1
|
Guven N, Yucel B, Sultanova H, Camurlu P. Multichromic metallopolymers of poly(2,5-dithienylpyrrole)s derived through tethering of ruthenium(II) bipiridyl complex. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
2
|
Yoshimura N, Yoshida M, Kato M, Kobayashi A. Photocatalyst-Mediator Interface Modification by Surface-Metal Cations of a Dye-Sensitized H 2 Evolution Photocatalyst. Inorg Chem 2022; 61:11095-11102. [PMID: 35833492 DOI: 10.1021/acs.inorgchem.2c00851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To develop highly active H2 evolving dye-sensitized photocatalysts (DSPs) applicable for Z-scheme water splitting, we synthesized a series of Ru(II)-dye-double-layered DSPs, X'-RuCP6-Zr-RuP6@Pt-TiO2 (X'-DSP) with different surface-bound metal cations (X' = Fe2+, Y3+, Zr4+, Hf4+, and Bi3+). In 0.5 M KI aqueous solution, the photocatalytic H2 evolution activity under blue light irradiation (λ = 460 ± 15 nm) increased in the following order: nonmetal-modified DSP, H+-DSP (turn over number for 6 h irradiation = 35.2) < Fe2+-DSP (54.9) ≈ Bi3+-DSP (55.2) < Hf4+-DSP (65.5) ≈ Zr4+-DSP (68.3) ≈ Y3+-DSP (71.5), suggesting that the redox-inactive and highly charged metal cations tend to improve the electron donation from the iodide electron mediator. On the other hand, DSPs having heavy metal cations, Hf4+-DSP (18.4) and Bi3+-DSP (16.6), exhibited better activity under green light irradiation (λ = 530 ± 15 nm) than Zr4+-DSP (15.7) and H+-DSP (7.80), implying the contribution of a heavy atom effect of the surface-bound metal cation to partially allow the spin-forbidden metal-to-ligand charge-transfer excitation.
Collapse
Affiliation(s)
- Nobutaka Yoshimura
- Department of Chemistry, Faculty of Science, Hokkaido University, North-10 West-8, Kita-ku, Sapporo 060-0810, Japan
| | - Masaki Yoshida
- Department of Chemistry, Faculty of Science, Hokkaido University, North-10 West-8, Kita-ku, Sapporo 060-0810, Japan
| | - Masako Kato
- Department of Chemistry, Faculty of Science, Hokkaido University, North-10 West-8, Kita-ku, Sapporo 060-0810, Japan.,Department of Applied Chemistry for Environment, School of Biological and Environmental Sciences, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Atsushi Kobayashi
- Department of Chemistry, Faculty of Science, Hokkaido University, North-10 West-8, Kita-ku, Sapporo 060-0810, Japan
| |
Collapse
|
3
|
Application of IR spectra of two successive isotope labeled residues to the evaluation of dihedral angles of polyproline II structure. Chem Phys Lett 2019. [DOI: 10.1016/j.cplett.2019.01.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
4
|
Mede T, Jäger M, Schubert US. "Chemistry-on-the-complex": functional Ru II polypyridyl-type sensitizers as divergent building blocks. Chem Soc Rev 2018; 47:7577-7627. [PMID: 30246196 DOI: 10.1039/c8cs00096d] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Ruthenium polypyridyl type complexes are potent photoactive compounds, and have found - among others - a broad range of important applications in the fields of biomedical diagnosis and phototherapy, energy conversion schemes such as dye-sensitized solar cells (DSSCs) and molecular assemblies for tailored photo-initiated processes. In this regard, the linkage of RuII polypyridyl-type complexes with specific functional moieties is highly desirable to enhance their inherent photophysical properties, e.g., with a targeting function to achieve cell selectivity, or with a dye or redox-active subunits for energy- and electron-transfer. However, the classical approach of performing ligand syntheses first and the formation of Ru complexes in the last steps imposes synthetic limitations with regard to tolerating functional groups or moieties as well as requiring lengthy convergent routes. Alternatively, the diversification of Ru complexes after coordination (termed "chemistry-on-the-complex") provides an elegant complementary approach. In addition to the Click chemistry concept, the rapidly developing synthesis and purification methodologies permit the preparation of Ru conjugates via amidation, alkylation and cross-coupling reactions. In this regard, recent developments in chromatography shifted the limits of purification, e.g., by using new commercialized surface-modified silica gels and automated instrumentation. This review provides detailed insights into applying the "chemistry-on-the-complex" concept, which is believed to stimulate the modular preparation of unpreceded molecular assemblies as well as functional materials based on Ru-based building blocks, including combinatorial approaches.
Collapse
Affiliation(s)
- Tina Mede
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany.
| | | | | |
Collapse
|
5
|
Lewandowska U, Corra S, Zajaczkowski W, Ochs NAK, Shoshan MS, Tanabe J, Stappert S, Li C, Yashima E, Pisula W, Müllen K, Wennemers H. Positional Isomers of Chromophore-Peptide Conjugates Self-Assemble into Different Morphologies. Chemistry 2018; 24:12623-12629. [PMID: 29893493 DOI: 10.1002/chem.201801545] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/08/2018] [Indexed: 11/07/2022]
Abstract
Ordering π-systems into defined supramolecular structures is important for the development of organic functional materials. In recent years, peptides with defined secondary structures and/or self-assembly properties were introduced as powerful tools to order peptide-chromophore conjugates into different morphologies. This work explores whether or not the directionality of peptides can be used to control the self-assembly. The position of the π-system in conjugates between oligoprolines and perylene monoimide (PMI) chromophores was varied by attaching the PMI moiety to the second-to-last residue from the C- and N-termini, respectively. Microscopic and diffraction analysis revealed that the positional isomers form distinctly different supramolecular architectures that extend into the micrometer regime. NMR spectroscopic studies in solution phase allowed correlation of the self-assembly properties with markedly different conformational preferences of the isomeric building blocks. These insights enabled the design of building blocks with predictable self-assembly properties. Thus, the directionality of peptides offers exciting opportunities for controlling the self-assembly and electronic properties of π-systems.
