1
|
‘Sweet as a Nut’: Production and use of nanocapsules made of glycopolymer or polysaccharide shell. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101429] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
2
|
Etchenausia L, Villar-Alvarez E, Forcada J, Save M, Taboada P. Evaluation of cationic core-shell thermoresponsive poly(N-vinylcaprolactam)-based microgels as potential drug delivery nanocarriers. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:109871. [PMID: 31499979 DOI: 10.1016/j.msec.2019.109871] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 06/05/2019] [Accepted: 06/06/2019] [Indexed: 01/21/2023]
Abstract
The present work investigates the potentiality of poly(N-vinyl caprolactam) (PVCL)-based thermoresponsive microgels decorated with cationic polymer brushes as drug delivery carriers. The effect of physico-chemical features of the colloids on cell viability response have to be carefully investigated to establish the range of suitable hydrodynamic diameters, crosslinking densities, lengths and ratios of the cationic polyelectrolyte shell which allow their efficient and effective use for cargo loading, transport and delivery. The colloidal stability of all cationic thermoresponsive microgels is maintained over several days of incubation at 37 °C in biological mimicking medium (Dulbecco's Modified Eagle's Medium supplemented with fetal bovine serum). The thin cationic polymer shell covalently anchored does not hinder the all range of microgels to be biocompatible while the higher cytotoxicity of the doxorubicin-loaded microgels on HeLa cells proves their anti-tumor activity. The core-shell PVCL drug delivery nanocarriers allow a sustained release of doxorubicin with a slightly higher viability of HeLa cells incubated in the presence of DOXO-loaded microgels compared to the free DOXO. The nature of the endocytosis pathway is investigated through a quantification of the extent of the cellular survival rate in the presence of various cellular uptake inhibitors. A clathrin-dependent internalization was observed.
Collapse
Affiliation(s)
- Laura Etchenausia
- CNRS, University Pau & Pays Adour, E2S UPPA, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux, IPREM, UMR5254, 64000 Pau, France; Bionanoparticles Group, Department of Applied Chemistry, University of the Basque Country UPV/EHU, Donostia-San Sebastián, Spain
| | - Eva Villar-Alvarez
- Condensed Matter Physics Department, Faculty of Physics, 15782 Campus Sur, Universidad de Santiago de Compostela, Santiago de Compostela, Spain
| | - Jacqueline Forcada
- Bionanoparticles Group, Department of Applied Chemistry, University of the Basque Country UPV/EHU, Donostia-San Sebastián, Spain
| | - Maud Save
- CNRS, University Pau & Pays Adour, E2S UPPA, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux, IPREM, UMR5254, 64000 Pau, France.
| | - Pablo Taboada
- Condensed Matter Physics Department, Faculty of Physics, 15782 Campus Sur, Universidad de Santiago de Compostela, Santiago de Compostela, Spain.
| |
Collapse
|
3
|
|
4
|
Liu S, Yang J, Jia H, Zhou H, Chen J, Guo T. Virus Spike and Membrane-Lytic Mimicking Nanoparticles for High Cell Binding and Superior Endosomal Escape. ACS APPLIED MATERIALS & INTERFACES 2018; 10:23630-23637. [PMID: 29931973 DOI: 10.1021/acsami.8b06934] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Virus-inspired mimics for gene therapy have attracted increasing attention because viral vectors show robust efficacy owing to the highly infectious nature and efficient endosomal escape. Nonetheless, until now, synthetic materials have failed to achieve high "infectivity," and especially, the mimicking of virus spikes for "infection" is underappreciated. Herein, a virus spike mimic by a zinc (Zn) coordinative ligand that shows high affinity toward phosphate-rich cell membranes is reported. Surprisingly, this ligand also demonstrates superior functionality of destabilizing endosomes. Therefore, the Zn coordination is more likely to imitate the virus nature with high cell binding and endosomal membrane disruption. Following this, the Zn coordinative ligand is functionalized on a bioreducible cross-linked peptide with alkylation that imitates the viral lipoprotein shell. The ultimate virus-mimicking nanoparticle closely imitates the structures and functions of viruses, leading to robust transfection efficiency both in vitro and in vivo. More importantly, apart from targeting ligand- and cell-penetrating peptide, the metal coordinative ligand may provide another option to functionalize diverse biomaterials for enhanced efficacy, demonstrating its broad referential significance to pursue nonviral vectors with high performance.
