1
|
Dubey P, Somani A, Lin J, Iavarone AT, Klinman JP. Identification of Scaffold Specific Energy Transfer Networks in the Enthalpic Activation of Orotidine 5'-Monophosphate Decarboxylase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.29.635545. [PMID: 39975186 PMCID: PMC11838380 DOI: 10.1101/2025.01.29.635545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Orotidine 5'-monophosphate decarboxylase (OMPDC) is one of the most efficient enzyme systems studied, enhancing the decarboxylation of OMP to uridine 5'-monophosphate (UMP) by ca. 17 orders of magnitude, primarily by reducing the enthalpy of activation by ca. 28 kcal/mol. Despite a substantial reduction in activation enthalpy, OMPDC requires 15 kcal/mol of activation energy post-ES complex formation. This study investigates the physical basis of how thermal energy from solvent collisions is directed into the active site of enzyme to enable efficient thermal activation of the reaction. Comparative study of temperature-dependent hydrogen-deuterium exchange mass spectrometry (TDHDX) for WT and mutant forms of enzymes has recently been shown to uncover site specific protein networks for thermal energy transfer from solvent to enzyme active sites. In this study, we interrogate region-specific changes in the enthalpic barrier for local protein flexibility using a native OMPDC from Methanothermobacter thermautotrophicus (Mt-OMPDC) and a single site variant (Leu123Ala) that alters the activation enthalpy for catalytic turnover. The data obtained implicate four spatially resolved, thermally sensitive networks that originate at different protein/solvent interfaces and terminate at sites surrounding the substrate near the substrate phosphate-binding region (R203), the substrate- ribose binding region (K42), and a reaction enhancing loop5 (S127). These are proposed to act synergistically, transiently optimizing the position and electrostatics of the reactive carboxylate of the substrate to facilitate activated complex formation. The uncovered complexity of thermal activation networks in Mt-OMPDC distinguishes this enzyme from other members of the TIM barrel family previously investigated by TDHDX. The new findings extend the essential role of protein scaffold dynamics in orchestrating enzyme activity, with broad implications for the design of highly efficient biocatalysts.
Collapse
Affiliation(s)
- Pankaj Dubey
- California Institute for Quantitative Biosciences, University of California Berkeley; Berkeley, California 94720, United States
- Department of Chemistry, University of California Berkeley; Berkeley, California 94720, United States
| | - Anish Somani
- Department of Chemistry, University of California Berkeley; Berkeley, California 94720, United States
| | - Jessica Lin
- Department of Bioengineering, University of California Berkeley; Berkeley, California 94720, United States
| | - Anthony T. Iavarone
- California Institute for Quantitative Biosciences, University of California Berkeley; Berkeley, California 94720, United States
- Department of Chemistry, University of California Berkeley; Berkeley, California 94720, United States
| | - Judith P. Klinman
- California Institute for Quantitative Biosciences, University of California Berkeley; Berkeley, California 94720, United States
- Department of Chemistry, University of California Berkeley; Berkeley, California 94720, United States
- Department of Molecular and Cell Biology, University of California Berkeley; Berkeley, California 94720, United States
| |
Collapse
|
2
|
Watt SKI, Charlebois JG, Rowley CN, Keillor JW. A mechanistic study of thiol addition to N-acryloylpiperidine. Org Biomol Chem 2023; 21:2204-2212. [PMID: 36808175 DOI: 10.1039/d2ob02223k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Nucleophilic cysteine (Cys) residues are present in many enzyme active sites and represent the target of many different irreversible enzyme inhibitors. Given its fine balance between aqueous stability and thiolate reactivity, the acrylamide group is a particularly popular warhead pharmacophore among inhibitors designed for biological and therapeutic application. The acrylamide group is well known to undergo thiol addition, but the precise mechanism of this addition reaction has not been studied in as much detail. In this work we have focussed on the reaction of N-acryloylpiperidine (AcrPip), which represents a motif found in many targeted covalent inhibitor drugs. Using a precise HPLC-based assay, we measured the second order rate constants for the reaction of AcrPip with a panel of thiols possessing different pKa values. This allowed construction of a Brønsted-type plot that reveals the relative insensitivity of the reaction to the nucleophilicity of the thiolate. By studying temperature effects, we were able to construct an Eyring plot from which the enthalpy and entropy of activation were calculated. Ionic strength and solvent kinetic isotope effects were also studied, informing on charge dispersal and proton transfer in the transition state. DFT calculations were also performed, providing information on the potential structure of the activated complex. Taken together, these data strongly support one cohesive addition mechanism that is the microscopic reverse of the E1cb elimination, and highly relevant to the intrinsic thiol selectivity of AcrPip inhibitors and their subsequent design.
Collapse
Affiliation(s)
- Sarah K I Watt
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Canada.
| | - Janique G Charlebois
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Canada.
| | | | - Jeffrey W Keillor
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Canada.
| |
Collapse
|
3
|
Abstract
Many enzymes that show a large specificity in binding the enzymatic transition state with a higher affinity than the substrate utilize substrate binding energy to drive protein conformational changes to form caged substrate complexes. These protein cages provide strong stabilization of enzymatic transition states. Using part of the substrate binding energy to drive the protein conformational change avoids a similar strong stabilization of the Michaelis complex and irreversible ligand binding. A seminal step in the development of modern enzyme catalysts was the evolution of enzymes that couple substrate binding to a conformational change. These include enzymes that function in glycolysis (triosephosphate isomerase), the biosynthesis of lipids (glycerol phosphate dehydrogenase), the hexose monophosphate shunt (6-phosphogluconate dehydrogenase), and the mevalonate pathway (isopentenyl diphosphate isomerase), catalyze the final step in the biosynthesis of pyrimidine nucleotides (orotidine monophosphate decarboxylase), and regulate the cellular levels of adenine nucleotides (adenylate kinase). The evolution of enzymes that undergo ligand-driven conformational changes to form active protein-substrate cages is proposed to proceed by selection of variants, in which the selected side chain substitutions destabilize a second protein conformer that shows compensating enhanced binding interactions with the substrate. The advantages inherent to enzymes that incorporate a conformational change into the catalytic cycle provide a strong driving force for the evolution of flexible protein folds such as the TIM barrel. The appearance of these folds represented a watershed event in enzyme evolution that enabled the rapid propagation of enzyme activities within enzyme superfamilies.
Collapse
Affiliation(s)
- John P Richard
- Department of Chemistry, University at Buffalo, the State University of New York, Buffalo, New York 14260-3000, United States
| |
Collapse
|
4
|
Robertson AJ, Cruz-Navarrete FA, Wood HP, Vekaria N, Hounslow AM, Bisson C, Cliff MJ, Baxter NJ, Waltho JP. An Enzyme with High Catalytic Proficiency Utilizes Distal Site Substrate Binding Energy to Stabilize the Closed State but at the Expense of Substrate Inhibition. ACS Catal 2022; 12:3149-3164. [PMID: 35692864 PMCID: PMC9171722 DOI: 10.1021/acscatal.1c05524] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/10/2022] [Indexed: 02/05/2023]
Abstract
Understanding the factors that underpin the enormous catalytic proficiencies of enzymes is fundamental to catalysis and enzyme design. Enzymes are, in part, able to achieve high catalytic proficiencies by utilizing the binding energy derived from nonreacting portions of the substrate. In particular, enzymes with substrates containing a nonreacting phosphodianion group coordinated in a distal site have been suggested to exploit this binding energy primarily to facilitate a conformational change from an open inactive form to a closed active form, rather than to either induce ground state destabilization or stabilize the transition state. However, detailed structural evidence for the model is limited. Here, we use β-phosphoglucomutase (βPGM) to investigate the relationship between binding a phosphodianion group in a distal site, the adoption of a closed enzyme form, and catalytic proficiency. βPGM catalyzes the isomerization of β-glucose 1-phosphate to glucose 6-phosphate via phosphoryl transfer reactions in the proximal site, while coordinating a phosphodianion group of the substrate(s) in a distal site. βPGM has one of the largest catalytic proficiencies measured and undergoes significant domain closure during its catalytic cycle. We find that side chain substitution at the distal site results in decreased substrate binding that destabilizes the closed active form but is not sufficient to preclude the adoption of a fully closed, near-transition state conformation. Furthermore, we reveal that binding of a phosphodianion group in the distal site stimulates domain closure even in the absence of a transferring phosphoryl group in the proximal site, explaining the previously reported β-glucose 1-phosphate inhibition. Finally, our results support a trend whereby enzymes with high catalytic proficiencies involving phosphorylated substrates exhibit a greater requirement to stabilize the closed active form.
