1
|
Han Q, Lin B, Liu Z, Li M, Luo Z, Xie X, Ma L, Su H, Sheng X. Computational Study on the Reaction Mechanism of 5-Enolpyruvylshikimate-3-phosphate Synthase from Nicotiana Tabacum. ChemistryOpen 2025:e202400433. [PMID: 39778026 DOI: 10.1002/open.202400433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/04/2024] [Indexed: 01/11/2025] Open
Abstract
5-Enolpyruvylshikimate-3-phosphate synthase (EPSPS) catalyzes the conversion of 5-enolpyruvate (PEP) and shikimic acid phosphate (S3P) to 5-enolpyruvylshikimic acid-3-phosphate (EPSP), releasing inorganic phosphate. This reaction is the sixth step of the shikimate pathway, which is a metabolic pathway used by microorganisms and plants for the biosynthesis of aromatic amino acids and folates but not in mammals. In the present study, the detailed reaction mechanism of EPSPS from Nicotiana tabacum (NtEPSPS) is revealed by quantum chemical calculations with the cluster approach. The reaction is proposed to involve the formation of a carbocation intermediate, the formation of a tetrahedral intermediate, the C-O bond cleavage and the re-formation of C=C bond. All four steps are concerted processes involving proton transfer events. The calculations suggest a step-wise mechanism for the formation of the tetrahedral intermediate by the proton transfer from the hydroxyl group of S3P to Asp331 and the nucleophilic attack of hydroxyl group on the carbocation, which is consistent with the proposal in literature. The energy profile for the entire reaction is presented, showing that C-O bond cleavage of the tetrahedral intermediate, releasing phosphate, is the rate-limiting step. The interaction between the Glu359 residue and the phosphate group is significant in stabilizing the phosphate.
Collapse
Affiliation(s)
- Qingfang Han
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Beibei Lin
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- Haihe Laboratory of Synthetic Biology, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Ziwei Liu
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Mengsha Li
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Zhaopeng Luo
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Xixian Xie
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Lijuan Ma
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Hao Su
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Xiang Sheng
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| |
Collapse
|
2
|
Mycobacterium tuberculosis Shikimate Pathway Enzymes as Targets for the Rational Design of Anti-Tuberculosis Drugs. Molecules 2020; 25:molecules25061259. [PMID: 32168746 PMCID: PMC7144000 DOI: 10.3390/molecules25061259] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/06/2020] [Accepted: 02/10/2020] [Indexed: 12/17/2022] Open
Abstract
Roughly a third of the world’s population is estimated to have latent Mycobacterium tuberculosis infection, being at risk of developing active tuberculosis (TB) during their lifetime. Given the inefficacy of prophylactic measures and the increase of drug-resistant M. tuberculosis strains, there is a clear and urgent need for the development of new and more efficient chemotherapeutic agents, with selective toxicity, to be implemented on patient treatment. The component enzymes of the shikimate pathway, which is essential in mycobacteria and absent in humans, stand as attractive and potential targets for the development of new drugs to treat TB. This review gives an update on published work on the enzymes of the shikimate pathway and some insight on what can be potentially explored towards selective drug development.