Collapse
|
5
|
Xiao Y, Sun H, Du J. Sugar-Breathing Glycopolymersomes for Regulating Glucose Level. J Am Chem Soc 2017; 139:7640-7647. [DOI: 10.1021/jacs.7b03219] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yufen Xiao
- Department
of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Hui Sun
- Department
of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Jianzhong Du
- Department
of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
- Shanghai
Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| |
Collapse
|
6
|
Le Fer G, Le Cœur C, Guigner JM, Amiel C, Volet G. Biocompatible Soft Nanoparticles with Multiple Morphologies Obtained from Nanoprecipitation of Amphiphilic Graft Copolymers in a Backbone-Selective Solvent. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:2849-2860. [PMID: 28248524 DOI: 10.1021/acs.langmuir.7b00471] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Stealth nanocarriers are a promising technology for the treatment of diseases. However, the preparation and characterization of well-defined soft nanoparticulate systems remain challenging. Here we describe a platform of amphiphilic graft copolymers leading to nanoparticles with multiple morphologies and the role of the hydrophilic backbone in their interaction with a model protein. The amphiphilic graft copolymers platform was composed of hydrophilic backbone poly(2-methyl-2-oxazoline-co-2-pentyl-2-oxazoline) (P(MeOx-co-PentOx)), prepared via cationic ring-opening polymerization. Hydrophobic poly(d,l-lactide) (PLA) chains were grafted on the backbone via Huisgen 1,3-dipolar cycloaddition. The "click" copper-catalyzed cycloaddition reactions of azides with alkynes (CuAAC) were successfully carried out, and a series of amphiphilic copolymers were prepared containing a backbone with a number-average molecular weight of 14.2 × 103 g mol-1 and different hydrophobic PLA grafts with various molecular weights (2.8 × 103-12.4 × 103 g mol-1). These original architectures of copolymers, when nanoprecipitated in water, the backbone-selective solvent, allowed us to obtain various structures of nanoparticles with a hydrodynamic diameter in the range of 65-99 nm. More interestingly, a plurality of morphologies going from unilamellar, multilamellar, and large compound vesicles to core-shell nanoparticles and depending on the PLA molecular weights were evidenced by combining cryo-transmission electron microscopy (cryo-TEM) and small-angle neutron scattering (SANS) studies. A first evaluation of their stealthiness by studying the stability and the interaction of these nano-objects with a model protein revealed the role played by the P(MeOx-co-PentOx) in these interactions, demonstrating the utility of this amphiphilic graft copolymers platform with well-defined architectures for the design of nanocarriers in drug delivery applications.
