1
|
Mothahalli Raju NK, Paul B, Tn L, Bodduna S, Kandukuri NK. Sulfur-Controlled Modulation of Peptoid Atropisomeric Foldamers. J Org Chem 2025; 90:4796-4807. [PMID: 40177955 DOI: 10.1021/acs.joc.4c02504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
We incorporated the hetero atoms (O/S) at the ortho-position to investigate the steric influence on controlling the rotational barrier around the C-N chiral axis and to elucidate the chiral attributes of sulfur-containing N-aryl peptoids. This study reports the simultaneous installation of a C-N chiral axis and the integration of sulfur-containing stereogenic elements in peptoid atropisomeric foldamers. By leveraging multiple chiral elements in peptoids, we demonstrated subtle structural variations, particularly by varying the sulfur oxidation states, that can lead to significant differences in the rotational energy barrier, as determined by dynamic HPLC. Additionally, we employed single-crystal X-ray crystallography to elucidate local conformational ordering and computational studies to identify noncovalent interactions in this class of atropisomers. Through these combined approaches, we explored sulfur-controlled modulation of N-aryl peptoid atropisomeric foldamers.
Collapse
Affiliation(s)
| | - Bishwajit Paul
- Department of Chemistry, Bangalore University, Jnana Bharathi Campus, Bangalore 560056, India
| | - Lohith Tn
- The National Institute of Engineering, Mysuru 570008 Karnataka, India
| | - Sandeep Bodduna
- YMC Application Lab, YMC India Pvt. Ltd., IDA Jeedimetla, Medchal-Malkajgiri, Telangana 500055, India
| | - Nagesh Kumar Kandukuri
- YMC Application Lab, YMC India Pvt. Ltd., IDA Jeedimetla, Medchal-Malkajgiri, Telangana 500055, India
| |
Collapse
|
2
|
Smith PT, Franco JL, Kirshenbaum K. Enhancing molecular diversity of peptoid oligomers using amino acid synthons. Org Biomol Chem 2025; 23:1175-1183. [PMID: 39693124 DOI: 10.1039/d4ob01564a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
We report the use of unprotected amino acids as submonomer reagents in the solid-phase synthesis of N-substituted glycine peptoid oligomers. Subsequent coupling of an amine, alcohol, or thiol to the free carboxylate of the incorporated amino acid provides access to peptoids bearing amides, esters, and thioesters as side chain pendant groups and permits further elongation of the peptoid backbone. The palette of readily obtained building blocks suitable for solid-phase peptoid synthesis is substantially expanded through this protocol, further enhancing the chemical diversity and potential applications of sequence-specific peptoid oligomers.
Collapse
Affiliation(s)
- Peter T Smith
- Department of Chemistry, New York University, New York, New York 10003, USA.
| | - Jennifer L Franco
- Department of Chemistry, New York University, New York, New York 10003, USA.
| | - Kent Kirshenbaum
- Department of Chemistry, New York University, New York, New York 10003, USA.
| |
Collapse
|
3
|
Lv W, Huang J, Huang H, Wang L, Yang T, Feng G. The C-H···S-S hydrogen bonding in diethyl disulfide⋯difluoromethane: a combined microwave spectroscopic and computational study. Phys Chem Chem Phys 2024; 26:29940-29947. [PMID: 39618337 DOI: 10.1039/d4cp03994g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
The C-H⋯S weak interaction is crucial for comprehending the stability in biological macromolecules and their interactions with smaller molecules. Despite its prevalence, an in-depth understanding and recognition of such interaction remain elusive. Herein, the rotational spectra of a binary complex formed by diethyl disulfide and difluoromethane were investigated using Fourier transform microwave spectroscopy combined with theoretical calculations to examine the C-H⋯S-S interaction. The most stable conformation observed experimentally is stabilized by one C-H⋯S-S hydrogen bond and two weaker C-H⋯F hydrogen bonds. Non-covalent interaction, natural bond orbital, and symmetry-adapted perturbation theory methods were employed to describe the intermolecular interactions within the adduct. Experiments indicated H⋯F and H⋯S distances of 2.68(7) Å and 2.64(1) Å, respectively, with bonding angles of 121.0(4)° for C-H⋯F and 135.3(6)° for C-H⋯S hydrogen bonds. The geometric characteristics and theoretical analyses suggest that the C-H⋯S-S hydrogen bond is the predominant interaction, contributing an energy of 7.6 kJ mol-1. Additionally, the C-H⋯F hydrogen bond also contributes to the stability of the complex, contributing approximately 2.6 kJ mol-1. London dispersion is a primary factor in the stability of complexes, contributing 53% to the total attractive interaction. The results indicate that non-traditional hydrogen bond participants, such as C-H groups and S-S linkages, can form hydrogen bonds and fluorination enhances the interactions.