Collapse
|
3
|
Dasgupta S, Herbert JM. Using Atomic Confining Potentials for Geometry Optimization and Vibrational Frequency Calculations in Quantum-Chemical Models of Enzyme Active Sites. J Phys Chem B 2020; 124:1137-1147. [PMID: 31986049 DOI: 10.1021/acs.jpcb.9b11060] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Quantum-chemical studies of enzymatic reaction mechanisms sometimes use truncated active-site models as simplified alternatives to mixed quantum mechanics molecular mechanics (QM/MM) procedures. Eliminating the MM degrees of freedom reduces the complexity of the sampling problem, but the trade-off is the need to introduce geometric constraints in order to prevent structural collapse of the model system during geometry optimizations that do not contain a full protein backbone. These constraints may impair the efficiency of the optimization, and care must be taken to avoid artifacts such as imaginary vibrational frequencies. We introduce a simple alternative in which terminal atoms of the model system are placed in soft harmonic confining potentials rather than being rigidly constrained. This modification is simple to implement and straightforward to use in vibrational frequency calculations, unlike iterative constraint-satisfaction algorithms, and allows the optimization to proceed without constraint even though the practical result is to fix the anchor atoms in space. The new approach is more efficient for optimizing minima and transition states, as compared to the use of fixed-atom constraints, and also more robust against unwanted imaginary frequencies. We illustrate the method by application to several enzymatic reaction pathways where entropy makes a significant contribution to the relevant reaction barriers. The use of confining potentials correctly describes reaction paths and facilitates calculation of both vibrational zero-point and finite-temperature entropic corrections to barrier heights.
Collapse
Affiliation(s)
- Saswata Dasgupta
- Department of Chemistry and Biochemistry , The Ohio State University , Columbus , Ohio 43210 , United States
| | - John M Herbert
- Department of Chemistry and Biochemistry , The Ohio State University , Columbus , Ohio 43210 , United States
| |
Collapse
|
4
|
Dos Santos AM, Lima AH, Alves CN, Lameira J. Unraveling the Addition-Elimination Mechanism of EPSP Synthase through Computer Modeling. J Phys Chem B 2017; 121:8626-8637. [PMID: 28829128 DOI: 10.1021/acs.jpcb.7b05063] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Enolpyruvyl transfer from phosphoenolpyruvate (PEP) to the hydroxyl group of shikimate-5-OH-3-phosphate (S3P) is catalyzed by 5-enolpyruvylshikimate 3-phosphate (EPSP) synthase in a reaction that involves breaking the C-O bond of PEP. Catalysis involves an addition-elimination mechanism with the formation of a tetrahedral intermediate (THI). Experiments have elucidated the mechanism of THI formation and breakdown. However, the catalytic action of EPSP synthase and the individual roles of catalytic residues Asp313 and Glu341 remains unclear. We have used a hybrid quantum mechanical/molecular mechanical (QM/MM) approach to explore the free energy surface in a reaction catalyzed by EPSP synthase. The Glu341 was the most favorable acid/base catalyst. Our results indicate that the protonation of PEP C3 precedes the nucleophilic attack on PEP C2 in the addition mechanism. Also, the breaking of the C-O bond of THI to form an EPSP cation intermediate must occur before proton transfer from PEP C3 to Glu341 in the elimination mechanism. Analysis of the FES supports cationic intermediate formation during the reaction catalyzed by EPSP synthase. Finally, the computational model indicates a proton transfer shift (Hammond shift) from Glu341 to C3 for an enzyme-based reaction with the shifted transition state, earlier than in the reference reaction in water.
Collapse
Affiliation(s)
- Alberto M Dos Santos
- Institute of Biological Sciences, Federal University of Pará , Belém, PA 66075-110, Brazil
| | - Anderson H Lima
- Institute of Biological Sciences, Federal University of Pará , Belém, PA 66075-110, Brazil
| | - Cláudio Nahum Alves
- Institute of Exact and Natural Sciences, Federal University of Pará , Belém, PA 66075-110, Brazil
| | - Jerônimo Lameira
- Institute of Biological Sciences, Federal University of Pará , Belém, PA 66075-110, Brazil
| |
Collapse
|
5
|
Abstract
Organophosphonic acids are unique as natural products in terms of stability and mimicry. The C-P bond that defines these compounds resists hydrolytic cleavage, while the phosphonyl group is a versatile mimic of transition-states, intermediates, and primary metabolites. This versatility may explain why a variety of organisms have extensively explored the use organophosphonic acids as bioactive secondary metabolites. Several of these compounds, such as fosfomycin and bialaphos, figure prominently in human health and agriculture. The enzyme reactions that create these molecules are an interesting mix of chemistry that has been adopted from primary metabolism as well as those with no chemical precedent. Additionally, the phosphonate moiety represents a source of inorganic phosphate to microorganisms that live in environments that lack this nutrient; thus, unusual enzyme reactions have also evolved to cleave the C-P bond. This review is a comprehensive summary of the occurrence and function of organophosphonic acids natural products along with the mechanisms of the enzymes that synthesize and catabolize these molecules.