Collapse
Affiliation(s)
- Urszula Lewandowska
- Laboratory of Organic Chemistry, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| | - Stefano Corra
- Laboratory of Organic Chemistry, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| | | | - Nellie A K Ochs
- Laboratory of Organic Chemistry, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| | - Michal S Shoshan
- Laboratory of Organic Chemistry, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| | - Junki Tanabe
- Laboratory of Organic Chemistry, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland.,Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Sebastian Stappert
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Chen Li
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Eiji Yashima
- Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Wojciech Pisula
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.,Department of Molecular Physics, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924, Lodz, Poland
| | - Klaus Müllen
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.,Institute of Physical Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Helma Wennemers
- Laboratory of Organic Chemistry, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| |
Collapse
|
6
|
Ypsilantis K, Plakatouras JC, Manos MJ, Kourtellaris A, Markopoulos G, Kolettas E, Garoufis A. Stepwise synthesis, characterization, DNA binding properties and cytotoxicity of diruthenium oligopyridine compounds conjugated with peptides. Dalton Trans 2018; 47:3549-3567. [PMID: 29436543 DOI: 10.1039/c7dt04639a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Although the interactions of oligopyridine ruthenium complexes with DNA have been widely studied, the biological activity of similar diruthenium oligopyridine complexes conjugated with peptides has not been investigated. Herein, we report the stepwise synthesis and characterization of diruthenium complexes with the general formula [(La)Ru(tppz)Ru(Lb)]n+ (tppz = 2,3,5,6-tetra(2-pyridyl)pyrazine, La = 2,2':6',2''-terpyridine or 4-phenyl-2,2':6',2''-terpyridine and Lb = 2,2':6',2''-terpyridine-4'-CO(Gly1-Gly2-Gly3-LysCONH2) (5), (6), n = 5; 2,2':6',2''-terpyridine-4'-CO(Gly1-Gly2-Lys1-Lys2CONH2) (7), (8), n = 6; 2,2':6',2''-terpyridine-4'-CO(Ahx-Lys1Lys2CONH2) (9), (10), n = 5, Ahx = 6-aminohexanoic acid). The compounds [(trpy)Ru(tppz)Ru(trpy-CO2H)](PF6)4, (2)(PF6)4, [(ptrpy)Ru(tppz)Ru(trpy-CO2H)](PF6)4, (3)(PF6)4 and [(ptrpy)Ru(tppz)Ru(trpy)](PF6)4, (4)(PF6)4 were also characterized by single crystal X-ray methods. Moreover, the interactions of the chloride salts (5), (6) and (4) with the self-complementary dodecanucleotide duplex d(5'-CGCGAATTCGCG-3')2 were studied by NMR spectroscopic techniques. The results show that complex (4) binds in the central part of the oligonucleotide, from the minor groove through the ligand ptrpy, while the ligand trpy, which was located on the other side of the diruthenium core, does not contribute to the binding. Complex (5) binds similarly, through the ligand ptrpy. However, the induced upfield shifts of the ptrpy proton signals are significantly lower than the corresponding ones in the case of (4), indicating much lower binding affinity. This is clear evidence that the tethered peptide Gly1-Gly2-Gly3-Lys1CONH2 hinders the complex binding, even though it contains groups that are able to assist it (e.g., the positively charged amino group of lysine, the peptidic backbone, the terminal amide). Complex (6) shows a non-specific binding, interacting through electrostatic forces. The chloride salts of (4), (5) and (6) had insignificant effects on the cell cycle distribution and marginal cytotoxicity (IC50 > 750 μM) against human lung cancer cell lines H1299 and H1437, indicating that their binding to the oligonucleotide is not a sufficient condition for their cytotoxicity.
Collapse
Affiliation(s)
- Konstantinos Ypsilantis
- Laboratory of Inorganic Chemistry, Department of Chemistry, University of Ioannina, Ioannina 45110, Greece.
| | | | | | | | | | | | | |
Collapse
|
7
|
Schlotthauer T, Schroot R, Glover S, Hammarström L, Jäger M, Schubert US. A multidonor-photosensitizer-multiacceptor triad for long-lived directional charge separation. Phys Chem Chem Phys 2018; 19:28572-28578. [PMID: 29034949 DOI: 10.1039/c7cp05593e] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The modular assembly of a directional photoredox-active multidonor-photosensitizer-multiacceptor (Dn-P-Am) architecture is presented. The triad assembly features a central Ru(ii) sensitizer equipped with pendant polymer chains consisting of multiple triarylamine (pTARA) and naphthalene diimide (pNDI) units, respectively. Upon excitation, the efficient formation (>96%) of charge separation (CS) was observed featuring similar CS lifetimes (400 ns) as related molecular triads. In contrast, a significant additional longer-lived CS component (2400 ns, 30%) is observed indicating multiple contributing pathways.
Collapse
Affiliation(s)
- Tina Schlotthauer
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany.