Collapse
Affiliation(s)
- Wenqi Lv
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, China.
| | - Jinxi Huang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, China.
| | - Haiying Huang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, China.
| | - Liuting Wang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, China.
| | - Tingting Yang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, China.
| | - Gang Feng
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, China.
| |
Collapse
|
4
|
Rai Deka JK, Sahariah B, Sarma BK. Understanding the Cis-Trans Amide Bond Isomerization of N, N'-Diacylhydrazines to Develop Guidelines for A Priori Prediction of Their Most Stable Solution Conformers. J Org Chem 2024; 89:10419-10433. [PMID: 36700530 DOI: 10.1021/acs.joc.2c01891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
N,N'-diacylhydrazines (R1CO-NR3-NR4-COR2) are a class of small molecules with a wide range of applications in chemistry and biology. They are structurally unique in the sense that their two amide groups are connected via a N-N single bond, and as a result, these molecules can exist in eight different isomeric forms. Four of these are amide isomers [trans-trans (t-t), trans-cis (t-c), cis-trans (c-t), and cis-cis (c-c)] arising from C-N bond restricted rotation. In addition, each of these amide isomers can exist in two different isomeric forms due to N-N bond restricted rotation, especially when R3 and R4 groups are relatively bigger. Herein, we have systematically investigated the conformations of 55 N,N'-diacylhydrazines using a combination of solution NMR spectroscopy, X-ray crystallography, and density functional theory calculations. Our data suggest that when the substituents R3 and R4 on the nitrogen atoms are both hydrogens. These molecules prefer twisted trans-trans (t-t) (>90%) geometries (H-N-C═O ∼ 180°), whereas the N-alkylated and N,N'-dialkylated molecules prefer twisted trans-cis (t-c) geometries. Herein, we have analyzed the stabilization of the various isomers of these molecules in light of steric and stereoelectronic effects. We provide a guideline to a priori predict the most stable conformers of the N,N'-diacylhydrazines just by examining their substituents (R1-R4).
Collapse
Affiliation(s)
- Jugal Kishore Rai Deka
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore 560064, India
| | - Biswajit Sahariah
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore 560064, India
| | - Bani Kanta Sarma
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore 560064, India
| |
Collapse
|
5
|
Bahatheg G, Kuppusamy R, Yasir M, Bridge S, Mishra SK, Cranfield CG, StC Black D, Willcox M, Kumar N. Dimeric peptoids as antibacterial agents. Bioorg Chem 2024; 147:107334. [PMID: 38583251 DOI: 10.1016/j.bioorg.2024.107334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/31/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
Building upon our previous study on peptoid-based antibacterials which showed good activity against Gram-positive bacteria only, herein we report the synthesis of 34 dimeric peptoid compounds and the investigation of their activity against Gram-positive and Gram-negative pathogens. The newly designed peptoids feature a di-hydrophobic moiety incorporating phenyl, bromo-phenyl, and naphthyl groups, combined with variable lengths of cationic units such as amino and guanidine groups. The study also underscores the pivotal interplay between hydrophobicity and cationicity in optimizing efficacy against specific bacteria. The bromophenyl dimeric guanidinium peptoid compound 10j showed excellent activity against S. aureus 38 and E. coli K12 with MIC of 0.8 μg mL-1 and 6.2 μg mL-1, respectively. Further investigation into the mechanism of action revealed that the antibacterial effect might be attributed to the disruption of bacterial cell membranes, as suggested by tethered bilayer lipid membranes (tBLMs) and cytoplasmic membrane permeability studies. Notably, these promising antibacterial agents exhibited negligible toxicity against mammalian red blood cells. Additionally, the study explored the potential of 12 active compounds to disrupt established biofilms of S. aureus 38. The most effective biofilm disruptors were ethyl and octyl-naphthyl guanidinium peptoids (10c and 10 k). These compounds 10c and 10 k disrupted the established biofilms of S. aureus 38 with 51 % at 4x MIC (MIC = 17.6 μg mL-1 and 11.2 μg mL-1) and 56 %-58 % at 8x MIC (MIC = 35.2 μg mL-1 and 22.4 μg mL-1) respectively. Overall, this research contributes insights into the design principles of cationic dimeric peptoids and their antibacterial activity, with implications for the development of new antibacterial compounds.