Collapse
Affiliation(s)
- Gaëlle Le Fer
- Université Paris Est , ICMPE (UMR7182), CNRS, UPEC, 94320 Thiais, France
| | - Clémence Le Cœur
- Université Paris Est , ICMPE (UMR7182), CNRS, UPEC, 94320 Thiais, France
- Laboratoire Léon Brillouin, UMR 12 CEA-CNRS, CEA Saclay , 91191 Gif-sur-Yvette Cedex, France
| | - Jean-Michel Guigner
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Sorbonne Universités , UPMC Paris 6, IRD, CNRS UMR7590, MNHN, 4 place Jussieu, 75252 Paris Cedex 05, France
| | - Catherine Amiel
- Université Paris Est , ICMPE (UMR7182), CNRS, UPEC, 94320 Thiais, France
| | - Gisèle Volet
- Université Paris Est , ICMPE (UMR7182), CNRS, UPEC, 94320 Thiais, France
- Université d'Evry Val d'Essonne , Rue du Père Jarlan, 91025 Evry Cedex, France
| |
Collapse
|
7
|
Abdel-Rahman RM, Abdel-Mohsen A, Hrdina R, Burgert L, Fohlerova Z, Pavliňák D, Sayed O, Jancar J. Wound dressing based on chitosan/hyaluronan/nonwoven fabrics: Preparation, characterization and medical applications. Int J Biol Macromol 2016; 89:725-36. [DOI: 10.1016/j.ijbiomac.2016.04.087] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 04/28/2016] [Accepted: 04/30/2016] [Indexed: 11/25/2022]
|
8
|
Zhao J, Feng SS. Nanocarriers for delivery of siRNA and co-delivery of siRNA and other therapeutic agents. Nanomedicine (Lond) 2016. [PMID: 26214357 DOI: 10.2217/nnm.15.61] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A major problem in cancer treatment is the multidrug resistance. siRNA inhibitors have great advantages to solve the problem, if the bottleneck of their delivery could be well addressed by the various nanocarriers. Moreover, co-delivery of siRNA together with the various anticancer agents in one nanocarrier may maximize their additive or synergistic effect. This review provides a comprehensive summary on the state-of-the-art of the nanocarriers, which may include prodrugs, micelles, liposomes, dendrimers, nanohydrogels, solid lipid nanoparticles, nanoparticles of biodegradable polymers and nucleic acid nanocarriers for delivery of siRNA and co-delivery of siRNA together with anticancer agents with focus on synthesis of the nanocarrier materials, design and characterization, in vitro and in vivo evaluation, and prospect and challenges of nanocarriers.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Si-Shen Feng
- Department of Chemical & Biomolecular Engineering, Faculty of Engineering, National University of Singapore, Singapore 117576, Singapore.,International Joint Cancer Institute, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
9
|
Haladjova E, Mountrichas G, Pispas S, Rangelov S. Poly(vinyl benzyl trimethylammonium chloride) Homo and Block Copolymers Complexation with DNA. J Phys Chem B 2016; 120:2586-95. [DOI: 10.1021/acs.jpcb.5b12477] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Emi Haladjova
- Institute
of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev St. bl.103A, Sofia 1113, Bulgaria
| | - Grigoris Mountrichas
- Theoretical
and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vass. Constantinou Ave., 116 35 Athens, Greece
| | - Stergios Pispas
- Theoretical
and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vass. Constantinou Ave., 116 35 Athens, Greece
| | - Stanislav Rangelov
- Institute
of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev St. bl.103A, Sofia 1113, Bulgaria
| |
Collapse
|
10
|
Kulkarni AD, Vanjari YH, Sancheti KH, Patel HM, Belgamwar VS, Surana SJ, Pardeshi CV. Polyelectrolyte complexes: mechanisms, critical experimental aspects, and applications. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2016; 44:1615-25. [DOI: 10.3109/21691401.2015.1129624] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
11
|
Wang W, He S, Hong T, Zhang Y, Sui H, Zhang X, Ma Y. Synthesis, self-assembly, and in vitro toxicity of fatty acids-modified Bletilla striata polysaccharide. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2016; 45:69-75. [PMID: 26754958 DOI: 10.3109/21691401.2015.1129621] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Hydrophobic modification of Bletilla striata polysaccharide (BSP) was performed by grafting fatty acids to BSP backbone and then characterized on their physicochemical properties. All neutral derivatives were able to self-assemble into spherical particles within the size range of 250-400 nm, their size and critical micelle concentration decreased with increasing hydrophobicity and substitution degree of the fatty acids. Also, the BSP-stearic acid conjugates showed a preferable performance on hemolysis test and cytotoxicity analysis on HepG2 cells, which suggested their potential application as a drug delivery vector.