Collapse
Affiliation(s)
- Angus J. Robertson
- School of Biosciences, The University of Sheffield, Sheffield, S10 2TN, United Kingdom
| | | | - Henry P. Wood
- School of Biosciences, The University of Sheffield, Sheffield, S10 2TN, United Kingdom
| | - Nikita Vekaria
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, Manchester, M1 7DN, United Kingdom
| | - Andrea M. Hounslow
- School of Biosciences, The University of Sheffield, Sheffield, S10 2TN, United Kingdom
| | - Claudine Bisson
- School of Biosciences, The University of Sheffield, Sheffield, S10 2TN, United Kingdom
| | - Matthew J. Cliff
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, Manchester, M1 7DN, United Kingdom
| | - Nicola J. Baxter
- School of Biosciences, The University of Sheffield, Sheffield, S10 2TN, United Kingdom
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, Manchester, M1 7DN, United Kingdom
| | - Jonathan P. Waltho
- School of Biosciences, The University of Sheffield, Sheffield, S10 2TN, United Kingdom
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, Manchester, M1 7DN, United Kingdom
| |
Collapse
|
5
|
Cristobal JR, Brandão TAS, Reyes AC, Richard JP. Protein-Ribofuranosyl Interactions Activate Orotidine 5'-Monophosphate Decarboxylase for Catalysis. Biochemistry 2021; 60:3362-3373. [PMID: 34726391 DOI: 10.1021/acs.biochem.1c00589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The role of a global, substrate-driven, enzyme conformational change in enabling the extraordinarily large rate acceleration for orotidine 5'-monophosphate decarboxylase (OMPDC)-catalyzed decarboxylation of orotidine 5'-monophosphate (OMP) is examined in experiments that focus on the interactions between OMPDC and the ribosyl hydroxyl groups of OMP. The D37 and T100' side chains of OMPDC interact, respectively, with the C-3' and C-2' hydroxyl groups of enzyme-bound OMP. D37G and T100'A substitutions result in 1.4 kcal/mol increases in the activation barrier ΔG⧧ for catalysis of decarboxylation of the phosphodianion-truncated substrate 1-(β-d-erythrofuranosyl)orotic acid (EO) but result in larger 2.1-2.9 kcal/mol increases in ΔG⧧ for decarboxylation of OMP and for phosphite dianion-activated decarboxylation of EO. This shows that these substitutions reduce transition-state stabilization by the Q215, Y217, and R235 side chains at the dianion binding site. The D37G and T100'A substitutions result in <1.0 kcal/mol increases in ΔG⧧ for activation of OMPDC-catalyzed decarboxylation of the phosphoribofuranosyl-truncated substrate FO by phosphite dianions. Experiments to probe the effect of D37 and T100' substitutions on the kinetic parameters for d-glycerol 3-phosphate and d-erythritol 4-phosphate activators of OMPDC-catalyzed decarboxylation of FO show that ΔG⧧ for sugar phosphate-activated reactions is increased by ca. 2.5 kcal/mol for each -OH interaction eliminated by D37G or T100'A substitutions. We conclude that the interactions between the D37 and T100' side chains and ribosyl or ribosyl-like hydroxyl groups are utilized to activate OMPDC for catalysis of decarboxylation of OMP, EO, and FO.
Collapse
Affiliation(s)
- Judith R Cristobal
- Department of Chemistry, University at Buffalo, SUNY, Buffalo, New York 14260-3000, United States
| | - Tiago A S Brandão
- Department of Chemistry, ICEx, Federal University of Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Archie C Reyes
- Department of Chemistry, University at Buffalo, SUNY, Buffalo, New York 14260-3000, United States
| | - John P Richard
- Department of Chemistry, University at Buffalo, SUNY, Buffalo, New York 14260-3000, United States
| |
Collapse
|
6
|
Cheng R, Lai R, Peng C, Lopez J, Li Z, Naowarojna N, Li K, Wong C, Lee N, Whelan SA, Qiao L, Grinstaff MW, Wang J, Cui Q, Liu P. Implications for an imidazol-2-yl carbene intermediate in the rhodanase-catalyzed C-S bond formation reaction of anaerobic ergothioneine biosynthesis. ACS Catal 2021; 11:3319-3334. [PMID: 34745712 DOI: 10.1021/acscatal.0c04886] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In the anaerobic ergothioneine biosynthetic pathway, a rhodanese domain containing enzyme (EanB) activates tne hercynine's sp2 ε-C-H Dona ana replaces it with a C-S bond to produce ergothioneine. The key intermediate for this trans-sulfuration reaction is the Cys412 persulfide. Substitution of the EanB-Cys412 persulfide with a Cys412 perselenide does not yield the selenium analog of ergothioneine, selenoneine. However, in deuterated buffer, the perselenide-modified EanB catalyzes the deuterium exchange between hercynine's sp2 ε-C-H bond and D2O. Results from QM/MM calculations suggest that the reaction involves a carbene intermediate and that Tyr353 plays a key role. We hypothesize that modulating the pKa of Tyr353 will affect the deuterium-exchange rate. Indeed, the 3,5-difluoro tyrosine containing EanB catalyzes the deuterium exchange reaction with k ex of ~10-fold greater than the wild-type EanB (EanBWT). With regards to potential mechanisms, these results support the involvement of a carbene intermediate in EanB-catalysis, rendering EanB as one of the few carbene-intermediate involving enzymatic systems.
Collapse
Affiliation(s)
- Ronghai Cheng
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, USA
| | - Rui Lai
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, USA
| | - Chao Peng
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai 201210, China
| | - Juan Lopez
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, USA
| | - Zhihong Li
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai 201210, China
| | - Nathchar Naowarojna
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, USA
| | - Kelin Li
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, USA
| | - Christina Wong
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, USA
| | - Norman Lee
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, USA
| | - Stephen A. Whelan
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, USA
| | - Lu Qiao
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, USA
| | - Mark W. Grinstaff
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, USA
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, USA
| | - Jiangyun Wang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
| | - Qiang Cui
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, USA
| | - Pinghua Liu
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, USA
| |
Collapse
|
7
|
Brandão TAS, Richard JP. Orotidine 5'-Monophosphate Decarboxylase: The Operation of Active Site Chains Within and Across Protein Subunits. Biochemistry 2020; 59:2032-2040. [PMID: 32374983 PMCID: PMC7476526 DOI: 10.1021/acs.biochem.0c00241] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
The D37 and T100′
side chains of orotidine 5′-monophosphate
decarboxylase (OMPDC) interact with the C-3′ and C-2′
ribosyl hydroxyl groups, respectively, of the bound substrate. We
compare the intra-subunit interactions of D37 with the inter-subunit
interactions of T100′ by determining the effects of the D37G,
D37A, T100′G, and T100′A substitutions on the following:
(a) kcat and kcat/Km values for the OMPDC-catalyzed decarboxylations
of OMP and 5-fluoroorotidine 5′-monophosphate (FOMP) and (b)
the stability of dimeric OMPDC relative to the monomer. The D37G and
T100′A substitutions resulted in 2 kcal mol–1 increases in ΔG† for kcat/Km for the decarboxylation
of OMP, while the D37A and T100′G substitutions resulted in
larger 4 and 5 kcal mol–1 increases, respectively,
in ΔG†. The D37G and T100′A
substitutions both resulted in smaller 2 kcal mol–1 decreases in ΔG† for the
decarboxylation of FOMP compared to that of OMP. These results show
that the D37G and T100′A substitutions affect the barrier to
the chemical decarboxylation step while the D37A and T100′G
substitutions also affect the barrier to a slow, ligand-driven enzyme
conformational change. Substrate binding induces the movement of an
α-helix (G′98–S′106) toward the substrate
C-2′ ribosyl hydroxy bound at the main subunit. The T100′G
substitution destabilizes the enzyme dimer by 3.5 kcal mol–1 compared to the monomer, which is consistent with the known destabilization
of α-helices by the internal Gly side chains [Serrano, L., et
al. (1992) Nature, 356, 453–455].
We propose that the T100′G substitution weakens the α-helical
contacts at the dimer interface, which results in a decrease in the
dimer stability and an increase in the barrier to the ligand-driven
conformational change.
Collapse
Affiliation(s)
- Tiago A S Brandão
- Department of Chemistry, ICEx, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - John P Richard
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260-3000, United States
| |
Collapse
|
8
|
Study of intracellular anabolism of 5-fluorouracil and incorporation in nucleic acids based on an LC-HRMS method. J Pharm Anal 2020; 11:77-87. [PMID: 33717614 PMCID: PMC7930635 DOI: 10.1016/j.jpha.2020.04.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 12/21/2022] Open
Abstract
5-Fluorouracil (5-FU) is an anticancer drug extensively used for different cancers. Intracellular metabolic activation leads to several nucleoside and nucleotide metabolites essential to exert its cytotoxic activity on multiple cellular targets such as enzymes, DNA and RNA. In this paper, we describe the development of a method based on liquid chromatography coupled with high resolution mass spectrometry suitable for the simultaneous determination of the ten anabolic metabolites (nucleoside, nucleotide and sugar nucleotide) of 5-FU. The chromatographic separation was optimized on a porous graphitic carbon column allowing the analysis of the metabolites of 5-FU as well as endogenous nucleotides. The detection was performed on an Orbitrap® tandem mass spectrometer. Linearity of the method was verified in intracellular content and in RNA extracts. The limit of detection was equal to 12 pg injected on column for nucleoside metabolites of 5-FU and 150 pg injected on column for mono- and tri-phosphate nucleotide metabolites. Matrix effect was evaluated in cellular contents, DNA and RNA extracts for nucleoside and nucleotides metabolites. The method was successfully applied to i) measure the proportion of each anabolic metabolite of 5-FU in cellular contents, ii) follow the consequence of inhibition of enzymes on the endogenous nucleotide pools, iii) study the incorporation of metabolites of 5-FU into RNA and DNA, and iv) to determine the incorporation rate of 5-FUrd into 18 S and 28 S sub-units of rRNA. The LC-MS-HRMS method allows the analysis of the ten anabolic metabolites of 5-FU. The present method is useful to study the incorporation of 5-FU into RNA and DNA. Method to determine the incorporation rate of 5-FU into subunit of rRNA is innovative.