Collapse
Affiliation(s)
- Ghayah Bahatheg
- School of Chemistry, The University of New South Wales (UNSW), Sydney, NSW 2052, Australia; Department of Chemistry, Faculty of Science, University of Jeddah, Jeddah 21589, Saudi Arabia
| | - Rajesh Kuppusamy
- School of Chemistry, The University of New South Wales (UNSW), Sydney, NSW 2052, Australia; School of Optometry and Vision Science, The University of New South Wales (UNSW), Sydney, NSW 2052, Australia.
| | - Muhammad Yasir
- School of Optometry and Vision Science, The University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Samara Bridge
- School of Life Sciences, University of Technology Sydney, PO Box 123, Ultimo 2007, Australia
| | - Shyam K Mishra
- School of Optometry and Vision Science, The University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Charles G Cranfield
- School of Life Sciences, University of Technology Sydney, PO Box 123, Ultimo 2007, Australia
| | - David StC Black
- School of Chemistry, The University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Mark Willcox
- School of Optometry and Vision Science, The University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Naresh Kumar
- School of Chemistry, The University of New South Wales (UNSW), Sydney, NSW 2052, Australia.
| |
Collapse
|
6
|
Lv W, Xu Y, Yang T, Wang L, Huang J, Huang H, Feng G. Unveiling the underappreciated: The bonding features of C-H⋯S-S interactions observed from rotational spectroscopy. J Chem Phys 2024; 160:134302. [PMID: 38557843 DOI: 10.1063/5.0200788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/18/2024] [Indexed: 04/04/2024] Open
Abstract
The C-H⋯S-S interactions are fundamentally important to understand the stability of biomacromolecules and their binding with small molecules, but they are still underappreciated. Herein, we characterized the C-H⋯S-S interactions in model molecular complexes. The rotational spectra of the complexes of diethyl disulfide with CH2CH2 and CH2CHF were measured and analyzed. All the detected structures are mainly stabilized by a C-H⋯S-S hydrogen bond, providing stabilization energies of 2.3-7.2 kJ mol-1. Incidental C-H⋯π or C-H⋯F interactions enhance the stabilization of the complexes. London dispersion, which accounts for 54%-68% of the total attractions, is the main driving force of stabilization. The provided bonding features of C-H⋯S-S are crucial for understanding the stabilizing role of this type of interaction in diverse processes such as supramolecular recognition, protein stability, and enzyme activity.
Collapse
Affiliation(s)
- Wenqi Lv
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Yugao Xu
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Tingting Yang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Liuting Wang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Jinxi Huang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Haiying Huang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Gang Feng
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| |
Collapse
|
7
|
Hansen TN, Olsen CA. Contemporary Applications of Thioamides and Methods for Their Synthesis. Chemistry 2024; 30:e202303770. [PMID: 38088462 DOI: 10.1002/chem.202303770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Indexed: 12/23/2023]
Abstract
Thioamides are naturally occurring isosteres of amide bonds in which the chalcogen atom of the carbonyl is changed from oxygen to sulfur. This substitution gives rise to altered nucleophilicity and hydrogen bonding properties with importance for both chemical reactivity and non-covalent interactions. As such, thioamides have been introduced into biologically active compounds to achieve improved target affinity and/or stability towards hydrolytic enzymes but have also been applied as probes of protein and peptide folding and dynamics. Recently, a series of new methods have been developed for the synthesis of thioamides as well as their utilization in peptide chemistry. Further, novel strategies for the incorporation of thioamides into proteins have been developed, enabling both structural and functional studies to be performed. In this Review, we highlight the recent developments in the preparation of thioamides and their applications for peptide modification and study of protein function.
