate originating from CO2, the substrate of the dark reactions of oxygenic photosynthesis. Based on recent advances in the crystallography of PSII, we review the structure of the NHI in PSII and discuss ideas concerning its function and the role of bicarbonate along with a comparison to the reaction center of purple bacteria and other enzymes containing a mononuclear NHI site.
Collapse
|
18
|
Tremey E, Bonnot F, Moreau Y, Berthomieu C, Desbois A, Favaudon V, Blondin G, Houée-Levin C, Nivière V. Hydrogen bonding to the cysteine ligand of superoxide reductase: acid–base control of the reaction intermediates. J Biol Inorg Chem 2013; 18:815-30. [DOI: 10.1007/s00775-013-1025-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 07/15/2013] [Indexed: 12/26/2022]
|
19
|
|
20
|
Gardner PR. Hemoglobin: a nitric-oxide dioxygenase. SCIENTIFICA 2012; 2012:683729. [PMID: 24278729 PMCID: PMC3820574 DOI: 10.6064/2012/683729] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 10/04/2012] [Indexed: 05/09/2023]
Abstract
Members of the hemoglobin superfamily efficiently catalyze nitric-oxide dioxygenation, and when paired with native electron donors, function as NO dioxygenases (NODs). Indeed, the NOD function has emerged as a more common and ancient function than the well-known role in O2 transport-storage. Novel hemoglobins possessing a NOD function continue to be discovered in diverse life forms. Unique hemoglobin structures evolved, in part, for catalysis with different electron donors. The mechanism of NOD catalysis by representative single domain hemoglobins and multidomain flavohemoglobin occurs through a multistep mechanism involving O2 migration to the heme pocket, O2 binding-reduction, NO migration, radical-radical coupling, O-atom rearrangement, nitrate release, and heme iron re-reduction. Unraveling the physiological functions of multiple NODs with varying expression in organisms and the complexity of NO as both a poison and signaling molecule remain grand challenges for the NO field. NOD knockout organisms and cells expressing recombinant NODs are helping to advance our understanding of NO actions in microbial infection, plant senescence, cancer, mitochondrial function, iron metabolism, and tissue O2 homeostasis. NOD inhibitors are being pursued for therapeutic applications as antibiotics and antitumor agents. Transgenic NOD-expressing plants, fish, algae, and microbes are being developed for agriculture, aquaculture, and industry.
Collapse
Affiliation(s)
- Paul R. Gardner
- Miami Valley Biotech, 1001 E. 2nd Street, Suite 2445, Dayton, OH 45402, USA
| |
Collapse
|
21
|
Fe–O versus O–O bond cleavage in reactive iron peroxide intermediates of superoxide reductase. J Biol Inorg Chem 2012; 18:95-101. [DOI: 10.1007/s00775-012-0954-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2012] [Accepted: 10/15/2012] [Indexed: 10/27/2022]
|
22
|
Fujikawa M, Kobayashi K, Kozawa T. Direct oxidation of the [2Fe-2S] cluster in SoxR protein by superoxide: distinct differential sensitivity to superoxide-mediated signal transduction. J Biol Chem 2012; 287:35702-35708. [PMID: 22908228 PMCID: PMC3471711 DOI: 10.1074/jbc.m112.395079] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 08/17/2012] [Indexed: 11/06/2022] Open
Abstract
The [2Fe-2S] transcription factor SoxR is activated by reversible one-electron oxidation of its [2Fe-2S] cluster, leading to enhanced production of various antioxidant proteins through induction of the soxRS regulon in Escherichia coli. Recently, there has been considerable debate about whether superoxide (O(2)(•)) activates SoxR directly. To elucidate the underlying activation mechanism, we investigated SoxR interaction with O(2)(•) using pulse radiolysis. Radiolytically generated hydrated electrons reduced the oxidized form of the [2Fe-2S] cluster of SoxR within 2 μs. A subsequent increase in absorption in the visible region corresponding to reoxidation of the [2Fe-2S] cluster was observed on a time scale of milliseconds. Addition of human copper/zinc superoxide dismutase inhibited this delayed oxidation in a concentration-dependent fashion (I(50) = 1.0 μm), indicating that O(2)(•) oxidized the reduced form of SoxR directly. The second-order rate constant of this process was estimated to be 5 × 10(8) m(-1) s(-1). A similar result was observed after pulse radiolysis of Pseudomonas aeruginosa SoxR. However, superoxide dismutase inhibited the oxidation of reduced SoxR much more effectively in P. aeruginosa, even at a lower concentration (I(50) = 80 nm), indicating that the soxRS response is much more sensitive to O(2)(•) in E. coli than in P. aeruginosa. These results suggest that SoxR proteins play a distinct regulatory role in the activation of O(2)(•).
Collapse
Affiliation(s)
- Mayu Fujikawa
- Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
| | - Kazuo Kobayashi
- Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan.
| | - Takahiro Kozawa
- Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
| |
Collapse
|
23
|
McDonald AR, Van Heuvelen KM, Guo Y, Li F, Bominaar EL, Münck E, Que L. Characterization of a thiolato iron(III) Peroxy dianion complex. Angew Chem Int Ed Engl 2012; 51:9132-6. [PMID: 22888066 PMCID: PMC3448492 DOI: 10.1002/anie.201203602] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 06/19/2012] [Indexed: 11/09/2022]
Abstract
Nucleophilic oxidant: The reaction between a thiolato iron(II) complex 1 and superoxide in aprotic solvent at -90 °C yields a novel thiolato iron(III) peroxide intermediate 2, which exhibits unusually high nucleophilic reactivity. Compound 2 is an isomer of the thiolato iron(II) superoxide intermediate that is invoked in the reaction between superoxide reductase and superoxide.
Collapse
Affiliation(s)
- Aidan R. McDonald
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, MN 55455, USA
| | - Katherine M. Van Heuvelen
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, MN 55455, USA
| | - Yisong Guo
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Feifei Li
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, MN 55455, USA
| | - Emile L. Bominaar
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Eckard Münck
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Lawrence Que
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, MN 55455, USA
| |
Collapse
|
24
|
McDonald AR, Van Heuvelen KM, Guo Y, Li F, Bominaar EL, Münck E, Que L. Characterization of a Thiolato Iron(III) Peroxy Dianion Complex. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201203602] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|