Collapse
Affiliation(s)
- Wenping Wang
- a School of Pharmacy, Ningxia Medical University , Yinchuan , Ningxia , China
| | - Shaolong He
- a School of Pharmacy, Ningxia Medical University , Yinchuan , Ningxia , China
| | - Tongtong Hong
- b Department of Pharmacy , General Hospital of Yan Kuang Group , Zou Cheng , Shandong , China
| | - Yumei Zhang
- c School of Basic Medicine, Ningxia Medical University , Yinchuan , Ningxia , China
| | - Hong Sui
- a School of Pharmacy, Ningxia Medical University , Yinchuan , Ningxia , China
| | - Xia Zhang
- a School of Pharmacy, Ningxia Medical University , Yinchuan , Ningxia , China
| | - Yanni Ma
- d General Hospital of Ningxia Medical University , Yinchuan , Ningxia , China
| |
Collapse
|
12
|
Shen W, Wang H, Ling-hu Y, Lv J, Chang H, Cheng Y. Screening of efficient polymers for siRNA delivery in a library of hydrophobically modified polyethyleneimines. J Mater Chem B 2016; 4:6468-6474. [DOI: 10.1039/c6tb01929c] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Fluoroalkylated polymers are superior to alkylated and cycloalkylated analogs in siRNA delivery.
Collapse
Affiliation(s)
- Wanwan Shen
- Shanghai Key Laboratory of Regulatory Biology
- School of Life Sciences
- East China Normal University
- Shanghai
- P. R. China
| | - Hui Wang
- Shanghai Key Laboratory of Regulatory Biology
- School of Life Sciences
- East China Normal University
- Shanghai
- P. R. China
| | - Ye Ling-hu
- Shanghai Key Laboratory of Regulatory Biology
- School of Life Sciences
- East China Normal University
- Shanghai
- P. R. China
| | - Jia Lv
- Shanghai Key Laboratory of Regulatory Biology
- School of Life Sciences
- East China Normal University
- Shanghai
- P. R. China
| | - Hong Chang
- Shanghai Key Laboratory of Regulatory Biology
- School of Life Sciences
- East China Normal University
- Shanghai
- P. R. China
| | - Yiyun Cheng
- Shanghai Key Laboratory of Regulatory Biology
- School of Life Sciences
- East China Normal University
- Shanghai
- P. R. China
| |
Collapse
|
13
|
Hu J, Wang X, Qian Y, Yu Y, Jiang Y, Zhang G, Liu S. Cytoplasmic Reactive Cationic Amphiphiles for Efficient Intracellular Delivery and Self-Reporting Smart Release. Macromolecules 2015. [DOI: 10.1021/acs.macromol.5b01110] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Jinming Hu
- CAS
Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory
for Physical Sciences at the Microscale, iChem (Collaborative Innovation
Center of Chemistry for Energy Materials), Department of Polymer Science
and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Xiao Wang
- Department
of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Yinfeng Qian
- Department
of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Yongqiang Yu
- Department
of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Yanyan Jiang
- CAS
Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory
for Physical Sciences at the Microscale, iChem (Collaborative Innovation
Center of Chemistry for Energy Materials), Department of Polymer Science
and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Guoying Zhang
- CAS
Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory
for Physical Sciences at the Microscale, iChem (Collaborative Innovation
Center of Chemistry for Energy Materials), Department of Polymer Science
and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Shiyong Liu
- CAS
Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory
for Physical Sciences at the Microscale, iChem (Collaborative Innovation
Center of Chemistry for Energy Materials), Department of Polymer Science
and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
14
|
Mundra V, Mahato RI. Design of nanocarriers for efficient cellular uptake and endosomal release of small molecule and nucleic acid drugs: learning from virus. Front Chem Sci Eng 2014. [DOI: 10.1007/s11705-014-1457-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
15
|
Perdih P, Cebašek S, Možir A, Zagar E. Post-polymerization modification of poly(L-glutamic acid) with D-(+)-glucosamine. Molecules 2014; 19:19751-68. [PMID: 25438084 PMCID: PMC6270794 DOI: 10.3390/molecules191219751] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 11/20/2014] [Accepted: 11/24/2014] [Indexed: 12/15/2022] Open
Abstract
Carboxyl functional groups of poly(L-glutamic acid) (PGlu) were modified with a D-(+)-glucosamine (GlcN) by amidation using 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMTMM) as a coupling reagent. The coupling reaction was performed in aqueous medium without protection of hydroxyl functional groups of D-(+)-glucosamine. Poly(L-glutamic acid) and GlcN functionalized polyglutamates (P(Glu-GlcN)) were thoroughly characterized by 1D and 2D NMR spectroscopy and SEC-MALS to gain detailed information on their structure, composition and molar mass characteristics. The results reveal successful functionalization with GlcN through the amide bond and also to a minor extent through ester bond formation in position 1 of GlcN. In addition, a ratio between the α- and β-form of glucosamine substituent coupled to polyglutamate repeating units as well as the content of residual dimethoxy triazinyl active ester moiety in the samples were evaluated.