Collapse
Affiliation(s)
- Tobias N Hansen
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100, Copenhagen, Denmark
| | - Christian A Olsen
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100, Copenhagen, Denmark
| |
Collapse
|
8
|
Anshulata, Vishnoi P, Kanta Sarma B. Conformational Studies of β-Azapeptoid Foldamers: A New Class of Peptidomimetics with Confined Dihedrals. Chemistry 2024; 30:e202303330. [PMID: 37948294 DOI: 10.1002/chem.202303330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/01/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
Controlling amide bond geometries and the secondary structures of β-peptoids is a challenging task as they contain several rotatable single bonds in their backbone. Herein, we describe the synthesis and conformational properties of novel "β-azapeptoids" with confined dihedrals. We discuss how the acylhydrazide sidechains in these molecules enforce trans amide geometries (ω ~180°) via steric and stereoelectronic effects. We also show that the Θ(Cα -Cβ ) and Ψ(OC-Cα ) backbone torsions of β-azapeptoids occupy a narrow range (170-180°) that can be rationalized by the staggered conformational preference of the backbone methylene carbons and a novel backbone nO →σ*Cβ-N interaction discovered in this study. However, the ϕ (Cβ -N) torsion remains freely rotatable and, depending on ϕ, the sidechains can be parallel, perpendicular, and anti-parallel relative to each other. In fact, we observed parallel and perpendicular relative orientations of sidechains in the crystal geometries of β-azapeptoid dimers. We show that ϕ of β-azapeptoids can be controlled by incorporating a bulky substituent at the backbone β-carbon, which could provide complete control over all the backbone dihedrals. Finally, we show that the ϕ and Ψ dihedrals of β-azapeptoids resemble that of a PPII helix and they retain PPII structure when incorporated in Host-guest proline peptides.
Collapse
Affiliation(s)
- Anshulata
- New Chemistry Unit (NCU), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru, KA-560064, India
| | - Pratap Vishnoi
- New Chemistry Unit (NCU), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru, KA-560064, India
| | - Bani Kanta Sarma
- New Chemistry Unit (NCU), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru, KA-560064, India
| |
Collapse
|
9
|
Dong Z, Li J, Yao T, Zhao C. Palladium-Catalyzed Enantioselective C-H Olefination to Access Planar-Chiral Cyclophanes by Dynamic Kinetic Resolution. Angew Chem Int Ed Engl 2023:e202315603. [PMID: 37919238 DOI: 10.1002/anie.202315603] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 11/04/2023]
Abstract
Planar-chiral cyclophanes have received increasing attention for drug discovery and catalyst design. However, the catalytically asymmetric synthesis of planar-chiral cyclophanes has been a longstanding challenge. We describe the first Pd(II)-catalyzed enantioselective C-H olefination of prochiral cyclophanes. The low rotational barrier of less hindered benzene ring in the substrates allows the reaction to proceed through a dynamic kinetic resolution. This approach exhibits broad substrate scope, providing the planar-chiral cyclophanes in high yields (up to 99 %) with excellent enantioselectivities (up to >99 % ee). The ansa chain length scope studies reveal that the chirality of the cyclophanes arises from the bond rotation constraint of the benzene ring around the macrocycle plane, rather than the C-N axis. The C-H activation approach is also applicable to the late-stage modification of bioactive molecules and pharmaceuticals.
Collapse
Affiliation(s)
- Ziyang Dong
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875 (P. R., China
| | - Jia Li
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875 (P. R., China
| | - Ting Yao
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875 (P. R., China
| | - Changgui Zhao
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875 (P. R., China
| |
Collapse
|
10
|
Manenti M, Gusmini S, Lo Presti L, Molteni G, Silvani A. Enantiopure β-isocyano-boronic esters: synthesis and exploitation in isocyanide-based multicomponent reactions. Mol Divers 2023; 27:2161-2168. [PMID: 36258147 PMCID: PMC10520151 DOI: 10.1007/s11030-022-10549-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/07/2022] [Indexed: 11/28/2022]
Abstract
Various boron-containing isocyanides have been efficiently synthesized from the corresponding enantiopure β-substituted β-amino boronic acid pinacol esters, without need for protecting group interconversion, through a two-step, purification-free procedure. They were employed in a variety of isocyanide-based multicomponent reactions, proving to be reliable components for all of them and allowing the efficient synthesis of unprecedented, boron-containing peptidomimetics and heteroatom-rich small molecules, including biologically relevant cyclic boronates. Jointing together the β-amido boronic acid moiety, deriving from the isocyanide component, with prominent pharmacophoric rings emerging from the multicomponent process, a successful application of the molecular hybridization concept could be realized.