Collapse
|
9
|
Kulkarni YS, Amyes TL, Richard JP, Kamerlin SCL. Uncovering the Role of Key Active-Site Side Chains in Catalysis: An Extended Brønsted Relationship for Substrate Deprotonation Catalyzed by Wild-Type and Variants of Triosephosphate Isomerase. J Am Chem Soc 2019; 141:16139-16150. [PMID: 31508957 PMCID: PMC7032883 DOI: 10.1021/jacs.9b08713] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
We report results of detailed empirical valence bond simulations that model the effect of several amino acid substitutions on the thermodynamic (ΔG°) and kinetic activation (ΔG⧧) barriers to deprotonation of dihydroxyacetone phosphate (DHAP) and d-glyceraldehyde 3-phosphate (GAP) bound to wild-type triosephosphate isomerase (TIM), as well as to the K12G, E97A, E97D, E97Q, K12G/E97A, I170A, L230A, I170A/L230A, and P166A variants of this enzyme. The EVB simulations model the observed effect of the P166A mutation on protein structure. The E97A, E97Q, and E97D mutations of the conserved E97 side chain result in ≤1.0 kcal mol-1 decreases in the activation barrier for substrate deprotonation. The agreement between experimental and computed activation barriers is within ±1 kcal mol-1, with a strong linear correlation between ΔG⧧ and ΔG° for all 11 variants, with slopes β = 0.73 (R2 = 0.994) and β = 0.74 (R2 = 0.995) for the deprotonation of DHAP and GAP, respectively. These Brønsted-type correlations show that the amino acid side chains examined in this study function to reduce the standard-state Gibbs free energy of reaction for deprotonation of the weak α-carbonyl carbon acid substrate to form the enediolate phosphate reaction intermediate. TIM utilizes the cationic side chain of K12 to provide direct electrostatic stabilization of the enolate oxyanion, and the nonpolar side chains of P166, I170, and L230 are utilized for the construction of an active-site cavity that provides optimal stabilization of the enediolate phosphate intermediate relative to the carbon acid substrate.
Collapse
Affiliation(s)
- Yashraj S Kulkarni
- Science for Life Laboratory, Department of Chemistry - BMC , Uppsala University, BMC , Box 576, S-751 23 Uppsala , Sweden
| | - Tina L Amyes
- Department of Chemistry , University at Buffalo, SUNY , Buffalo , New York 14260-3000 , United States
| | - John P Richard
- Department of Chemistry , University at Buffalo, SUNY , Buffalo , New York 14260-3000 , United States
| | - Shina C L Kamerlin
- Science for Life Laboratory, Department of Chemistry - BMC , Uppsala University, BMC , Box 576, S-751 23 Uppsala , Sweden
| |
Collapse
|
10
|
Goryanova B, Amyes TL, Richard JP. Role of the Carboxylate in Enzyme-Catalyzed Decarboxylation of Orotidine 5'-Monophosphate: Transition State Stabilization Dominates Over Ground State Destabilization. J Am Chem Soc 2019; 141:13468-13478. [PMID: 31365243 PMCID: PMC6735427 DOI: 10.1021/jacs.9b04823] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
![]()
Kinetic
parameters kex (s–1)
and kex/Kd (M–1 s–1) are reported
for exchange
for deuterium in D2O of the C-6 hydrogen of 5-fluororotidine
5′-monophosphate (FUMP) catalyzed by the Q215A,
Y217F, and Q215A/Y217F variants of yeast orotidine 5′-monophosphate
decarboxylase (ScOMPDC) at pD 8.1, and by the Q215A
variant at pD 7.1–9.3. The pD rate profiles for wildtype ScOMPDC and the Q215A variant are identical, except for
a 2.5 log unit downward displacement in the profile for the Q215A
variant. The Q215A, Y217F and Q215A/Y217F substitutions cause 1.3–2.0
kcal/mol larger increases in the activation barrier for wildtype ScOMPDC-catalyzed deuterium exchange compared with decarboxylation,
because of the stronger apparent side chain interaction with the transition
state for the deuterium exchange reaction. The stabilization of the
transition state for the OMPDC-catalyzed deuterium exchange reaction
of FUMP is ca. 19 kcal/mol smaller than the transition
state for decarboxylation of OMP, and ca. 8 kcal/mol
smaller than for OMPDC-catalyzed deprotonation of FUMP to form the vinyl carbanion intermediate common to OMPDC-catalyzed
reactions OMP/FOMP and UMP/FUMP. We propose
that ScOMPDC shows similar stabilizing interactions
with the common portions of decarboxylation and deprotonation transition
states that lead to formation of this vinyl carbanion intermediate,
and that there is a large ca. (19–8) = 11 kcal/mol stabilization
of the former transition state from interactions with the nascent
CO2 of product. The effects of Q215A and Y217F substitutions
on kcat/Km for decarboxylation of OMP are expressed mainly as
an increase in Km for the reactions catalyzed
by the variant enzymes, while the effects on kex/Kd for deuterium exchange are
expressed mainly as an increase in kex. This shows that the Q215 and Y217 side chains stabilize the Michaelis
complex to OMP for the decarboxylation reaction, compared
with the complex to FUMP for the deuterium exchange reaction.
These results provide strong support for the conclusion that interactions
which stabilize the transition state for ScOMPDC-catalyzed
decarboxylation at a nonpolar enzyme active site dominate over interactions
that destabilize the ground-state Michaelis complex.
Collapse
Affiliation(s)
- Bogdana Goryanova
- Department of Chemistry , University at Buffalo, SUNY , Buffalo , New York 14260-3000 , United States
| | - Tina L Amyes
- Department of Chemistry , University at Buffalo, SUNY , Buffalo , New York 14260-3000 , United States
| | - John P Richard
- Department of Chemistry , University at Buffalo, SUNY , Buffalo , New York 14260-3000 , United States
| |
Collapse
|
11
|
Reyes AC, Plache DC, Koudelka AP, Amyes TL, Gerlt JA, Richard JP. Enzyme Architecture: Breaking Down the Catalytic Cage that Activates Orotidine 5'-Monophosphate Decarboxylase for Catalysis. J Am Chem Soc 2018; 140:17580-17590. [PMID: 30475611 PMCID: PMC6317530 DOI: 10.1021/jacs.8b09609] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report the results of a study of the catalytic role of a network of four interacting amino acid side chains at yeast orotidine 5'-monophosphate decarboxylase ( ScOMPDC), by the stepwise replacement of all four side chains. The H-bond, which links the -CH2OH side chain of S154 from the pyrimidine umbrella loop of ScOMPDC to the amide side chain of Q215 in the phosphodianion gripper loop, creates a protein cage for the substrate OMP. The role of this interaction in optimizing transition state stabilization from the dianion gripper side chains Q215, Y217, and R235 was probed by determining the kinetic parameter kcat/ Km for 16 enzyme variants, which include all combinations of single, double, triple, and quadruple S154A, Q215A, Y217F, and R235A mutations. The effects of consecutive Q215A, Y217F, and R235A mutations on Δ G⧧ for wild-type enzyme-catalyzed decarboxylation sum to 11.6 kcal/mol, but to only 7.6 kcal/mol when starting from S154A mutant. This shows that the S154A mutation results in a (11.6-7.6) = 4.0 kcal/mol decrease in transition state stabilization from interactions with Q215, Y217, and R235. Mutant cycles show that ca. 2 kcal/mol of this 4 kcal/mol effect is from the direct interaction between the S154 and Q215 side chains and that ca. 2 kcal/mol is from a tightening in the stabilizing interactions of the Y217 and R235 side chains. The sum of the effects of individual A154S, A215Q, F217Y and A235R substitutions at the quadruple mutant of ScOMPDC to give the corresponding triple mutants, 5.6 kcal/mol, is much smaller than 16.0 kcal/mol, the sum of the effects of the related four substitutions in wild-type ScOMPDC to give the respective single mutants. The small effect of substitutions at the quadruple mutant is consistent with a large entropic cost to holding the flexible loops of ScOMPDC in the active closed conformation.
Collapse
Affiliation(s)
- Archie C Reyes
- Department of Chemistry , University at Buffalo, SUNY , Buffalo , New York 14260-3000 , United States
| | - David C Plache
- Department of Chemistry , University at Buffalo, SUNY , Buffalo , New York 14260-3000 , United States
| | - Astrid P Koudelka
- Department of Chemistry , University at Buffalo, SUNY , Buffalo , New York 14260-3000 , United States
| | - Tina L Amyes
- Department of Chemistry , University at Buffalo, SUNY , Buffalo , New York 14260-3000 , United States
| | - John A Gerlt
- Department of Chemistry and Biochemistry , University of Illinois , Urbana , Illinois 61801 , United States
| | - John P Richard
- Department of Chemistry , University at Buffalo, SUNY , Buffalo , New York 14260-3000 , United States
| |
Collapse
|
12
|
Reyes AC, Amyes TL, Richard JP. Primary Deuterium Kinetic Isotope Effects: A Probe for the Origin of the Rate Acceleration for Hydride Transfer Catalyzed by Glycerol-3-Phosphate Dehydrogenase. Biochemistry 2018; 57:4338-4348. [PMID: 29927590 PMCID: PMC6091503 DOI: 10.1021/acs.biochem.8b00536] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Large
primary deuterium kinetic isotope effects (1° DKIEs)
on enzyme-catalyzed hydride transfer may be observed when the transferred
hydride tunnels through the energy barrier. The following 1°
DKIEs on kcat/Km and relative reaction driving force are reported for wild-type and
mutant glycerol-3-phosphate dehydrogenase (GPDH)-catalyzed reactions
of NADL (L = H, D): wild-type GPDH, ΔΔG⧧ = 0 kcal/mol, 1° DKIE = 1.5;
N270A, 5.6 kcal/mol, 3.1; R269A, 9.1 kcal/mol, 2.8; R269A + 1.0 M
guanidine, 2.4 kcal/mol, 2.7; R269A/N270A, 11.5 kcal/mol, 2.4. Similar
1° DKIEs were observed on kcat. The
narrow range of 1° DKIEs (2.4–3.1) observed for a 9.1
kcal/mol change in reaction driving force provides strong evidence
that these are intrinsic 1° DKIEs on rate-determining hydride
transfer. Evidence is presented that the intrinsic DKIE on wild-type
GPDH-catalyzed reduction of DHAP lies in this range. A similar range
of 1° DKIEs (2.4–2.9) on (kcat/KGA, M–1 s–1) was reported for dianion-activated hydride transfer from NADL to
glycolaldehyde (GA) [Reyes, A. C.; Amyes, T. L.; Richard, J.