Collapse
Affiliation(s)
- Peter Perdih
- National Institute of Chemistry, Laboratory for Polymer Chemistry and Technology, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
| | - Sašo Cebašek
- National Institute of Chemistry, Laboratory for Polymer Chemistry and Technology, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
| | - Alenka Možir
- National Institute of Chemistry, Laboratory for Polymer Chemistry and Technology, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
| | - Ema Zagar
- National Institute of Chemistry, Laboratory for Polymer Chemistry and Technology, Hajdrihova 19, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
16
|
Islam MR, Gao Y, Li X, Zhang QM, Wei M, Serpe MJ. Stimuli-responsive polymeric materials for human health applications. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/s11434-014-0545-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Li G, Xu N, Yu Q, Lu X, Chen H, Cai Y. Acceleration and Selective Monomer Addition during Aqueous RAFT Copolymerization of Ionic Monomers at 25 °C. Macromol Rapid Commun 2014; 35:1430-5. [DOI: 10.1002/marc.201400153] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 05/04/2014] [Indexed: 11/09/2022]
Affiliation(s)
- Guangxiang Li
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering; College of Chemistry, Chemical Engineering and Materials Science, Soochow University; Suzhou 215123 China
| | - Na Xu
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering; College of Chemistry, Chemical Engineering and Materials Science, Soochow University; Suzhou 215123 China
| | - Qiuping Yu
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering; College of Chemistry, Chemical Engineering and Materials Science, Soochow University; Suzhou 215123 China
| | - Xinhua Lu
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering; College of Chemistry, Chemical Engineering and Materials Science, Soochow University; Suzhou 215123 China
| | - Hong Chen
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering; College of Chemistry, Chemical Engineering and Materials Science, Soochow University; Suzhou 215123 China
| | - Yuanli Cai
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering; College of Chemistry, Chemical Engineering and Materials Science, Soochow University; Suzhou 215123 China
| |
Collapse
|
18
|
Williford JM, Wu J, Ren Y, Archang MM, Leong KW, Mao HQ. Recent advances in nanoparticle-mediated siRNA delivery. Annu Rev Biomed Eng 2014; 16:347-70. [PMID: 24905873 DOI: 10.1146/annurev-bioeng-071813-105119] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Inhibiting specific gene expression by short interfering RNA (siRNA) offers a new therapeutic strategy to tackle many diseases, including cancer, metabolic disorders, and viral infections, at the molecular level. The macromolecular and polar nature of siRNA hinders its cellular access to exert its effect. Nanoparticulate delivery systems can promote efficient intracellular delivery. Despite showing promise in many preclinical studies and potential in some clinical trials, siRNA has poor delivery efficiency, which continues to demand innovations, from carrier design to formulation, in order to overcome transport barriers. Previous findings for optimal plasmid DNA delivery cannot be generalized to siRNA delivery owing to significant discrepancy in size and subtle differences in chain flexibility between the two types of nucleic acids. In this review, we highlight the recent advances in improving the stability of siRNA nanoparticles, understanding their intracellular trafficking and release mechanisms, and applying judiciously the promising formulations to disease models.