Collapse
Affiliation(s)
- Geoff P Horsman
- Department of Chemistry and Biochemistry, Wilfrid Laurier University , Waterloo, Ontario N2L 3C5, Canada
| | - David L Zechel
- Department of Chemistry, Queen's University , Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
6
|
Light SH, Krishna SN, Minasov G, Anderson WF. An Unusual Cation-Binding Site and Distinct Domain-Domain Interactions Distinguish Class II Enolpyruvylshikimate-3-phosphate Synthases. Biochemistry 2016; 55:1239-45. [PMID: 26813771 DOI: 10.1021/acs.biochem.5b00553] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Enolpyruvylshikimate-3-phosphate synthase (EPSPS) catalyzes a critical step in the biosynthesis of a number of aromatic metabolites. An essential prokaryotic enzyme and the molecular target of the herbicide glyphosate, EPSPSs are the subject of both pharmaceutical and commercial interest. Two EPSPS classes that exhibit low sequence homology, differing substrate/glyphosate affinities, and distinct cation activation properties have previously been described. Here, we report structural studies of the monovalent cation-binding class II Coxiella burnetii EPSPS (cbEPSPS). Three cbEPSPS crystal structures reveal that the enzyme undergoes substantial conformational changes that alter the electrostatic potential of the active site. A complex with shikimate-3-phosphate, inorganic phosphate (Pi), and K(+) reveals that ligand induced domain closure produces an unusual cation-binding site bordered on three sides by the N-terminal domain, C-terminal domain, and the product Pi. A crystal structure of the class I Vibrio cholerae EPSPS (vcEPSPS) clarifies the basis of differential class I and class II cation responsiveness, showing that in class I EPSPSs a lysine side chain occupies the would-be cation-binding site. Finally, we identify distinct patterns of sequence conservation at the domain-domain interface and propose that the two EPSPS classes have evolved to differently optimize domain opening-closing dynamics.
Collapse
Affiliation(s)
- Samuel H Light
- Center for Structural Genomics of Infectious Diseases and Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University , 303 East Chicago Avenue, Chicago, Illinois 60611, United States
| | - Sankar N Krishna
- Center for Structural Genomics of Infectious Diseases and Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University , 303 East Chicago Avenue, Chicago, Illinois 60611, United States
| | - George Minasov
- Center for Structural Genomics of Infectious Diseases and Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University , 303 East Chicago Avenue, Chicago, Illinois 60611, United States
| | - Wayne F Anderson
- Center for Structural Genomics of Infectious Diseases and Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University , 303 East Chicago Avenue, Chicago, Illinois 60611, United States
| |
Collapse
|
7
|
Jongkees SAK, Yoo H, Withers SG. Mechanistic investigations of unsaturated glucuronyl hydrolase from Clostridium perfringens. J Biol Chem 2014; 289:11385-11395. [PMID: 24573682 DOI: 10.1074/jbc.m113.545293] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Experiments were carried out to probe the details of the hydration-initiated hydrolysis catalyzed by the Clostridium perfringens unsaturated glucuronyl hydrolase of glycoside hydrolase family 88 in the CAZy classification system. Direct (1)H NMR monitoring of the enzymatic reaction detected no accumulated reaction intermediates in solution, suggesting that rearrangement of the initial hydration product occurs on-enzyme. An attempt at mechanism-based trapping of on-enzyme intermediates using a 1,1-difluoro-substrate was unsuccessful because the probe was too deactivated to be turned over by the enzyme. Kinetic isotope effects arising from deuterium-for-hydrogen substitution at carbons 1 and 4 provide evidence for separate first-irreversible and overall rate-determining steps in the hydration reaction, with two potential mechanisms proposed to explain these results. Based on the positioning of catalytic residues in the enzyme active site, the lack of efficient turnover of a 2-deoxy-2-fluoro-substrate, and several unsuccessful attempts at confirmation of a simpler mechanism involving a covalent glycosyl-enzyme intermediate, the most plausible mechanism is one involving an intermediate bearing an epoxide on carbons 1 and 2.