P. J. Am. Chem. Soc.2016, 138, 14526–14529].
These 1° DKIEs are much smaller than those observed for enzyme-catalyzed
hydrogen transfer that occurs mainly by quantum mechanical tunneling.
These results support the conclusion that the rate acceleration for
GPDH-catalyzed reactions is due to the stabilization of the transition
state for hydride transfer by interactions with the protein catalyst.
The small 1° DKIEs reported for mutant GPDH-catalyzed and for
wild-type dianion-activated reactions are inconsistent with a model
where the dianion binding energy is utilized in the stabilization
of a tunneling ready state.
Collapse
Affiliation(s)
- Archie C Reyes
- Department of Chemistry , University at Buffalo, SUNY , Buffalo , New York 14260-3000 , United States
| | - Tina L Amyes
- Department of Chemistry , University at Buffalo, SUNY , Buffalo , New York 14260-3000 , United States
| | - John P Richard
- Department of Chemistry , University at Buffalo, SUNY , Buffalo , New York 14260-3000 , United States
| |
Collapse
|
13
|
Richard JP, Amyes TL, Reyes AC. Orotidine 5'-Monophosphate Decarboxylase: Probing the Limits of the Possible for Enzyme Catalysis. Acc Chem Res 2018; 51:960-969. [PMID: 29595949 PMCID: PMC6016548 DOI: 10.1021/acs.accounts.8b00059] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
![]()
The mystery associated with catalysis by what were once regarded
as protein black boxes, diminished with the X-ray crystallographic
determination of the three-dimensional structures of enzyme–substrate
complexes. The report that several high-resolution X-ray crystal structures
of orotidine 5′-monophosphate decarboxylase (OMPDC) failed
to provide a consensus mechanism for enzyme-catalyzed decarboxylation
of OMP to form uridine 5′-monophosphate, therefore, provoked
a flurry of controversy. This controversy was fueled by the enormous
1023-fold rate acceleration for this enzyme, which had
“jolted many biochemists’ assumptions about
the catalytic potential of enzymes.” Our studies on
the mechanism of action of OMPDC provide strong evidence that catalysis
by this enzyme is not fundamentally different from less proficient
catalysts, while highlighting important architectural elements that
enable a peak level of performance. Many enzymes undergo substrate-induced
protein conformational changes that trap their substrates in solvent
occluded protein cages, but the conformational change induced by ligand
binding to OMPDC is incredibly complex, as required to enable the
development of 22 kcal/mol of stabilizing binding interactions with
the phosphodianion and ribosyl substrate fragments of OMP. The binding
energy from these fragments is utilized to activate OMPDC for catalysis
of decarboxylation at the orotate fragment of OMP, through the creation
of a tight, catalytically active, protein cage from the floppy, open,
unliganded form of OMPDC. Such utilization of binding energy for ligand-driven
conformational changes provides a general mechanism to obtain specificity
in transition state binding. The rate enhancement that results from
the binding of carbon acid substrates to enzymes is partly due to
a reduction in the carbon acid pKa that
is associated with ligand binding. The binding of UMP to OMPDC results
in an unusually large >12 unit decrease in the pKa = 29 for abstraction of the C-6 substrate hydrogen,
due to stabilization of an enzyme-bound vinyl carbanion, which is
also an intermediate of OMPDC-catalyzed decarboxylation. The protein–ligand
interactions operate to stabilize the vinyl carbanion at the enzyme
active site compared to aqueous solution, rather than to stabilize
the transition state for the concerted electrophilic displacement
of CO2 by H+ that avoids formation of this reaction
intermediate. There is evidence that OMPDC induces strain into the
bound substrate. The interaction between the amide side chain of Gln-215
from the phosphodianion gripper loop and the hydroxymethylene side
chain of Ser-154 from the pyrimidine umbrella of ScOMPDC position the amide side chain to interact with the phosphodianion
of OMP. There are no direct stabilizing interactions between dianion
gripper protein side chains Gln-215, Tyr-217, and Arg-235 and the
pyrimidine ring at the decarboxylation transition state. Rather these
side chains function solely to hold OMPDC in the catalytically active
closed conformation. The hydrophobic side chains that line the active
site of OMPDC in the region of the departing CO2 product
may function to stabilize the decarboxylation transition state by
providing hydrophobic solvation of this product.
Collapse
Affiliation(s)
- John P. Richard
- Department of Chemistry, University at Buffalo, SUNY, Buffalo, New York 14260-3000, United States
| | - Tina L. Amyes
- Department of Chemistry, University at Buffalo, SUNY, Buffalo, New York 14260-3000, United States
| | - Archie C. Reyes
- Department of Chemistry, University at Buffalo, SUNY, Buffalo, New York 14260-3000, United States
| |
Collapse
|
14
|
Reyes AC, Amyes TL, Richard JP. A reevaluation of the origin of the rate acceleration for enzyme-catalyzed hydride transfer. Org Biomol Chem 2018; 15:8856-8866. [PMID: 28956050 DOI: 10.1039/c7ob01652b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
There is no consensus of opinion on the origin of the large rate accelerations observed for enzyme-catalyzed hydride transfer. The interpretation of recent results from studies on hydride transfer reactions catalyzed by alcohol dehydrogenase (ADH) focus on the proposal that the effective barrier height is reduced by quantum-mechanical tunneling through the energy barrier. This interpretation contrasts sharply with the notion that enzymatic rate accelerations are obtained through direct stabilization of the transition state for the nonenzymatic reaction in water. The binding energy of the dianion of substrate DHAP provides 11 kcal mol-1 stabilization of the transition state for the hydride transfer reaction catalyzed by glycerol-3-phosphate dehydrogenase (GPDH). We summarize evidence that the binding interactions between (GPDH) and dianion activators are utilized directly for stabilization of the transition state for enzyme-catalyzed hydride transfer. The possibility is considered, and then discounted, that these dianion binding interactions are utilized for the stabilization of a tunnel ready state (TRS) that enables efficient tunneling of the transferred hydride through the energy barrier, and underneath the energy maximum for the transition state. It is noted that the evidence to support the existence of a tunnel-ready state for the hydride transfer reactions catalyzed by ADH is ambiguous. We propose that the rate acceleration for ADH is due to the utilization of the binding energy of the cofactor NAD+/NADH in the stabilization of the transition state for enzyme-catalyzed hydride transfer.
Collapse
Affiliation(s)
- Archie C Reyes
- Department of Chemistry, University at Buffalo, SUNY, Buffalo, New York 14260-3000, USA.
| | | | | |
Collapse
|
15
|
Reyes AC, Amyes TL, Richard JP. Enzyme Architecture: Erection of Active Orotidine 5'-Monophosphate Decarboxylase by Substrate-Induced Conformational Changes. J Am Chem Soc 2017; 139:16048-16051. [PMID: 29058891 PMCID: PMC5720041 DOI: 10.1021/jacs.7b08897] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Orotidine
5′-monophosphate decarboxylase (OMPDC) catalyzes
the decarboxylation of 5-fluoroorotate (FO) with kcat/Km = 1.4 ×
10–7 M–1 s–1. Combining this and related kinetic parameters shows that the 31
kcal/mol stabilization of the transition state for decarboxylation
of OMP provided by OMPDC represents the sum of 11.8 and 10.6 kcal/mol
stabilization by the substrate phosphodianion and the ribosyl ring,
respectively, and an 8.6 kcal/mol stabilization from the orotate ring.
The transition state for OMPDC-catalyzed decarboxylation of FO is stabilized by 5.2, 7.2, and 9.0 kcal/mol, respectively,
by 1.0 M phosphite dianion, d-glycerol 3-phosphate and d-erythritol 4-phosphate. The stabilization is due to the utilization
of binding interactions of the substrate fragments to drive an enzyme
conformational change, which locks the orotate ring of the whole substrate,
or the substrate pieces in a caged complex. We propose that enzyme-activation
is a possible, and perhaps probable, consequence of any substrate-induced
enzyme conformational change.