Collapse
Affiliation(s)
- John-Michael Williford
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | | | | | | | | | | |
Collapse
|
19
|
Lepeltier E, Bourgaux C, Couvreur P. Nanoprecipitation and the "Ouzo effect": Application to drug delivery devices. Adv Drug Deliv Rev 2014; 71:86-97. [PMID: 24384372 DOI: 10.1016/j.addr.2013.12.009] [Citation(s) in RCA: 237] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 12/05/2013] [Accepted: 12/19/2013] [Indexed: 12/20/2022]
Abstract
Biodegradable nanocarriers such as lipid- or polymer-based nanoparticles can be designed to improve the efficacy and reduce the toxic side effects of drugs. Under appropriate conditions, nanoprecipitation of a hydrophobic compound solution in a non-solvent can generate a dispersion of nanoparticles with a narrow distribution of sizes without the use of surfactant ("Ouzo" effect). The aim of this review is to present the main parameters controlling the nucleation and growth of aggregates in a supersaturated solution and the characteristics of the obtained nanoparticles. The importance of the kinetics of mixing of the solution containing the hydrophobic compound and the non-solvent is highlighted. Illustrative examples of polymeric nanoparticles for drug delivery or terpenoid-based nanoprodrugs obtained by nanoprecipitation are reported.
Collapse
|
20
|
Zhang Z, Ma R, Shi L. Cooperative macromolecular self-assembly toward polymeric assemblies with multiple and bioactive functions. Acc Chem Res 2014; 47:1426-37. [PMID: 24694280 DOI: 10.1021/ar5000264] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
In the past decades, polymer based nanoscale polymeric assemblies have attracted continuous interest due to their potential applications in many fields, such as nanomedicine. Many efforts have been dedicated to tailoring the three-dimensional architecture and the placement of functional groups at well-defined positions within the polymeric assemblies, aiming to augment their function. To achieve such goals, in one way, novel polymeric building blocks can be designed by controlled living polymerization methodology and advanced chemical modifications. In contrast, by focusing on the end function, others and we have been practicing strategies of cooperative self-assembly of multiple polymeric building blocks chosen from the vast library of conventional block polymers which are easily available. The advantages of such strategies lie in the simplicity of the preparation process and versatile choice of the constituent polymers in terms of their chemical structure and functionality as well as the fact that cooperative self-assembly based on supramolecular interactions offers elegant and energy-efficient bottom-up strategies. Combination of these principles has been exploited to optimize the architecture of polymeric assemblies with improved function, to impart new functionality into micelles and to realize polymeric nanocomplexes exhibiting functional integration, similar to some natural systems like artificial viruses, molecular chaperones, multiple enzyme systems, and so forth. In this Account, we shall first summarize several straightforward designing principles with which cooperative assembly of multiple polymeric building blocks can be implemented, aiming to construct polymeric nanoassemblies with hierarchal structure and enhanced functionalities. Next, examples will be discussed to demonstrate the possibility to create multifunctional nanoparticles by combination of the designing principles and judiciously choosing of the building blocks. We focus on multifunctional nanoparticles which can partially address challenges widely existing in nanomedicine such as long blood circulation, efficient cellular uptake, and controllable release of payloads. Finally, bioactive polymeric assemblies, which have certain functions closely mimicking those of some natural systems, will be used to conceive the concept of functional integration.
Collapse
Affiliation(s)
- Zhenkun Zhang
- Key Laboratory of Functional
Polymer Materials of Ministry of Education, Institute of Polymer Chemistry,
State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
- Collaborative Innovation
Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Rujiang Ma
- Key Laboratory of Functional
Polymer Materials of Ministry of Education, Institute of Polymer Chemistry,
State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
- Collaborative Innovation
Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Linqi Shi
- Key Laboratory of Functional
Polymer Materials of Ministry of Education, Institute of Polymer Chemistry,
State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
- Collaborative Innovation
Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| |
Collapse
|
21
|
|
22
|
Wang H, Chen W, Xie H, Wei X, Yin S, Zhou L, Xu X, Zheng S. Biocompatible, chimeric peptide-condensed supramolecular nanoparticles for tumor cell-specific siRNA delivery and gene silencing. Chem Commun (Camb) 2014; 50:7806-9. [PMID: 24903477 DOI: 10.1039/c4cc01061b] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A practical and tumor cell-specific siRNA delivery system was developedviasingle-step self-assembly of an arginine-rich chimeric peptide with siRNA.