| | | | | | | | | | | |
Collapse
|
8
|
Ding X, Zhang L, Wang Y, Liu A, Gao Y. Design of photoanode-based dye-sensitized photoelectrochemical cells assembling with transition metal complexes for visible light-induced water splitting. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2017.10.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Ganeshraja AS, Yang M, Xu W, Anbalagan K, Wang J. Photoinduced Interfacial Electron Transfer in 2,2’-Bipyridyl Iron(III) Complex-TiO 2
Nanoparticles in Aqueous Medium. ChemistrySelect 2017. [DOI: 10.1002/slct.201702055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ayyakannu Sundaram Ganeshraja
- Mössbauer Effect Data Center; Dalian Institute of Chemical Physics, Chinese Academy of Sciences; Dalian 116023 China
| | - Minghui Yang
- Mössbauer Effect Data Center; Dalian Institute of Chemical Physics, Chinese Academy of Sciences; Dalian 116023 China
| | - Wei Xu
- Beijing Synchrotron Radiation Facility; Institute of High Energy Physics, Chinese Academy of Sciences; Beijing 100049 China
| | | | - Junhu Wang
- Mössbauer Effect Data Center; Dalian Institute of Chemical Physics, Chinese Academy of Sciences; Dalian 116023 China
| |
Collapse
|
10
|
Schroot R, Schlotthauer T, Dietzek B, Jäger M, Schubert US. Extending Long-lived Charge Separation Between Donor and Acceptor Blocks in Novel Copolymer Architectures Featuring a Sensitizer Core. Chemistry 2017; 23:16484-16490. [DOI: 10.1002/chem.201704180] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Indexed: 02/01/2023]
Affiliation(s)
- Robert Schroot
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstraße 10 07743 Jena Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena); Friedrich Schiller University Jena; Philosophenweg 7a 07743 Jena Germany
| | - Tina Schlotthauer
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstraße 10 07743 Jena Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena); Friedrich Schiller University Jena; Philosophenweg 7a 07743 Jena Germany
| | - Benjamin Dietzek
- Center for Energy and Environmental Chemistry Jena (CEEC Jena); Friedrich Schiller University Jena; Philosophenweg 7a 07743 Jena Germany
- Institute for Physical Chemistry and Abbe Center of Photonics (ACP); Friedrich Schiller University Jena; Helmholtzweg 4 07743 Jena Germany
- Leibniz Institute for Photonic Technology (IPHT); Albert-Einstein-Straße 9 07743 Jena Germany
| | - Michael Jäger
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstraße 10 07743 Jena Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena); Friedrich Schiller University Jena; Philosophenweg 7a 07743 Jena Germany
| | - Ulrich S. Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstraße 10 07743 Jena Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena); Friedrich Schiller University Jena; Philosophenweg 7a 07743 Jena Germany
| |
Collapse
|
11
|
Alibabaei L, Brennaman MK, Meyer TJ. Light-Driven Water Splitting in the Dye-Sensitized Photoelectrosynthesis Cell. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/978-981-10-5924-7_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
|
12
|
Furugori S, Kobayashi A, Watanabe A, Yoshida M, Kato M. Impact of Photosensitizing Multilayered Structure on Ruthenium(II)-Dye-Sensitized TiO 2-Nanoparticle Photocatalysts. ACS OMEGA 2017; 2:3901-3912. [PMID: 31457696 PMCID: PMC6641294 DOI: 10.1021/acsomega.7b00566] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 07/12/2017] [Indexed: 06/10/2023]
Abstract
To improve the efficiency of photoinduced charge separation on the surface of dye-sensitized TiO2 nanoparticles, we synthesized the Ru(II)-photosensitizer-immobilized, Pt-cocatalyst-loaded TiO2 nanoparticles RuCP 2 @Pt-TiO2, RuCP 2 -Zr-RuP 6 @Pt-TiO2, and RuCP 2 -Zr-RuP 4 -Zr-RuP 6 @Pt-TiO2 (RuCP 2 = [Ru(bpy)2(mpbpy)]2-, RuP 4 = [Ru(bpy)(pbpy)2]6-, RuP 6 = [Ru(pbpy)3]10-, H4mpbpy = 2,2'-bipyridine-4,4'-bis(methanephosphonic acid), and H4pbpy = 2,2'-bipyridine-4,4'-bis(phosphonic acid)) using phosphonate linkers with bridging Zr4+ ions. X-ray fluorescence and ultraviolet-visible absorption spectra revealed that a layered molecular structure composed of Ru(II) photosensitizers and Zr4+ ions (i.e., RuCP 2 -Zr-RuP 6 and RuCP 2 -Zr-RuP 4 -Zr-RuP 6 ) was successfully formed on the surface of Pt-TiO2 nanoparticles, which increased the surface coverage from 0.113 nmol/cm2 for singly layered RuCP 2 @Pt-TiO2 to 0.330 nmol/cm2 for triply layered RuCP 2 -Zr-RuP 4 -Zr-RuP 6 @Pt-TiO2. The photocatalytic H2 evolution activity of the doubly layered RuCP 2 -Zr-RuP 6 @Pt-TiO2 was three times higher than that of the singly layered RuCP 2 @Pt-TiO2, whereas the activity of triply layered RuCP 2 -Zr-RuP 4 -Zr-RuP 6 @Pt-TiO2 was less than half of that for RuCP 2 @Pt-TiO2. The photosensitizing efficiencies of these Ru(II)-photosensitizer-immobilized nanoparticles for the O2 evolution reaction catalyzed by the Co(II)-containing Prussian blue analogue [CoII(H2O)2]1.31[{CoIII(CN)6}0.63{PtII(CN)4}0.37] decreased as the number of Ru(II)-photosensitizing layers increased. Thus, crucial aspects of the energy- and electron-transfer mechanism for the photocatalytic H2 and O2 evolution reactions involve not only the Ru(II)-complex-TiO2 interface but also the multilayered structure of the Ru(II)-photosensitizers on the Pt-TiO2 surface.
Collapse
Affiliation(s)
- Sogo Furugori
- Department
of Chemistry, Faculty of Science, Hokkaido
University, North-10
West-8, Kita-ku, Sapporo 060-0810, Japan
| | - Atsushi Kobayashi
- Department
of Chemistry, Faculty of Science, Hokkaido
University, North-10
West-8, Kita-ku, Sapporo 060-0810, Japan
- Precursory
Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan
| | - Ayako Watanabe
- Department
of Chemistry, Faculty of Science, Hokkaido
University, North-10
West-8, Kita-ku, Sapporo 060-0810, Japan
| | - Masaki Yoshida
- Department
of Chemistry, Faculty of Science, Hokkaido
University, North-10
West-8, Kita-ku, Sapporo 060-0810, Japan
| | - Masako Kato
- Department
of Chemistry, Faculty of Science, Hokkaido
University, North-10
West-8, Kita-ku, Sapporo 060-0810, Japan
| |
Collapse
|
13
|
Schroot R, Jäger M, Schubert US. Synthetic approaches towards structurally-defined electrochemically and (photo)redox-active polymer architectures. Chem Soc Rev 2017; 46:2754-2798. [DOI: 10.1039/c6cs00811a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
This review details synthetic strategies leading to structurally-defined electrochemically and (photo)redox-active polymer architectures,e.g.block, graft and end functionalized (co)polymers.