Collapse
Affiliation(s)
- Archie C Reyes
- Department of Chemistry, University at Buffalo, SUNY , Buffalo, New York 14260-3000, United States
| | - Tina L Amyes
- Department of Chemistry, University at Buffalo, SUNY , Buffalo, New York 14260-3000, United States
| | - John P Richard
- Department of Chemistry, University at Buffalo, SUNY , Buffalo, New York 14260-3000, United States
| |
Collapse
|
16
|
Amyes TL, Richard JP. Primary Deuterium Kinetic Isotope Effects From Product Yields: Rationale, Implementation, and Interpretation. Methods Enzymol 2017; 596:163-177. [PMID: 28911770 DOI: 10.1016/bs.mie.2017.06.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A simple and convenient method is described to determine primary deuterium kinetic isotope effects (1°DKIEs) on reactions where the hydron incorporated into the reaction product is derived from solvent water. The 1°DKIE may be obtained by 1H NMR analyses as the ratio of the yields of H- and D-labeled products from a reaction in 50:50 (v/v) HOH/DOD. The procedures for these 1H NMR analyses are reviewed. This product deuterium isotope effect (PDIE) is defined as 1/ϕEL for fractionation of hydrons between solvent and the transition state for the reaction examined. When the solvent is not the direct hydron donor, it is necessary to correct the PDIE for the fractionation factor ϕEL for partitioning of the hydron between the solvent and the direct donor EL. This method was used to determine the 1°DKIE on decarboxylation reactions catalyzed by wild-type orotidine 5'-monophosphate decarboxylase (OMPDC) and by mutants of OMPDC, and then in the determination of the 1°DKIE on the decarboxylation reaction catalyzed by 5-carboxyvanillate decarboxylase. The experimental procedures used in studies on OMPDC and the rationale for these procedures are described.
Collapse
Affiliation(s)
- Tina L Amyes
- University at Buffalo, SUNY, Buffalo, NY, United States
| | - John P Richard
- University at Buffalo, SUNY, Buffalo, NY, United States.
| |
Collapse
|
17
|
Sheng X, Zhu W, Huddleston J, Xiang DF, Raushel FM, Richards NGJ, Himo F. A Combined Experimental-Theoretical Study of the LigW-Catalyzed Decarboxylation of 5-Carboxyvanillate in the Metabolic Pathway for Lignin Degradation. ACS Catal 2017. [DOI: 10.1021/acscatal.7b01166] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xiang Sheng
- Department
of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Wen Zhu
- School
of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, U.K
| | - Jamison Huddleston
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Dao Fen Xiang
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Frank M. Raushel
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | | | - Fahmi Himo
- Department
of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
18
|
Amyes TL, Malabanan MM, Zhai X, Reyes AC, Richard JP. Enzyme activation through the utilization of intrinsic dianion binding energy. Protein Eng Des Sel 2017; 30:157-165. [PMID: 27903763 DOI: 10.1093/protein/gzw064] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 11/14/2016] [Indexed: 11/12/2022] Open
Abstract
43 We consider 'the proposition that the intrinsic binding energy that results from the noncovalent interaction of a specific substrate with the active site of the enzyme is considerably larger than is generally believed. An important part of this binding energy may be utilized to provide the driving force for catalysis, so that the observed binding energy represents only what is left over after this utilization' [Jencks,W.P. (1975) Adv. Enzymol. Relat. Areas. Mol. Biol. , , 219-410]. The large ~12 kcal/mol intrinsic substrate phosphodianion binding energy for reactions catalyzed by triosephosphate isomerase (TIM), orotidine 5'-monophosphate decarboxylase and glycerol-3-phosphate dehydrogenase is divided into 4-6 kcal/mol binding energy that is expressed on the formation of the Michaelis complex in anchoring substrates to the respective enzyme, and 6-8 kcal/mol binding energy that is specifically expressed at the transition state in activating the respective enzymes for catalysis. A structure-based mechanism is described where the dianion binding energy drives a conformational change that activates these enzymes for catalysis. Phosphite dianion plays the active role of holding TIM in a high-energy closed active form, but acts as passive spectator in showing no effect on transition-state structure. The result of studies on mutant enzymes is presented, which support the proposal that the dianion-driven enzyme conformational change plays a role in enhancing the basicity of side chain of E167, the catalytic base, by clamping the base between a pair of hydrophobic side chains. The insight these results provide into the architecture of enzyme active sites and the development of strategies for the de novo design of protein catalysts is discussed.
Collapse
Affiliation(s)
- T L Amyes
- Department of Chemistry, University at Buffalo, SUNY, Buffalo, NY 14260-3000, USA
| | - M M Malabanan
- Department of Biochemistry, Vanderbilt University, Nashville, TN37205-0146, USA
| | - X Zhai
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX77843-2128, USA
| | - A C Reyes
- Department of Chemistry, University at Buffalo, SUNY, Buffalo, NY 14260-3000, USA
| | - J P Richard
- Department of Chemistry, University at Buffalo, SUNY, Buffalo, NY 14260-3000, USA
| |
Collapse
|
19
|
Amyes TL, Richard JP. Substituent Effects on Carbon Acidity in Aqueous Solution and at Enzyme Active Sites. Synlett 2017; 28:2407-2421. [PMID: 28993718 DOI: 10.1055/s-0036-1588778] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Methods are described for the determination of pKas for weak carbon acids in water. The application of these methods to the determination of the pKas for a variety of carbon acids including nitriles, imidazolium cations, amino acids, peptides and their derivatives and, α-iminium cations is presented. The substituent effects on the acidity of these different classes of carbon acids are discussed; and, the relevance of these results to catalysis of the deprotonation of amino acids by enzymes and by pyridoxal 5'-phosphate is reviewed. The procedure for estimating the pKa of uridine 5'-phosphate for C-6 deprotonation at the active site of orotidine 5'-phosphate decarboxylase is described, and the effect of a 5-F substituent on carbon acidity of the enzyme-bound substrate is discussed.
Collapse
Affiliation(s)
- Tina L Amyes
- Department of Chemistry, University at Buffalo, SUNY, Buffalo, NY 14260-3000
| | - John P Richard
- Department of Chemistry, University at Buffalo, SUNY, Buffalo, NY 14260-3000
| |
Collapse
|
20
|
Vardi-Kilshtain A, Nitoker N, Major DT. Nuclear quantum effects and kinetic isotope effects in enzyme reactions. Arch Biochem Biophys 2015; 582:18-27. [DOI: 10.1016/j.abb.2015.03.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 03/02/2015] [Accepted: 03/03/2015] [Indexed: 11/28/2022]
|
21
|
Goryanova B, Goldman L, Ming S, Amyes TL, Gerlt JA, Richard JP. Rate and Equilibrium Constants for an Enzyme Conformational Change during Catalysis by Orotidine 5'-Monophosphate Decarboxylase. Biochemistry 2015; 54:4555-64. [PMID: 26135041 PMCID: PMC4520626 DOI: 10.1021/acs.biochem.5b00591] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 07/01/2015] [Indexed: 11/29/2022]
Abstract
The caged complex between orotidine 5'-monophosphate decarboxylase (ScOMPDC) and 5-fluoroorotidine 5'-monophosphate (FOMP) undergoes decarboxylation ∼300 times faster than the caged complex between ScOMPDC and the physiological substrate, orotidine 5'-monophosphate (OMP). Consequently, the enzyme conformational changes required to lock FOMP at a protein cage and release product 5-fluorouridine 5'-monophosphate (FUMP) are kinetically significant steps. The caged form of ScOMPDC is stabilized by interactions between the side chains from Gln215, Tyr217, and Arg235 and the substrate phosphodianion. The control of these interactions over the barrier to the binding of FOMP and the release of FUMP was probed by determining the effect of all combinations of single, double, and triple Q215A, Y217F, and R235A mutations on kcat/Km and kcat for turnover of FOMP by wild-type ScOMPDC; its values are limited by the rates of substrate binding and product release, respectively. The Q215A and Y217F mutations each result in an increase in kcat and a decrease in kcat/Km, due to a weakening of the protein-phosphodianion interactions that favor fast product release and slow substrate binding. The Q215A/R235A mutation causes a large decrease in the kinetic parameters for ScOMPDC-catalyzed decarboxylation of OMP, which are limited by the rate of the decarboxylation step, but much smaller decreases in the kinetic parameters for ScOMPDC-catalyzed decarboxylation of FOMP, which are limited by the rate of enzyme conformational changes. By contrast, the Y217A mutation results in large decreases in kcat/Km for ScOMPDC-catalyzed decarboxylation of both OMP and FOMP, because of the comparable effects of this mutation on rate-determining decarboxylation of enzyme-bound OMP and on the rate-determining enzyme conformational change for decarboxylation of FOMP. We propose that kcat = 8.2 s(-1) for decarboxylation of FOMP by the Y217A mutant is equal to the rate constant for cage formation from the complex between FOMP and the open enzyme, that the tyrosyl phenol group stabilizes the closed form of ScOMPDC by hydrogen bonding to the substrate phosphodianion, and that the phenyl group of Y217 and F217 facilitates formation of the transition state for the rate-limiting conformational change. An analysis of kinetic data for mutant enzyme-catalyzed decarboxylation of OMP and FOMP provides estimates for the rate and equilibrium constants for the conformational change that traps FOMP at the enzyme active site.