Collapse
Affiliation(s)
- Hangxiang Wang
- First Affiliated Hospital
- School of Medicine
- Zhejiang University
- Hangzhou, PR China
| | - Wei Chen
- Zhejiang University School of Medicine
- Hangzhou, PR China
| | - Haiyang Xie
- First Affiliated Hospital
- School of Medicine
- Zhejiang University
- Hangzhou, PR China
| | - Xuyong Wei
- First Affiliated Hospital
- School of Medicine
- Zhejiang University
- Hangzhou, PR China
| | - Shengyong Yin
- First Affiliated Hospital
- School of Medicine
- Zhejiang University
- Hangzhou, PR China
| | - Lin Zhou
- First Affiliated Hospital
- School of Medicine
- Zhejiang University
- Hangzhou, PR China
| | - Xiao Xu
- First Affiliated Hospital
- School of Medicine
- Zhejiang University
- Hangzhou, PR China
| | - Shusen Zheng
- First Affiliated Hospital
- School of Medicine
- Zhejiang University
- Hangzhou, PR China
| |
Collapse
|
23
|
Zhao Y, Sakai F, Su L, Liu Y, Wei K, Chen G, Jiang M. Progressive macromolecular self-assembly: from biomimetic chemistry to bio-inspired materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2013; 25:5215-5256. [PMID: 24022921 DOI: 10.1002/adma.201302215] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 07/08/2013] [Indexed: 06/02/2023]
Abstract
Macromolecular self-assembly (MSA) has been an active and fruitful research field since the 1980s, especially in this new century, which is promoted by the remarkable developments in controlled radical polymerization in polymer chemistry, etc. and driven by the demands in bio-related investigations and applications. In this review, we try to summarize the trends and recent progress in MSA in relation to biomimetic chemistry and bio-inspired materials. Our paper covers representative achievements in the fabrication of artificial building blocks for life, cell-inspired biomimetic materials, and macromolecular assemblies mimicking the functions of natural materials and their applications. It is true that the current status of the deliberately designed and obtained nano-objects based on MSA including a variety of micelles, multicompartment vesicles, and some hybrid and complex nano-objects is at their very first stage to mimic nature, but significant and encouraging progress has been made in achieving a certain similarity in morphologies or properties to that of natural ones. Such achievements also demonstrate that MSA has played an important and irreplaceable role in the grand and long-standing research of biomimetic and bio-inspired materials, the future success of which depends on mutual and persistent efforts in polymer science, material science, supramolecular chemistry, and biology.
Collapse
Affiliation(s)
- Yu Zhao
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
24
|
Kumar S, Kim DW, Lee HJ, Changez M, Yoon TH, Lee JS. Exploration of the Mechanism for Self-Emulsion Polymerization of Amphiphilic Vinylpyridine. Macromolecules 2013. [DOI: 10.1021/ma4017373] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Santosh Kumar
- Department of Nanobio Materials
and Electronics, School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro Buk-gu, Gwangju 500-712, Korea
| | - Dong-Woo Kim
- Department of Nanobio Materials
and Electronics, School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro Buk-gu, Gwangju 500-712, Korea
| | - Hong-Joon Lee
- Department of Nanobio Materials
and Electronics, School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro Buk-gu, Gwangju 500-712, Korea
| | - Mohammad Changez
- Department of Nanobio Materials
and Electronics, School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro Buk-gu, Gwangju 500-712, Korea
| | - Tae-Ho Yoon
- Department of Nanobio Materials
and Electronics, School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro Buk-gu, Gwangju 500-712, Korea
| | - Jae-Suk Lee
- Department of Nanobio Materials
and Electronics, School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro Buk-gu, Gwangju 500-712, Korea
| |
Collapse
|