Collapse
Affiliation(s)
- Marco Manenti
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133, Milan, Italy
| | - Simone Gusmini
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133, Milan, Italy
| | - Leonardo Lo Presti
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133, Milan, Italy
| | - Giorgio Molteni
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133, Milan, Italy
| | - Alessandra Silvani
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133, Milan, Italy.
| |
Collapse
|
11
|
Kurita D, Sato H, Miyamoto K, Uchiyama M. Mechanistic Investigation of the Degradation Pathways of α-β/α-α Bridged Epipolythiodioxopiperazines (ETPs). J Org Chem 2023; 88:12797-12801. [PMID: 37574909 DOI: 10.1021/acs.joc.3c01061] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Epipolythiodioxopiperazines (ETPs) make up a class of biologically active fungal metabolites with a transannular disulfide bridge. In this work, we used DFT calculations to examine in detail the degradation (desulfurization) pathways of α-β/α-α bridged ETPs. The chemical stability of ETPs is influenced by the type of sulfur bridge, the structural features, and the storage conditions. Our results suggest appropriate protection of the phenolic OH of ETPs would improve various pharmaceutically relevant properties, including bioavailability.
Collapse
Affiliation(s)
- Daiki Kurita
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hajime Sato
- Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 4-4-37 Takeda, Kofu, Yamanashi 400-8510, Japan
| | - Kazunori Miyamoto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masanobu Uchiyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Research Initiative for Supra-Materials (RISM), Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
| |
Collapse
|
12
|
Voser TM, Hayton JB, Prebble DW, Jin J, Grant G, Ekins MG, Carroll AR. Amphiphilic Polyamine α-Synuclein Aggregation Inhibitors from the Sponge Aaptos lobata. JOURNAL OF NATURAL PRODUCTS 2023; 86:475-481. [PMID: 36795859 DOI: 10.1021/acs.jnatprod.2c01125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Bioassay-guided investigation of the sponge Aaptos lobata resulted in the isolation and identification of two new amphiphilic polyamines, aaptolobamines A (1) and B (2). Their structures were determined through analysis of NMR and MS data. MS analysis also indicated that A. lobata contained a complex mixture of aaptolobamine homologues. Both aaptolobamines A (1) and B (2) show broad bioactivity, including cytotoxicity against cancer cell lines, moderate antimicrobial activity against a methicillin-resistant strain of Staphylococcus aureus, and weak activity against a Pseudomonas aeruginosa strain. The mixtures of aaptolobamine homologues were shown to contain compounds that bind to the Parkinson's disease associated amyloid protein α-synuclein and inhibit its aggregation.