Collapse
Affiliation(s)
- Bogdana Goryanova
- Department
of Chemistry, University at Buffalo, State
University of New York, Buffalo, New York 14260-3000, United States
| | - Lawrence
M. Goldman
- Department
of Chemistry, University at Buffalo, State
University of New York, Buffalo, New York 14260-3000, United States
| | - Shonoi Ming
- Department
of Chemistry, University at Buffalo, State
University of New York, Buffalo, New York 14260-3000, United States
| | - Tina L. Amyes
- Department
of Chemistry, University at Buffalo, State
University of New York, Buffalo, New York 14260-3000, United States
| | - John A. Gerlt
- Departments
of Biochemistry and Chemistry, University
of Illinois, Urbana, Illinois 61801, United
States
| | - John P. Richard
- Department
of Chemistry, University at Buffalo, State
University of New York, Buffalo, New York 14260-3000, United States
| |
Collapse
|
22
|
Fujihashi M, Mnpotra JS, Mishra RK, Pai EF, Kotra LP. Orotidine Monophosphate Decarboxylase--A Fascinating Workhorse Enzyme with Therapeutic Potential. J Genet Genomics 2015; 42:221-34. [PMID: 26059770 DOI: 10.1016/j.jgg.2015.04.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 04/13/2015] [Accepted: 04/15/2015] [Indexed: 10/23/2022]
Abstract
Orotidine 5'-monophosphate decarboxylase (ODCase) is known as one of the most proficient enzymes. The enzyme catalyzes the last reaction step of the de novo pyrimidine biosynthesis, the conversion from orotidine 5'-monophosphate (OMP) to uridine 5'-monophosphate. The enzyme is found in all three domains of life, Bacteria, Eukarya and Archaea. Multiple sequence alignment of 750 putative ODCase sequences resulted in five distinct groups. While the universally conserved DxKxxDx motif is present in all the groups, depending on the groups, several characteristic motifs and residues can be identified. Over 200 crystal structures of ODCases have been determined so far. The structures, together with biochemical assays and computational studies, elucidated that ODCase utilized both transition state stabilization and substrate distortion to accelerate the decarboxylation of its natural substrate. Stabilization of the vinyl anion intermediate by a conserved lysine residue at the catalytic site is considered the largest contributing factor to catalysis, while bending of the carboxyl group from the plane of the aromatic pyrimidine ring of OMP accounts for substrate distortion. A number of crystal structures of ODCases complexed with potential drug candidate molecules have also been determined, including with 6-iodo-uridine, a potential antimalarial agent.
Collapse
Affiliation(s)
- Masahiro Fujihashi
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Jagjeet S Mnpotra
- Department of Chemistry & Biochemistry, The University of North Carolina at Greensboro, Greensboro, NC, 27412, USA
| | - Ram Kumar Mishra
- Center for Molecular Design and Preformulations, and Toronto General Research Institute, University Health Network, Toronto, Ontario, M5G 1L7, Canada
| | - Emil F Pai
- Department of Biochemistry, University of Toronto, Toronto, Ontario, M5S 1A8, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, M5G 1L7, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5S 1A8, Canada; Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, M5G 1L7, Canada
| | - Lakshmi P Kotra
- Center for Molecular Design and Preformulations, and Toronto General Research Institute, University Health Network, Toronto, Ontario, M5G 1L7, Canada; Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, M5S 3M2, Canada.
| |
Collapse
|
23
|
Goldman L, Amyes TL, Goryanova B, Gerlt JA, Richard JP. Enzyme architecture: deconstruction of the enzyme-activating phosphodianion interactions of orotidine 5'-monophosphate decarboxylase. J Am Chem Soc 2014; 136:10156-65. [PMID: 24958125 PMCID: PMC4227808 DOI: 10.1021/ja505037v] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Indexed: 12/12/2022]
Abstract
The mechanism for activation of orotidine 5'-monophosphate decarboxylase (OMPDC) by interactions of side chains from Gln215 and Try217 at a gripper loop and R235, adjacent to this loop, with the phosphodianion of OMP was probed by determining the kinetic parameters k(cat) and K(m) for all combinations of single, double, and triple Q215A, Y217F, and R235A mutations. The 12 kcal/mol intrinsic binding energy of the phosphodianion is shown to be equal to the sum of the binding energies of the side chains of R235 (6 kcal/mol), Q215 (2 kcal/mol), Y217 (2 kcal/mol), and hydrogen bonds to the G234 and R235 backbone amides (2 kcal/mol). Analysis of a triple mutant cube shows small (ca. 1 kcal/mol) interactions between phosphodianion gripper side chains, which are consistent with steric crowding of the side chains around the phosphodianion at wild-type OMPDC. These mutations result in the same change in the activation barrier to the OMPDC-catalyzed reactions of the whole substrate OMP and the substrate pieces (1-β-D-erythrofuranosyl)orotic acid (EO) and phosphite dianion. This shows that the transition states for these reactions are stabilized by similar interactions with the protein catalyst. The 12 kcal/mol intrinsic phosphodianion binding energy of OMP is divided between the 8 kcal/mol of binding energy, which is utilized to drive a thermodynamically unfavorable conformational change of the free enzyme, resulting in an increase in (k(cat))(obs) for OMPDC-catalyzed decarboxylation of OMP, and the 4 kcal/mol of binding energy, which is utilized to stabilize the Michaelis complex, resulting in a decrease in (K(m))(obs).
Collapse
Affiliation(s)
- Lawrence
M. Goldman
- Department
of Chemistry, University at Buffalo, SUNY, Buffalo, New York 14260-3000, United States
| | - Tina L. Amyes
- Department
of Chemistry, University at Buffalo, SUNY, Buffalo, New York 14260-3000, United States
| | - Bogdana Goryanova
- Department
of Chemistry, University at Buffalo, SUNY, Buffalo, New York 14260-3000, United States
| | - John A. Gerlt
- Departments
of Biochemistry and Chemistry, University
of Illinois, Urbana, Illinois 61801, United
States
| | - John P. Richard
- Department
of Chemistry, University at Buffalo, SUNY, Buffalo, New York 14260-3000, United States
| |
Collapse
|
24
|
Doron D, Weitman M, Vardi-Kilshtain A, Azuri A, Engel H, Major DT. Multiscale Quantum-Classical Simulations of Enzymes. Isr J Chem 2014. [DOI: 10.1002/ijch.201400026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
25
|
The use of reaction timecourses to determine the level of minor contaminants in enzyme preparations. Anal Biochem 2014; 450:20-6. [PMID: 24393696 DOI: 10.1016/j.ab.2013.12.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 12/22/2013] [Accepted: 12/23/2013] [Indexed: 11/23/2022]
Abstract
Enzyme mutagenesis is a commonly used tool to investigate the structure and activity of enzymes. However, even minute contamination of a weakly active mutant enzyme by a considerably more active wild-type enzyme can partially or completely obscure the activity of the mutant enzyme. In this work, we propose a theoretical approach using reaction timecourses and initial velocity measurements to determine the actual contamination level of an undesired wild-type enzyme. To test this method, we applied it to a batch of the Q215A/R235A double mutant of orotidine 5'-monophosphate decarboxylase (OMPDC) from Saccharomyces cerevisiae that was inadvertently contaminated by the more active wild-type OMPDC from Escherichia coli. The enzyme preparation showed significant deviations from the expected kinetic behavior at contamination levels as low as 0.093mol%. We then confirmed the origin of the unexpected kinetic behavior by deliberately contaminating a sample of the mutant OMPDC from yeast that was known to be pure, with 0.015% wild-type OMPDC from E. coli and reproducing the same hybrid kinetic behavior.
Collapse
|
26
|
Abstract
ODCase is a highly proficient enzyme responsible for the decarboxylation of orotidine monophosphate to generate uridine monophosphate. ODCase has attracted early attention due to its interesting mechanism of catalysis. In order to exploit therapeutic advantages due to the inhibition of ODCase, one must have selective inhibitors of this enzyme from the pathogen, or a dysregulated molecular mechanism involving ODCase. ODCase inhibitors have potential applications as anticancer agents, antiviral agents, antimalarial agents and potentially act against other parasitic diseases. A variety of C6-substituted uridine monophosphate derivatives have shown excellent inhibition of ODCase. 6-iodouridine is a potent inhibitor of the malaria parasite, and its monophosphate form covalently inhibits ODCase. A variety of inhibitors of ODCase with potential applications as therapeutic agents are discussed in this review.
Collapse
|
27
|
Kourist R, Guterl JK, Miyamoto K, Sieber V. Enzymatic Decarboxylation-An Emerging Reaction for Chemicals Production from Renewable Resources. ChemCatChem 2014. [DOI: 10.1002/cctc.201300881] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
28
|
Abstract
Computational prediction of condensed phase acidity is a topic of much interest in the field today. We introduce the methods available for predicting gas phase acidity and pKas in aqueous and non-aqueous solvents including high-level electronic structure methods, empirical linear free energy relationships (LFERs), implicit solvent methods, explicit solvent statistical free energy methods, and hybrid implicit–explicit approaches. The focus of this paper is on implicit solvent methods, and we review recent developments including new electronic structure methods, cluster-continuum schemes for calculating ionic solvation free energies, as well as address issues relating to the choice of proton solvation free energy to use with implicit solvation models, and whether thermodynamic cycles are necessary for the computation of pKas. A comparison of the scope and accuracy of implicit solvent methods with ab initio molecular dynamics free energy methods is also presented. The present status of the theory and future directions are outlined.