Collapse
Affiliation(s)
- Seino A K Jongkees
- Departments of Chemistry and Biochemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Hayoung Yoo
- Departments of Chemistry and Biochemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Stephen G Withers
- Departments of Chemistry and Biochemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada.
| |
Collapse
|
8
|
Kinetic isotope effects for studying post-translational modifying enzymes. Curr Opin Chem Biol 2012; 16:472-8. [PMID: 23146439 DOI: 10.1016/j.cbpa.2012.10.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 10/14/2012] [Accepted: 10/15/2012] [Indexed: 11/20/2022]
Abstract
The ongoing development of new experimental approaches for the measurement of isotope effects is improving our understanding of the physical and chemical changes that occur during biological catalysis. Biological catalysis involves numerous steps that include binding, conformational changes, chemical catalysis and product release. The critical points on the free energy surface for biologically catalyzed reactions include all bound intermediates and the intervening transition states. Isotope effects can be used to investigate both intermediate (equilibrium isotope effects) and transition state (kinetic isotope effects) structures along the reaction coordinate. This review details new techniques for measuring isotope effects and provides several examples of their use in solving transition state structures for post-translational modifying enzymes.
Collapse
|
9
|
Lou M, Gilpin ME, Burger SK, Malik AM, Gawuga V, Popović V, Capretta A, Berti PJ. Transition state analysis of acid-catalyzed hydrolysis of an enol ether, enolpyruvylshikimate 3-phosphate (EPSP). J Am Chem Soc 2012; 134:12947-57. [PMID: 22765168 DOI: 10.1021/ja3043382] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Proton transfer to carbon represents a significant catalytic challenge because of the large intrinsic energetic barrier and the frequently unfavorable thermodynamics. Multiple kinetic isotope effects (KIEs) were measured for acid-catalyzed hydrolysis of the enol ether functionality of enolpyruvylshikimate 3-phosphate (EPSP) as a nonenzymatic analog of the EPSP synthase (AroA) reaction. The large solvent deuterium KIE demonstrated that protonating C3 was the rate-limiting step, and the lack of solvent hydron exchange into EPSP demonstrated that protonation was irreversible. The reaction mechanism was stepwise, with C3, the methylene carbon, being protonated to form a discrete oxacarbenium ion intermediate before water attack at the cationic center, that is, an AH(‡)*AN (or AH(‡) + AN) mechanism. The calculated 3-(14)C and 3,3-(2)H2 KIEs varied as a function of the extent of proton transfer at the transition state, as reflected in the C3-H(+) bond order, nC3-H+. The calculated 3-(14)C KIE was a function primarily of C3 coupling with the movement of the transferring proton, as reflected in the reaction coordinate contribution ((light)ν(‡)/(heavy)ν(‡)), rather than of changes in bonding. Coupling was strongest in early and late transition states, where the reaction coordinate frequency was lower. The other calculated (14)C and (18)O KIEs were more sensitive to interactions with counterions and solvation in the model structures than nC3-H+. The KIEs revealed a moderately late transition state with significant oxacarbenium ion character and with a C3-H(+) bond order ≈0.6.
Collapse
Affiliation(s)
- Meiyan Lou
- Department of Chemistry & Chemical Biology, and †Department of Biochemistry & Biomedical Sciences, McMaster University , 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada
| | | | | | | | | | | | | | | |
Collapse
|