Collapse
Affiliation(s)
- Tanja M Voser
- School of Environment and Science, Griffith University (Gold Coast Campus), Parklands Drive, Southport, QLD 4222, Australia
- Griffith Institute for Drug Discovery, Griffith University (Brisbane Innovation Park), Don Young Road, Nathan, QLD 4111, Australia
| | - Joshua B Hayton
- School of Environment and Science, Griffith University (Gold Coast Campus), Parklands Drive, Southport, QLD 4222, Australia
- Griffith Institute for Drug Discovery, Griffith University (Brisbane Innovation Park), Don Young Road, Nathan, QLD 4111, Australia
| | - Dale W Prebble
- School of Environment and Science, Griffith University (Gold Coast Campus), Parklands Drive, Southport, QLD 4222, Australia
- Griffith Institute for Drug Discovery, Griffith University (Brisbane Innovation Park), Don Young Road, Nathan, QLD 4111, Australia
| | - Ju Jin
- School of Pharmacy and Medical Sciences, Griffith University, Parklands Drive, Southport, QLD 4222, Australia
| | - Gary Grant
- School of Pharmacy and Medical Sciences, Griffith University, Parklands Drive, Southport, QLD 4222, Australia
| | | | - Anthony R Carroll
- School of Environment and Science, Griffith University (Gold Coast Campus), Parklands Drive, Southport, QLD 4222, Australia
- Griffith Institute for Drug Discovery, Griffith University (Brisbane Innovation Park), Don Young Road, Nathan, QLD 4111, Australia
| |
Collapse
|
13
|
Lu T, Zhang J, Xu Y, Wang Z, Feng G, Zeng Z. Hydrogen bond interactions between thioethers and amides: A joint rotational spectroscopic and theoretical study of the formamide⋯dimethyl sulfide adduct. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 288:122199. [PMID: 36473293 DOI: 10.1016/j.saa.2022.122199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/17/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
The rotational spectrum of the binary adduct of formamide (HCONH2) with dimethyl sulfide (DMS) has been investigated employing cavity-based Fourier transform microwave spectroscopy combined with theoretical computations. Experimentally, only one isomer of the adduct was unambiguously observed and assigned according to the theoretically predicted spectroscopic parameters, and its rotational spectrum displays the hyperfine splittings associated with the 14N nuclear quadrupole coupling effect. The observed isomer exhibits Cs symmetry, such that the ∠CSC angle of the DMS subunit is bisected by the ab-plane of the HCONH2 moiety. The two moieties in the detected isomer are connected via one primary NH···S and two secondary CH···O hydrogen bonds. Quantum theory of atoms in molecules (QTAIM), non-covalent interaction (NCI), natural bond orbital (NBO) and symmetry-adapted perturbation theory (SAPT) approaches were utilized for characterizing the intermolecular interactions occurring in the titled adduct. Additionally, the adduct of HCONH2 with dimethyl ether (DME) was also theoretically investigated to compare the difference in structure and energy characteristics between the NH···S and NH···O hydrogen bonds.
Collapse
Affiliation(s)
- Tao Lu
- School of Biology and Engineering, Guizhou Medical University, Guiyang 550025, China; School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, Chongqing 401331, China.
| | - Jiaqi Zhang
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, Chongqing 401331, China
| | - Yugao Xu
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, Chongqing 401331, China
| | - Zhen Wang
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, Chongqing 401331, China
| | - Gang Feng
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, Chongqing 401331, China
| | - Zhu Zeng
- School of Biology and Engineering, Guizhou Medical University, Guiyang 550025, China.
| |
Collapse
|
14
|
Computational Design, Synthesis, and Biophysical Evaluation of β-Amido Boronic Acids as SARS-CoV-2 M pro Inhibitors. Molecules 2023; 28:molecules28052356. [PMID: 36903597 PMCID: PMC10005264 DOI: 10.3390/molecules28052356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/16/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
The COVID-19 pandemic has given a strong impetus to the search for antivirals active on SARS-associated coronaviruses. Over these years, numerous vaccines have been developed and many of these are effective and clinically available. Similarly, small molecules and monoclonal antibodies have also been approved by the FDA and EMA for the treatment of SARS-CoV-2 infection in patients who could develop the severe form of COVID-19. Among the available therapeutic tools, the small molecule nirmatrelvir was approved in 2021. It is a drug capable of binding to the Mpro protease, an enzyme encoded by the viral genome and essential for viral intracellular replication. In this work, by virtual screening of a focused library of β-amido boronic acids, we have designed and synthesized a focused library of compounds. All of them were biophysically tested by microscale thermophoresis, attaining encouraging results. Moreover, they also displayed Mpro protease inhibitory activity, as demonstrated by performing enzymatic assays. We are confident that this study will pave the way for the design of new drugs potentially useful for the treatment of SARS-CoV-2 viral infection.
Collapse
|
15
|
Shiraj A, Ramabhadran RO, Ganesh KN. Aza-PNA: Engineering E-Rotamer Selectivity Directed by Intramolecular H-bonding. Org Lett 2022; 24:7421-7427. [PMID: 36190804 DOI: 10.1021/acs.orglett.2c02993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The replacement of α(CH2) by NH in monomers of standard aeg PNA and its homologue β-ala PNA leads to respective aza-PNA monomers (1 and 2) in which the NαH can form either an 8-membered H-bonded ring with folding of the backbone (DMSO and water) or a 5-membered NαH─αCO (water) to stabilize E-type rotamers. Such aza-PNA oligomers with exclusive E rotamers and intraresidue backbone H-bonding can modulate its DNA/RNA binding and assembling properties.