Collapse
|
29
|
Spong K, Amyes TL, Richard JP. Enzyme architecture: the activating oxydianion binding domain for orotidine 5'-monophophate decarboxylase. J Am Chem Soc 2013; 135:18343-6. [PMID: 24274746 DOI: 10.1021/ja4107513] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Orotidine 5'-monophosphate decarboxylase catalyzes the decarboxylation of truncated substrate (1-β-D-erythrofuranosyl)orotic acid to form (1-β-D-erythrofuranosyl)uracil. This enzyme-catalyzed reaction is activated by tetrahedral oxydianions, which bind weakly to unliganded OMPDC and tightly to the enzyme-transition state complex, with the following intrinsic oxydianion binding energies (kcal/mol): SO3(2-), -8.3; HPO3(2-), -7.7; S2O3(2-), -4.6; SO4(2-), -4.5; HOPO3(2-), -3.0; HOAsO3(2-), no activation detected. We propose that the oxydianion and orotate binding domains of OMPDC perform complementary functions in catalysis of decarboxylation reactions: (1) The orotate binding domain carries out decarboxylation of the orotate ring. (2) The activating oxydianion binding domain has the cryptic function of utilizing binding interactions with tetrahedral inorganic oxydianions to drive an enzyme conformational change that results in the stabilization of transition states at the distant orotate domain.
Collapse
Affiliation(s)
- Krisztina Spong
- Department of Chemistry, University at Buffalo, SUNY , Buffalo, New York 14260-3000, United States
| | | | | |
Collapse
|
30
|
Fujihashi M, Ishida T, Kuroda S, Kotra LP, Pai EF, Miki K. Substrate distortion contributes to the catalysis of orotidine 5'-monophosphate decarboxylase. J Am Chem Soc 2013; 135:17432-43. [PMID: 24151964 PMCID: PMC3949427 DOI: 10.1021/ja408197k] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Orotidine 5'-monophosphate decarboxylase (ODCase) accelerates the decarboxylation of orotidine 5'-monophosphate (OMP) to uridine 5'-monophosphate (UMP) by 17 orders of magnitude. Eight new crystal structures with ligand analogues combined with computational analyses of the enzyme's short-lived intermediates and the intrinsic electronic energies to distort the substrate and other ligands improve our understanding of the still controversially discussed reaction mechanism. In their respective complexes, 6-methyl-UMP displays significant distortion of its methyl substituent bond, 6-amino-UMP shows the competition between the K72 and C6 substituents for a position close to D70, and the methyl and ethyl esters of OMP both induce rotation of the carboxylate group substituent out of the plane of the pyrimidine ring. Molecular dynamics and quantum mechanics/molecular mechanics computations of the enzyme-substrate complex also show the bond between the carboxylate group and the pyrimidine ring to be distorted, with the distortion contributing a 10-15% decrease of the ΔΔG(⧧) value. These results are consistent with ODCase using both substrate distortion and transition-state stabilization, primarily exerted by K72, in its catalysis of the OMP decarboxylation reaction.
Collapse
Affiliation(s)
- Masahiro Fujihashi
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Toyokazu Ishida
- Nanosystem Research Institute (NRI), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 2, 1-1-1 Umezono, Tsukuba 305-8568, Japan
| | - Shingo Kuroda
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Lakshmi P. Kotra
- Center for Molecular Design and Preformulations and Division of Cell & Molecular Biology, Toronto General Research Institute/University Health Network, Toronto, ON, Canada M5G 1L7
- Departments of Pharmaceutical Sciences and Chemistry, McLaughlin Center for Molecular Medicine, University of Toronto, Canada M5S 3M2
| | - Emil F. Pai
- Center for Molecular Design and Preformulations and Division of Cell & Molecular Biology, Toronto General Research Institute/University Health Network, Toronto, ON, Canada M5G 1L7
- The Campbell Family Cancer Research Institute, Ontario Cancer Institute/University Health Network & Departments of Biochemistry, Medical Biophysics, and Molecular Genetics, University of Toronto, Toronto, ON, Canada M5G 1L7
| | - Kunio Miki
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| |
Collapse
|
31
|
Goryanova B, Goldman LM, Amyes TL, Gerlt JA, Richard JP. Role of a guanidinium cation-phosphodianion pair in stabilizing the vinyl carbanion intermediate of orotidine 5'-phosphate decarboxylase-catalyzed reactions. Biochemistry 2013; 52:7500-11. [PMID: 24053466 DOI: 10.1021/bi401117y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The side chain cation of Arg235 provides a 5.6 and 2.6 kcal/mol stabilization of the transition states for orotidine 5'-monophosphate (OMP) decarboxylase (OMPDC) from Saccharomyces cerevisiae catalyzed reactions of OMP and 5-fluoroorotidine 5'-monophosphate (FOMP), respectively, a 7.2 kcal/mol stabilization of the vinyl carbanion-like transition state for enzyme-catalyzed exchange of the C-6 proton of 5-fluorouridine 5'-monophosphate (FUMP), but no stabilization of the transition states for enzyme-catalyzed decarboxylation of truncated substrates 1-(β-d-erythrofuranosyl)orotic acid and 1-(β-d-erythrofuranosyl) 5-fluorouracil. These observations show that the transition state stabilization results from formation of a protein cation-phosphodianion pair, and that there is no detectable stabilization from an interaction between the side chain and the pyrimidine ring of substrate. The 5.6 kcal/mol side chain interaction with the transition state for the decarboxylation reaction is 50% of the total 11.2 kcal/mol transition state stabilization by interactions with the phosphodianion of OMP, whereas the 7.2 kcal/mol side chain interaction with the transition state for the deuterium exchange reaction is a larger 78% of the total 9.2 kcal/mol transition state stabilization by interactions with the phosphodianion of FUMP. The effect of the R235A mutation on the enzyme-catalyzed deuterium exchange is expressed predominantly as a change in the turnover number kex, whereas the effect on the enzyme-catalyzed decarboxylation of OMP is expressed predominantly as a change in the Michaelis constant Km. These results are rationalized by a mechanism in which the binding of OMP, compared with that for FUMP, provides a larger driving force for conversion of OMPDC from an inactive open conformation to a productive, active, closed conformation.
Collapse
Affiliation(s)
- Bogdana Goryanova
- Department of Chemistry, University at Buffalo , Buffalo, New York 14260, United States
| | | | | | | | | |
Collapse
|
32
|
Jamshidi S, Rafii-Tabar H, Jalili S. Investigation into mechanism of orotidine 5′-monophosphate decarboxylase enzyme by MM-PBSA/MM-GBSA and molecular docking. MOLECULAR SIMULATION 2013. [DOI: 10.1080/08927022.2013.819579] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
33
|
Jordan F, Patel H. Catalysis in Enzymatic Decarboxylations: Comparison of Selected Cofactor-dependent and Cofactor-independent Examples. ACS Catal 2013; 3:1601-1617. [PMID: 23914308 DOI: 10.1021/cs400272x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
This review is focused on three types of enzymes decarboxylating very different substrates: (1) Thiamin diphosphate (ThDP)-dependent enzymes reacting with 2-oxo acids; (2) Pyridoxal phosphate (PLP)-dependent enzymes reacting with α-amino acids; and (3) An enzyme with no known co-factors, orotidine 5'-monophosphate decarboxylase (OMPDC). While the first two classes have been much studied for many years, during the past decade studies of both classes have revealed novel mechanistic insight challenging accepted understanding. The enzyme OMPDC has posed a challenge to the enzymologist attempting to explain a 1017-fold rate acceleration in the absence of cofactors or even metal ions. A comparison of the available evidence on the three types of decarboxylases underlines some common features and more differences. The field of decarboxylases remains an interesting and challenging one for the mechanistic enzymologist notwithstanding the large amount of information already available.
Collapse
Affiliation(s)
- Frank Jordan
- Department of Chemistry, Rutgers, The State University of New Jersey, 73 Warren Street, Newark,
New Jersey 07102, United States
| | - Hetalben Patel
- Department of Chemistry, Rutgers, The State University of New Jersey, 73 Warren Street, Newark,
New Jersey 07102, United States
| |
Collapse
|
34
|
Senger NA, Bliss CE, Keeffe JR, Gronert S, Wu W. Stabilities of Uracil and Pyridone-Based Carbanions: A Systematic Study in the Gas Phase and Solution and Implications for the Mechanism of Orotidine-5'-Monophosphate Decarboxylase. Tetrahedron 2013; 69:5287-5292. [PMID: 24072938 DOI: 10.1016/j.tet.2013.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The stabilities of the C6-centered carbanions derived from 1,3-dimethyluracil, N-methyl-2-pyridone, and N-methyl-4-pyridone were systematically investigated in the gas phase and in DMSO and water solutions. The stabilities of the carbanions in the gas phase and DMSO were directly measured through their reactions with carbon acids with known proton affinity or pKa values. The stabilities of the carbanions in DMSO were also probed through their kinetic isotope effects of protonation over deuteriation using acids with different acidity. The stabilities of the carbanions in water were determined through the rates of hydrogen-deuterium exchange reactions of the corresponding conjugate acids. The carbanions derived from the two pyridones were found to have the same stability, whereas the carbanion derived from 1,3-dimethyluracil was more stable. The order of the stability of the carbanions showed no correlation with the decarboxylation rates of their corresponding carboxylic acids. The implications of the results for the mechanism of orotidine-5'-monophosphate decarboxylase (ODCase) are discussed.