Collapse
Affiliation(s)
- Robert Schroot
- Laboratory of Organic and Macromolecular Chemistry (IOMC)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
| | - Michael Jäger
- Laboratory of Organic and Macromolecular Chemistry (IOMC)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena)
| | - Ulrich S. Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena)
| |
Collapse
|
14
|
Gish MK, Lapides AM, Brennaman MK, Templeton JL, Meyer TJ, Papanikolas JM. Ultrafast Recombination Dynamics in Dye-Sensitized SnO 2/TiO 2 Core/Shell Films. J Phys Chem Lett 2016; 7:5297-5301. [PMID: 27973875 DOI: 10.1021/acs.jpclett.6b02388] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Interfacial dynamics are investigated in SnO2/TiO2 core/shell films derivatized with a Ru(II)-polypyridyl chromophore ([RuII(bpy)2(4,4'-(PO3H2)2bpy)]2+, RuP) using transient absorption methods. Electron injection from the chromophore into the TiO2 shell occurs within a few picoseconds after photoexcitation. Loss of the oxidized dye through recombination occurs across time scales spanning 10 orders of magnitude. The majority (60%) of charge recombination events occur shortly after injection (τ = 220 ps), while a small fraction (≤20%) of the oxidized chromophores persists for milliseconds. The lifetime of long-lived charge-separated states (CSS) depends exponentially on shell thickness, suggesting that the injected electrons reside in the SnO2 core and must tunnel through the TiO2 shell to recombine with oxidized dyes. While the core/shell architecture extends the lifetime in a small fraction of the CSS, making water oxidation possible, the subnanosecond recombination process has profound implications for the overall efficiencies of dye-sensitized photoelectrosynthesis cells (DSPECs).
Collapse
Affiliation(s)
- Melissa K Gish
- Department of Chemistry, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599, United States
| | - Alexander M Lapides
- Department of Chemistry, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599, United States
| | - M Kyle Brennaman
- Department of Chemistry, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599, United States
| | - Joseph L Templeton
- Department of Chemistry, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599, United States
| | - Thomas J Meyer
- Department of Chemistry, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599, United States
| | - John M Papanikolas
- Department of Chemistry, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
15
|
Silicon Compound Decorated Photoanode for Performance Enhanced Visible Light Driven Water Splitting. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.08.152] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
16
|
Qi M, Hülsmann M, Godt A. Spacers for Geometrically Well-Defined Water-Soluble Molecular Rulers and Their Application. J Org Chem 2016; 81:2549-71. [DOI: 10.1021/acs.joc.6b00125] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Mian Qi
- Faculty of Chemistry and
Center for Molecular Materials (MC2), Bielefeld University, Universitätsstraße
25, 33615 Bielefeld, Germany
| | - Miriam Hülsmann
- Faculty of Chemistry and
Center for Molecular Materials (MC2), Bielefeld University, Universitätsstraße
25, 33615 Bielefeld, Germany
| | - Adelheid Godt
- Faculty of Chemistry and
Center for Molecular Materials (MC2), Bielefeld University, Universitätsstraße
25, 33615 Bielefeld, Germany
| |
Collapse
|
17
|
Lewandowska U, Zajaczkowski W, Pisula W, Ma Y, Li C, Müllen K, Wennemers H. Effect of Structural Modifications on the Self-Assembly of Oligoprolines Conjugated with Sterically Demanding Chromophores. Chemistry 2016; 22:3804-9. [PMID: 26891419 DOI: 10.1002/chem.201504952] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Indexed: 12/14/2022]
Abstract
Conjugates between oligoprolines and sterically demanding perylene monoimides (PMIs) form hierarchical supramolecular self-assemblies. The influence of the length and stereochemistry at the attachment site between the peptide backbone and the chromophore on the self-assembly properties of the conjugates was explored. Comparison between oligoprolines bearing 4R- or 4S-configured azidoprolines (Azp) for the conjugation with the PMIs revealed that diastereoisomers with 4R configuration guide the self-assembly consistently better than conjugates with 4S configuration. Elongating the peptide chain beyond nine proline residues or introducing structural "errors", by altering the absolute configuration of one stereogenic center at the outside of the functionalizable oligoproline helix, lowered the efficacy of self-assembly significantly, both in solution phase and in the solid state. The results showed how subtle structural modifications allow for tuning the self-assembly of chromophores and provided further design principles for the development of peptide-chromophore conjugates into nanostructured materials.
Collapse
Affiliation(s)
- Urszula Lewandowska
- Laboratory of Organic Chemistry, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| | | | - Wojciech Pisula
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.,Department of Molecular Physics, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924, Lodz, Poland
| | - Yingjie Ma
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Chen Li
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Klaus Müllen
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.
| | - Helma Wennemers
- Laboratory of Organic Chemistry, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland.
| |
Collapse
|
18
|
Zabarska N, Stumper A, Rau S. CuAAC click reactions for the design of multifunctional luminescent ruthenium complexes. Dalton Trans 2016; 45:2338-51. [DOI: 10.1039/c5dt04599a] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
CuAAC (Cu(i) catalyzed azide–alkyne cycloaddition) click chemistry has emerged as a versatile tool in the development of photoactive ruthenium complexes with multilateral potential applicability. Three general concepts for their synthesis and selected applications are discussed.