Collapse
Affiliation(s)
- Nicholas A Senger
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco, California 94132, USA
| | | | | | | | | |
Collapse
|
35
|
Vardi-Kilshtain A, Doron D, Major DT. Quantum and classical simulations of orotidine monophosphate decarboxylase: support for a direct decarboxylation mechanism. Biochemistry 2013; 52:4382-90. [PMID: 23692207 DOI: 10.1021/bi400190v] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Orotidine 5'-monophosphate (OMP) decarboxylase (ODCase) catalyzes the decarboxylation of OMP to uridine 5'-monophosphate (UMP). Numerous studies of this reaction have suggested a plethora of mechanisms including covalent addition, ylide or carbene formation, and concerted or stepwise protonation. Recent experiments and simulations present strong evidence for a direct decarboxylation mechanism, although direct comparison between experiment and theory is still lacking. In the current work we present hybrid quantum mechanics-molecular mechanics simulations that address the detailed decarboxylation mechanisms for OMP and 5-fluoro-OMP by ODCase. Multidimensional potentials of mean force are computed as functions of structural progress coordinates for the Methanobacterium thermoautotrophicum ODCase reaction: the decarboxylation reaction coordinate, an orbital rehybridization coordinate, and the proton transfer coordinate between Lys72 and the substrate. The computed free energy profiles are in accord with the available experimental data. To facilitate further direct comparison with experiment, we compute the kinetic isotope effects (KIEs) for the enzyme-catalyzed reactions using a mass-perturbation-based path-integral method. The computed KIE provide further support for a direct decarboxylation mechanism. In agreement with experiment, the data suggest a role for Lys72 in stabilizing the transition state in the catalysis of OMP and, to a somewhat lesser extent, in 5-fluoro-OMP.
Collapse
Affiliation(s)
- Alexandra Vardi-Kilshtain
- Department of Chemistry and the Lise Meitner-Minerva Center of Computational Quantum Chemistry, Bar-Ilan University, Ramat-Gan 52900, Israel
| | | | | |
Collapse
|
36
|
Abstract
Linus Pauling proposed that the large rate accelerations for enzymes are caused by the high specificity of the protein catalyst for binding the reaction transition state. The observation that stable analogues of the transition states for enzymatic reactions often act as tight-binding inhibitors provided early support for this simple and elegant proposal. We review experimental results that support the proposal that Pauling's model provides a satisfactory explanation for the rate accelerations for many heterolytic enzymatic reactions through high-energy reaction intermediates, such as proton transfer and decarboxylation. Specificity in transition state binding is obtained when the total intrinsic binding energy of the substrate is significantly larger than the binding energy observed at the Michaelis complex. The results of recent studies that aimed to characterize the specificity in binding of the enolate oxygen at the transition state for the 1,3-isomerization reaction catalyzed by ketosteroid isomerase are reviewed. Interactions between pig heart succinyl-coenzyme A:3-oxoacid coenzyme A transferase (SCOT) and the nonreacting portions of coenzyme A (CoA) are responsible for a rate increase of 3 × 10(12)-fold, which is close to the estimated total 5 × 10(13)-fold enzymatic rate acceleration. Studies that partition the interactions between SCOT and CoA into their contributing parts are reviewed. Interactions of the protein with the substrate phosphodianion group provide an ~12 kcal/mol stabilization of the transition state for the reactions catalyzed by triosephosphate isomerase, orotidine 5'-monophosphate decarboxylase, and α-glycerol phosphate dehydrogenase. The interactions of these enzymes with the substrate piece phosphite dianion provide a 6-8 kcal/mol stabilization of the transition state for reaction of the appropriate truncated substrate. Enzyme activation by phosphite dianion reflects the higher dianion affinity for binding to the enzyme-transition state complex compared with that of the free enzyme. Evidence is presented that supports a model in which the binding energy of the phosphite dianion piece, or the phosphodianion group of the whole substrate, is utilized to drive an enzyme conformational change from an inactive open form E(O) to an active closed form E(C), by closure of a phosphodianion gripper loop. Members of the enolase and haloalkanoic acid dehalogenase superfamilies use variable capping domains to interact with nonreacting portions of the substrate and sequester the substrate from interaction with bulk solvent. Interactions of this capping domain with the phenyl group of mandelate have been shown to activate mandelate racemase for catalysis of deprotonation of α-carbonyl carbon. We propose that an important function of these capping domains is to utilize the binding interactions with nonreacting portions of the substrate to activate the enzyme for catalysis.
Collapse
Affiliation(s)
- Tina L. Amyes
- Department of Chemistry, University at Buffalo, SUNY, Buffalo, New York 14260-3000
| | - John P. Richard
- To whom correspondence should be addressed: Tel: (716) 645 4232; Fax: (716) 645 6963;
| |
Collapse
|
37
|
Goryanova B, Spong K, Amyes TL, Richard JP. Catalysis by orotidine 5'-monophosphate decarboxylase: effect of 5-fluoro and 4'-substituents on the decarboxylation of two-part substrates. Biochemistry 2013; 52:537-46. [PMID: 23276261 DOI: 10.1021/bi301650d] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The syntheses of two novel truncated analogs of the natural substrate orotidine 5'-monophosphate (OMP) for orotidine 5'-monophosphate decarboxylase (OMPDC) with enhanced reactivity toward decarboxylation are reported: 1-(β-d-erythrofuranosyl)-5-fluoroorotic acid (FEO) and 5'-deoxy-5-fluoroorotidine (5'-dFO). A comparison of the second-order rate constants for the OMPDC-catalyzed decarboxylations of FEO (10 M⁻¹ s⁻¹) and 1-(β-d-erythrofuranosyl)orotic acid (EO, 0.026 M⁻¹ s⁻¹) shows that the vinyl carbanion-like transition state is stabilized by 3.5 kcal/mol by interactions with the 5-F substituent of FEO. The OMPDC-catalyzed decarboxylations of FEO and EO are both activated by exogenous phosphite dianion (HPO₃²⁻), but the 5-F substituent results in only a 0.8 kcal stabilization of the transition state for the phosphite-activated reaction of FEO. This provides strong evidence that the phosphite-activated OMPDC-catalyzed reaction of FEO is not limited by the chemical step of decarboxylation of the enzyme-bound substrate. Evidence is presented that there is a change in the rate-limiting step from the chemical step of decarboxylation for the phosphite-activated reaction of EO, to closure of the phosphate gripper loop and an enzyme conformational change at the ternary E•FEO•HPO₃²⁻ complex for the reaction of FEO. The 4'-CH₃ and 4'-CH₂OH groups of 5'-dFO and orotidine, respectively, result in identical destabilizations of the transition state for the unactivated decarboxylation of 2.9 kcal/mol. By contrast, the 4'-CH₃ group of 5'-dFO and the 4'-CH₂OH group of orotidine result in very different 4.7 and 8.3 kcal/mol destabilizations of the transition state for the phosphite-activated decarboxylation. Here, the destabilizing effect of the 4'-CH₃ substituent at 5'-dFO is masked by the rate-limiting conformational change that depresses the third-order rate constant for the phosphite-activated reaction of the parent substrate FEO.
Collapse
Affiliation(s)
- Bogdana Goryanova
- Department of Chemistry, University at Buffalo, SUNY, Buffalo, NY 14260-3000, USA
| | | | | | | |
Collapse
|
38
|
Desai BJ, Wood M, Fedorov AA, Fedorov EV, Goryanova B, Amyes TL, Richard JP, Almo SC, Gerlt JA. Conformational changes in orotidine 5'-monophosphate decarboxylase: a structure-based explanation for how the 5'-phosphate group activates the enzyme. Biochemistry 2012; 51:8665-78. [PMID: 23030629 PMCID: PMC3549026 DOI: 10.1021/bi301188k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The binding of a ligand to orotidine 5'-monophosphate decarboxylase (OMPDC) is accompanied by a conformational change from an open, inactive conformation (E(o)) to a closed, active conformation (E(c)). As the substrate traverses the reaction coordinate to form the stabilized vinyl carbanion/carbene intermediate, interactions that destabilize the carboxylate group of the substrate and stabilize the intermediate (in the E(c)·S(‡) complex) are enforced. Focusing on the OMPDC from Methanothermobacter thermautotrophicus, we find the "remote" 5'-phosphate group of the substrate activates the enzyme 2.4 × 10(8)-fold; the activation is equivalently described by an intrinsic binding energy (IBE) of 11.4 kcal/mol. We studied residues in the activation that (1) directly contact the 5'-phosphate group, (2) participate in a hydrophobic cluster near the base of the active site loop that sequesters the bound substrate from the solvent, and (3) form hydrogen bonding interactions across the interface between the "mobile" and "fixed" half-barrel domains of the (β/α)(8)-barrel structure. Our data support a model in which the IBE provided by the 5'-phosphate group is used to allow interactions both near the N-terminus of the active site loop and across the domain interface that stabilize both the E(c)·S and E(c)·S(‡) complexes relative to the E(o)·S complex. The conclusion that the IBE of the 5'-phosphate group provides stabilization to both the E(c)·S and E(c)·S(‡) complexes, not just the E(c)·S(‡) complex, is central to understanding the structural origins of enzymatic catalysis as well as the requirements for the de novo design of enzymes that catalyze novel reactions.
Collapse
Affiliation(s)
- Bijoy J. Desai
- Departments of Biochemistry and Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL
| | - McKay Wood
- Departments of Biochemistry and Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Alexander A. Fedorov
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Elena V. Fedorov
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461
| | | | - Tina L. Amyes
- Department of Chemistry, University at Buffalo, Buffalo, NY 14260
| | - John P. Richard
- Department of Chemistry, University at Buffalo, Buffalo, NY 14260
| | - Steven C. Almo
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461
| | - John A. Gerlt
- Departments of Biochemistry and Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL,To whom correspondence should be addressed: J.A.G.: Institute for Genomic Biology, University of Illinois, 1206 West Gregory Drive, Urbana, IL 61801. Phone: (217) 244-7414. Fax: (217) 333-0508.
| |
Collapse
|