Collapse
Affiliation(s)
- Natalia Zabarska
- Institute of Inorganic Chemistry I
- Ulm University
- 89081 Ulm
- Germany
| | - Anne Stumper
- Institute of Inorganic Chemistry I
- Ulm University
- 89081 Ulm
- Germany
| | - Sven Rau
- Institute of Inorganic Chemistry I
- Ulm University
- 89081 Ulm
- Germany
| |
Collapse
|
19
|
Lin YJ, Chu LK, Horng JC. Effects of the Terminal Aromatic Residues on Polyproline Conformation: Thermodynamic and Kinetic Studies. J Phys Chem B 2015; 119:15796-806. [PMID: 26641495 DOI: 10.1021/acs.jpcb.5b08717] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In a peptide or protein, the sequence of aromatic residue-proline or proline-aromatic residue shows a high propensity in forming cis prolyl bonds due to aromatic-proline interactions. In this work, we designed and prepared the polyproline peptides with aromatic amino acids (F, Y, W) incorporated into their N-terminal or C-terminal end to investigate the effects of a terminal aromatic residue on polyproline conformation and the transition kinetics of polyproline I (PPI) to polyproline II (PPII) helices. Circular dichroism measurements reveal that the N-terminal aromatic-proline interaction imposes a more pronounced consequence on the forming propensity of PPI conformation than does the C-terminal aromatic-proline interaction in n-propanol. The propensity of forming PPI is correlated with the strength of aromatic-proline interactions in the order of Tyr-Pro > Trp-Pro > Phe-Pro. In aqueous solution, kinetic studies indicate that aromatic-substitution effects are nondirectional and indistinct on the PPI → PPII conversion rates, suggesting that aromatic-proline interactions may not be an important factor in this process. In addition, the temperature-dependent kinetics shows that the hydrophobicity of aromatic side chain may play a critical role affecting the activation enthalpy and entropy of the conversion of PPI to PPII, providing new insights into the folding of polyproline helices.
Collapse
Affiliation(s)
- Yu-Ju Lin
- Department of Chemistry, National Tsing Hua University , Hsinchu, Taiwan 30013, R.O.C
| | - Li-Kang Chu
- Department of Chemistry, National Tsing Hua University , Hsinchu, Taiwan 30013, R.O.C.,Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University , Hsinchu, Taiwan 30013, R.O.C
| | - Jia-Cherng Horng
- Department of Chemistry, National Tsing Hua University , Hsinchu, Taiwan 30013, R.O.C.,Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University , Hsinchu, Taiwan 30013, R.O.C
| |
Collapse
|
20
|
Ding X, Gao Y, Ye L, Zhang L, Sun L. Assembling Supramolecular Dye-Sensitized Photoelectrochemical Cells for Water Splitting. CHEMSUSCHEM 2015; 8:3992-3995. [PMID: 26592360 DOI: 10.1002/cssc.201500313] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 08/24/2015] [Indexed: 06/05/2023]
Abstract
The method used to assemble dye-sensitized photoelectrochemical (DS-PEC) devices plays a vital role in determining its photoactivity and stability. We report a simple and effective method to assemble supramolecular DS-PECs introducing PMMA as support material and a catalyst modified with long carbon chains as photoanodes. The long carbon chains in combination with PMMA allow to better immobilize the catalyst. DS-PECs obtained by this simple method have display excellent photoactivities and stabilities. A photocurrent density of 1.1 mA cm(-2) and a maximum IPCE of 9.5 % have been obtained with a 0.2 V vs NHE external bias.
Collapse
Affiliation(s)
- Xin Ding
- State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis, DUT-KTH Joint Education and Research Center on Molecular Devices, Dalian University of Technology (DUT), Dalian, 116024, PR China
| | - Yan Gao
- State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis, DUT-KTH Joint Education and Research Center on Molecular Devices, Dalian University of Technology (DUT), Dalian, 116024, PR China.
| | - Lu Ye
- State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis, DUT-KTH Joint Education and Research Center on Molecular Devices, Dalian University of Technology (DUT), Dalian, 116024, PR China
| | - Linlin Zhang
- State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis, DUT-KTH Joint Education and Research Center on Molecular Devices, Dalian University of Technology (DUT), Dalian, 116024, PR China
| | - Licheng Sun
- State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis, DUT-KTH Joint Education and Research Center on Molecular Devices, Dalian University of Technology (DUT), Dalian, 116024, PR China.
- Department of Chemistry, School of Chemical Science and Engineering, KTH Royal Institute of Technology, 100 44, Stockholm, Sweden.
| |
Collapse
|
21
|
Artificial photosynthesis: Where are we now? Where can we go? JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2015. [DOI: 10.1016/j.jphotochemrev.2015.08.002] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
22
|
Molecular cathode and photocathode materials for hydrogen evolution in photoelectrochemical devices. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2015. [DOI: 10.1016/j.jphotochemrev.2015.08.001] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Ashford DL, Gish MK, Vannucci AK, Brennaman MK, Templeton JL, Papanikolas JM, Meyer TJ. Molecular Chromophore–Catalyst Assemblies for Solar Fuel Applications. Chem Rev 2015; 115:13006-49. [DOI: 10.1021/acs.chemrev.5b00229] [Citation(s) in RCA: 363] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Dennis L. Ashford
- Department
of Chemistry, University of North Carolina at Chapel Hill, CB 3290, Chapel
Hill, North Carolina 27599, United States
| | - Melissa K. Gish
- Department
of Chemistry, University of North Carolina at Chapel Hill, CB 3290, Chapel
Hill, North Carolina 27599, United States
| | - Aaron K. Vannucci
- Department
of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - M. Kyle Brennaman
- Department
of Chemistry, University of North Carolina at Chapel Hill, CB 3290, Chapel
Hill, North Carolina 27599, United States
| | - Joseph L. Templeton
- Department
of Chemistry, University of North Carolina at Chapel Hill, CB 3290, Chapel
Hill, North Carolina 27599, United States
| | - John M. Papanikolas
- Department
of Chemistry, University of North Carolina at Chapel Hill, CB 3290, Chapel
Hill, North Carolina 27599, United States
| | - Thomas J. Meyer
- Department
of Chemistry, University of North Carolina at Chapel Hill, CB 3290, Chapel
Hill, North Carolina 27599, United States
| |
Collapse
|
24
|
Mara MW, Bowman DN, Buyukcakir O, Shelby ML, Haldrup K, Huang J, Harpham MR, Stickrath AB, Zhang X, Stoddart JF, Coskun A, Jakubikova E, Chen LX. Electron Injection from Copper Diimine Sensitizers into TiO2: Structural Effects and Their Implications for Solar Energy Conversion Devices. J Am Chem Soc 2015; 137:9670-84. [PMID: 26154849 DOI: 10.1021/jacs.5b04612] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Copper(I) diimine complexes have emerged as low cost replacements for ruthenium complexes as light sensitizers and electron donors, but their shorter metal-to-ligand-charge-transfer (MLCT) states lifetimes and lability of transient Cu(II) species impede their intended functions. Two carboxylated Cu(I) bis-2,9-diphenylphenanthroline (dpp) complexes [Cu(I)(dpp-O(CH2CH2O)5)(dpp-(COOH)2)](+) and [Cu(I)(dpp-O(CH2CH2O)5)(dpp-(Φ-COOH)2)](+) (Φ = tolyl) with different linker lengths were synthesized in which the MLCT-state solvent quenching pathways are effectively blocked, the lifetime of the singlet MLCT state is prolonged, and the transient Cu(II) ligands are stabilized. Aiming at understanding the mechanisms of structural influence to the interfacial charge transfer in the dye-sensitized solar cell mimics, electronic and geometric structures as well as dynamics for the MLCT state of these complexes and their hybrid with TiO2 nanoparticles were investigated using optical transient spectroscopy, X-ray transient absorption spectroscopy, time-dependent density functional theory, and quantum dynamics simulations. The combined results show that these complexes exhibit strong absorption throughout the visible spectrum due to the severely flattened ground state, and a long-lived charge-separated Cu(II) has been achieved via ultrafast electron injection (<300 fs) from the (1)MLCT state into TiO2 nanoparticles. The results also indicate that the TiO2-phen distance in these systems does not have significant effect on the efficiency of the interfacial electron-transfer process. The mechanisms for electron transfer in these systems are discussed and used to develop new strategies in optimizing copper(I) diimine complexes in solar energy conversion devices.
Collapse
Affiliation(s)
- Michael W Mara
- †Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - David N Bowman
- §Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, North Carolina 27695-8204, United States
| | - Onur Buyukcakir
- ⊥Graduate School of Energy, Environment, Water and Sustainability (EEWS), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea
| | - Megan L Shelby
- †Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Kristoffer Haldrup
- ∥Centre for Molecular Movies, Department of Physics, NEXMAP Section, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | | | | | | | | | - J Fraser Stoddart
- †Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Ali Coskun
- ⊥Graduate School of Energy, Environment, Water and Sustainability (EEWS), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea
| | - Elena Jakubikova
- §Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, North Carolina 27695-8204, United States
| | - Lin X Chen
- †Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| |
Collapse
|
25
|
Marine JE, Liang X, Song S, Rudick JG. Azide-rich peptides via an on-resin diazotransfer reaction. Biopolymers 2015; 104:419-26. [PMID: 25753459 PMCID: PMC4516611 DOI: 10.1002/bip.22634] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 02/23/2015] [Accepted: 02/24/2015] [Indexed: 12/19/2022]
Abstract
Azide-containing amino acids are valuable building blocks in peptide chemistry, because azides are robust partners in several bioorthogonal reactions. Replacing polar amino acids with apolar, azide-containing amino acids in solid-phase peptide synthesis can be tricky, especially when multiple azide residues are to be introduced in the amino acid sequence. We present a strategy for effectively incorporating multiple azide-containing residues site-specifically.
Collapse
Affiliation(s)
- Jeannette E. Marine
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, United States
| | - Xiaoli Liang
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, United States
| | - Shuang Song
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, United States
| | - Jonathan G. Rudick
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, United States
| |
Collapse
|
26
|
Garbuio L, Lewandowski B, Wilhelm P, Ziegler L, Yulikov M, Wennemers H, Jeschke G. Shape Persistence of Polyproline II Helical Oligoprolines. Chemistry 2015; 21:10747-53. [PMID: 26089127 DOI: 10.1002/chem.201501190] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Indexed: 11/06/2022]
Abstract
Oligoprolines are commonly used as molecular scaffolds. Past studies on the persistence length of their secondary structure, the polyproline II (PPII) helix, and on the fraction of backbone cis amide bonds have provided conflicting results. We resolved this debate by studying a series of spin-labeled proline octadecamers with EPR spectroscopy. Distance distributions between an N-terminal Gd(III) -DOTA (DOTA=1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) label and a nitroxide label at one of five evenly spaced backbone sites allowed us to discriminate between the flexibility of the PPII helix and the cis amide contributions. An upper limit of 2 % cis amide bonds per residue was found in a 7:3 (v/v) water/glycerol mixture, whereas cis amides were not observed in trifluoroethanol. Extrapolation of Monte Carlo models from the glass transition to ambient temperature predicts a persistence length of ≈3-3.5 nm in both solvents. The method is generally applicable to any type of oligomer for which the persistence length is of interest.
Collapse
Affiliation(s)
- Luca Garbuio
- ETH Zurich, Department of Chemistry and Applied Bioscience, Laboratory of Physical Chemistry, Vladimir Prelog Weg 2, 8093, Zurich (Switzerland)
| | - Bartosz Lewandowski
- ETH Zurich, Department of Chemistry and Applied Bioscience, Laboratory of Organic Chemistry, Vladimir Prelog Weg 3, 8093, Zurich (Switzerland)
| | - Patrick Wilhelm
- ETH Zurich, Department of Chemistry and Applied Bioscience, Laboratory of Organic Chemistry, Vladimir Prelog Weg 3, 8093, Zurich (Switzerland)
| | - Ludmila Ziegler
- ETH Zurich, Department of Chemistry and Applied Bioscience, Laboratory of Organic Chemistry, Vladimir Prelog Weg 3, 8093, Zurich (Switzerland)
| | - Maxim Yulikov
- ETH Zurich, Department of Chemistry and Applied Bioscience, Laboratory of Physical Chemistry, Vladimir Prelog Weg 2, 8093, Zurich (Switzerland).
| | - Helma Wennemers
- ETH Zurich, Department of Chemistry and Applied Bioscience, Laboratory of Organic Chemistry, Vladimir Prelog Weg 3, 8093, Zurich (Switzerland).
| | - Gunnar Jeschke
- ETH Zurich, Department of Chemistry and Applied Bioscience, Laboratory of Physical Chemistry, Vladimir Prelog Weg 2, 8093, Zurich (Switzerland).
| |
Collapse
|
27
|
Amdursky N. Electron Transfer across Helical Peptides. Chempluschem 2015; 80:1075-1095. [DOI: 10.1002/cplu.201500121] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 05/06/2015] [Indexed: 02/05/2023]
|
28
|
Sun J, Wu Y, Liu Z, Cao D, Wang Y, Cheng C, Chen D, Wasielewski MR, Stoddart JF. Visible Light-Driven Artificial Molecular Switch Actuated by Radical–Radical and Donor–Acceptor Interactions. J Phys Chem A 2015; 119:6317-25. [DOI: 10.1021/acs.jpca.5b04570] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Junling Sun
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Yilei Wu
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
- Argonne-Northwestern
Solar Energy Research (ANSER) Center, Northwestern University, 2145 Sheridan
Road, Evanston, Illinois 60208-3113, United States
| | - Zhichang Liu
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Dennis Cao
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Yuping Wang
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Chuyang Cheng
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Dongyang Chen
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Michael R. Wasielewski
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
- Argonne-Northwestern
Solar Energy Research (ANSER) Center, Northwestern University, 2145 Sheridan
Road, Evanston, Illinois 60208-3113, United States
| | - J. Fraser Stoddart
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| |
Collapse
|
29
|
Matveev SM, Mereshchenko AS, Panov MS, Tarnovsky AN. Probing the Fate of Lowest-Energy Near-Infrared Metal-Centered Electronic Excited States: CuCl42– and IrBr62–. J Phys Chem B 2015; 119:4857-64. [DOI: 10.1021/acs.jpcb.5b00744] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sergey M. Matveev
- Department of Chemistry and
the Center for Photochemical Sciences, Bowling Green State University, Bowling
Green, Ohio 43403, United States
| | - Andrey S. Mereshchenko
- Department of Chemistry and
the Center for Photochemical Sciences, Bowling Green State University, Bowling
Green, Ohio 43403, United States
| | - Maxim S. Panov
- Department of Chemistry and
the Center for Photochemical Sciences, Bowling Green State University, Bowling
Green, Ohio 43403, United States
| | - Alexander N. Tarnovsky
- Department of Chemistry and
the Center for Photochemical Sciences, Bowling Green State University, Bowling
Green, Ohio 43403, United States
| |
Collapse
|
30
|
Kajikawa A, Togashi T, Orikasa Y, Cui BB, Zhong YW, Sakamoto M, Kurihara M, Kanaizuka K. Construction of hybrid films of silver nanoparticles and polypyridine ruthenium complexes on substrates. Dalton Trans 2015; 44:15244-9. [DOI: 10.1039/c5dt00563a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two types of hybrid films of AgNPs and ruthenium complexes are constructed via chemical bond formation and electroreductive polymerization.
Collapse
Affiliation(s)
- Azusa Kajikawa
- Department of Material and Biological Chemistry
- Faculty of Science
- Yamagata University
- Yamagata 990-8560
- Japan
| | - Takanari Togashi
- Department of Material and Biological Chemistry
- Faculty of Science
- Yamagata University
- Yamagata 990-8560
- Japan
| | - Yuka Orikasa
- Department of Material and Biological Chemistry
- Faculty of Science
- Yamagata University
- Yamagata 990-8560
- Japan
| | - Bin-Bin Cui
- Beijing National Laboratory for Molecular Sciences
- CAS Key Laboratory of Photochemistry
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Yu-Wu Zhong
- Beijing National Laboratory for Molecular Sciences
- CAS Key Laboratory of Photochemistry
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Masatomi Sakamoto
- Department of Material and Biological Chemistry
- Faculty of Science
- Yamagata University
- Yamagata 990-8560
- Japan
| | - Masato Kurihara
- Department of Material and Biological Chemistry
- Faculty of Science
- Yamagata University
- Yamagata 990-8560
- Japan
| | - Katsuhiko Kanaizuka
- Department of Material and Biological Chemistry
- Faculty of Science
- Yamagata University
- Yamagata 990-8560
- Japan
| |
Collapse
|
31
|
Chen W, Sun X, Wang X, Huang Q, Li X, Zhang Q, Jiang J, Zhang G. Efficient and tunable fluorescence energy transfer via long-lived polymer excitons. Polym Chem 2015. [DOI: 10.1039/c4py01614a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A highly fluorescent polymer consisting of repeating pendant dye molecules, difluoroboron dibenzoylmethane (BF2dbm), and an end-capped Rhodamine B (RhB) exhibits efficient energy transfer (EnT) owing to long-lived polymer excitons.
Collapse
Affiliation(s)
- Wei Chen
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
- China
| | - Xingxing Sun
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
- China
| | - Xijun Wang
- Innovation Center of Chemistry for Energy Materials
- Department of Chemical Physics
- University of Science and Technology of China
- Hefei
- China
| | - Qishen Huang
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
- China
| | - Xinyang Li
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
- China
| | - Qun Zhang
- Innovation Center of Chemistry for Energy Materials
- Department of Chemical Physics
- University of Science and Technology of China
- Hefei
- China
| | - Jun Jiang
- Innovation Center of Chemistry for Energy Materials
- Department of Chemical Physics
- University of Science and Technology of China
- Hefei
- China
| | - Guoqing Zhang
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
- China
| |
Collapse
|
32
|
Wilhelm P, Lewandowski B, Trapp N, Wennemers H. A crystal structure of an oligoproline PPII-helix, at last. J Am Chem Soc 2014; 136:15829-32. [PMID: 25368901 DOI: 10.1021/ja507405j] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The first crystal structure of an oligoproline adopting an all-trans polyproline II (PPII) helix is presented. The high-resolution structure provides detailed insight into the dimensions and conformational properties of oligoprolines that are important for, e.g., their use as "molecular rulers" and "molecular scaffolds". The structure also showed that the amides interact with each other within a PPII helix and that water is not necessary for PPII helicity.
Collapse
Affiliation(s)
- Patrick Wilhelm
- Laboratory of Organic Chemistry, ETH Zurich , Vladimir-Prelog-Weg 3, CH-8093 Zurich, Switzerland
| | | | | | | |
Collapse
|
33
|
Lewandowska U, Zajaczkowski W, Chen L, Bouillière F, Wang D, Koynov K, Pisula W, Müllen K, Wennemers H. Hierarchical supramolecular assembly of sterically demanding π-systems by conjugation with oligoprolines. Angew Chem Int Ed Engl 2014; 53:12537-41. [PMID: 25303332 DOI: 10.1002/anie.201408279] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Indexed: 11/06/2022]
Abstract
Self-assembly from flexible worm-like threads via bundles of rigid fibers to nanosheets and nanotubes was achieved by covalent conjugation of perylene monoimide (PMI) chromophores with oligoprolines of increasing length. Whereas the chromophoric π-system and the peptidic building block do not self-aggregate, the covalent conjugates furnish well-ordered supramolecular structures with a common wall/fiber thickness. Their morphology is controlled by the number of repeat units and can be tuned by seemingly subtle structural modifications.
Collapse
Affiliation(s)
- Urszula Lewandowska
- Laboratory of Organic Chemistry, ETH Zürich, Vladimir-Prelog-Weg 3, 8093 Zürich (Switzerland)
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Lewandowska U, Zajaczkowski W, Chen L, Bouillière F, Wang D, Koynov K, Pisula W, Müllen K, Wennemers H. Hierarchical Supramolecular Assembly of Sterically Demanding π-Systems by Conjugation with Oligoprolines. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201408279] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
35
|
Sista P, Ghosh K, Martinez JS, Rocha RC. Metallo-Biopolymers: Conjugation Strategies and Applications. POLYM REV 2014. [DOI: 10.1080/15583724.2014.913063] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
36
|
Ryan DM, Coggins MK, Concepcion JJ, Ashford DL, Fang Z, Alibabaei L, Ma D, Meyer TJ, Waters ML. Synthesis and Electrocatalytic Water Oxidation by Electrode-Bound Helical Peptide Chromophore–Catalyst Assemblies. Inorg Chem 2014; 53:8120-8. [DOI: 10.1021/ic5011488] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Derek M. Ryan
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Michael K. Coggins
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Javier J. Concepcion
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Dennis L. Ashford
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Zhen Fang
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Leila Alibabaei
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Da Ma
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Thomas J. Meyer
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Marcey L. Waters
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
37
|
Bettis SE, Hanson K, Wang L, Gish MK, Concepcion JJ, Fang Z, Meyer TJ, Papanikolas JM. Photophysical Characterization of a Chromophore/Water Oxidation Catalyst Containing a Layer-by-Layer Assembly on Nanocrystalline TiO2 Using Ultrafast Spectroscopy. J Phys Chem A 2014; 118:10301-8. [DOI: 10.1021/jp411139j] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Stephanie E. Bettis
- Department of Chemistry, University of North Carolina, CB 3290, Chapel
Hill, North Carolina 27599, United States
| | - Kenneth Hanson
- Department of Chemistry, University of North Carolina, CB 3290, Chapel
Hill, North Carolina 27599, United States
| | - Li Wang
- Department of Chemistry, University of North Carolina, CB 3290, Chapel
Hill, North Carolina 27599, United States
| | - Melissa K. Gish
- Department of Chemistry, University of North Carolina, CB 3290, Chapel
Hill, North Carolina 27599, United States
| | - Javier J. Concepcion
- Department of Chemistry, University of North Carolina, CB 3290, Chapel
Hill, North Carolina 27599, United States
| | - Zhen Fang
- Department of Chemistry, University of North Carolina, CB 3290, Chapel
Hill, North Carolina 27599, United States
| | - Thomas J. Meyer
- Department of Chemistry, University of North Carolina, CB 3290, Chapel
Hill, North Carolina 27599, United States
| | - John M. Papanikolas
- Department of Chemistry, University of North Carolina, CB 3290, Chapel
Hill, North Carolina 27599, United States
| |
Collapse
|
38
|
Whittington CL, Wojtas L, Larsen RW. Ruthenium(II) tris(2,2'-bipyridine)-templated zinc(II) 1,3,5-tris(4-carboxyphenyl)benzene metal organic frameworks: structural characterization and photophysical properties. Inorg Chem 2013; 53:160-6. [PMID: 24328288 DOI: 10.1021/ic402614w] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The ability to confine photoactive catalysts within metal organic framework (MOF) materials affords the opportunity to expand the functional diversity of these materials into solar-based applications. Here, two new Ru(II) tris(2,2'-bipyridine) (RuBpy)-based photoactive materials derived from reactions between Zn(II) ions and 1,3,5-tris(4-carboxyphenyl)benzene and templated by the presence of RuBpy (RWLC-1 and RWLC-2) are described with regard to structure and RuBpy photophysics. RuBpy cations have been successfully encapsulated within the cavities (RWLC-1) and channels (RWLC-2) of the new negatively charged frameworks, both of which are synthesized simultaneously in a single reaction vial. Single-crystal X-ray diffraction studies allowed for determination of the RuBpy position within crystal voids. RuBpy encapsulated in each of the two new MOFs exhibits biphasic triplet metal to ligand charge transfer ((3)MLCT) emission decay lifetimes (τRWLC-1-fast = 237 ns, τRWLC-1-slow = 1.60 μs, τRWLC-2-fast = 171 ns, and τRWLC-2-slow = 797 ns at 25 °C) consistent with two populations of RuBpy complexes, one being encapsulated in highly space-restricted cavities giving rise to a longer (3)MLCT lifetime, while the second is encapsulation within a larger nonperiodic pore or defect with a coencapsulated quencher giving rise to short emission lifetimes. Taken together, these results represent examples of the templating ability of RuBpy to produce novel materials with distinct photophysical environments of the encapsulated guests.
Collapse
Affiliation(s)
- Christi L Whittington
- Department of Chemistry, University of South Florida , 4202 East Fowler Avenue, Tampa, Florida 33620, United States
| | | | | |
Collapse
|