Collapse
Affiliation(s)
- Abdul Shiraj
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr Homi Bhabha Road, Pune 411008, Maharashtra, India
| | - Raghunath O Ramabhadran
- Department of Chemistry, Indian Institute of Science Education and Research Tirupati, Karkambadi Road, Tirupati 517507, Andhra Pradesh, India
| | - Krishna N Ganesh
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr Homi Bhabha Road, Pune 411008, Maharashtra, India.,Department of Chemistry, Indian Institute of Science Education and Research Tirupati, Karkambadi Road, Tirupati 517507, Andhra Pradesh, India
| |
Collapse
|
16
|
Angelici G, Bhattacharjee N, Pypec M, Jouffret L, Didierjean C, Jolibois F, Perrin L, Roy O, Taillefumier C. Unveiling the conformational landscape of achiral all- cis tert-butyl β-peptoids. Org Biomol Chem 2022; 20:7907-7915. [PMID: 36173021 DOI: 10.1039/d2ob01351g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis and conformational study of N-substituted β-alanines with tert-butyl side chains is described. The oligomers prepared by submonomer synthesis and block coupling methods are up to 15 residues long and are characterised by amide bonds in the cis-conformation. A conformational study comprising experimental solution NMR spectroscopy, X-ray crystallography and molecular modeling shows that despite their intrinsic higher conformational flexibility compared to their α-peptoid counterparts, this family of achiral oligomers adopt preferred secondary structures including a helical conformation close to that described with (1-naphthyl)ethyl side chains but also a novel ribbon-like conformation.
Collapse
Affiliation(s)
- Gaetano Angelici
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, ICCF, 63000 Clermont-Ferrand, France.
| | - Nicholus Bhattacharjee
- Université de Lyon, Université Claude Bernard Lyon I, CNRS, INSA, CPE, UMR 5246, ICBMS, 1 rue Victor Grignard, F-69622 Villeurbanne, France
| | - Maxime Pypec
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, ICCF, 63000 Clermont-Ferrand, France.
| | - Laurent Jouffret
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, ICCF, 63000 Clermont-Ferrand, France.
| | | | - Franck Jolibois
- Université de Toulouse-INSA-UPS, LPCNO, CNRS UMR 5215, 135 av. Rangueil, F-31077, Toulouse, France
| | - Lionel Perrin
- Université de Lyon, Université Claude Bernard Lyon I, CNRS, INSA, CPE, UMR 5246, ICBMS, 1 rue Victor Grignard, F-69622 Villeurbanne, France
| | - Olivier Roy
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, ICCF, 63000 Clermont-Ferrand, France.
| | - Claude Taillefumier
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, ICCF, 63000 Clermont-Ferrand, France.
| |
Collapse
|
17
|
Shirvani P, Fayyazi N, Van Belle S, Debyser Z, Christ F, Saghaie L, Fassihi A. Design, synthesis, in silico studies, and antiproliferative evaluations of novel indolin-2-one derivatives containing 3-hydroxy-4-pyridinone fragment. Bioorg Med Chem Lett 2022; 70:128784. [PMID: 35569690 DOI: 10.1016/j.bmcl.2022.128784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 04/30/2022] [Accepted: 05/09/2022] [Indexed: 11/25/2022]
Abstract
Keeping in view the pharmacological properties of indolinones as promising scaffold as kinase inhibitors, herein, a novel series of 3-hydrazonoindolin-2-one derivatives bearing 3-hydroxy-4-pyridinone moiety were synthesized, studied by molecular docking, and fully characterized by spectroscopic techniques. All the prepared compounds were evaluated for their cytotoxicity attributes against a panel of tumor cell lines, including non-small cell lung cancer (A549), breast carcinoma (MCF-7), acute myeloid leukemia (AML), and chronic myeloid leukemia (CML). They displayed moderate to promising antiproliferative effects toward A549 and MCF-7 cells but remarkable results against AML and CML. Especially, compound 10k was found to be more potent against AML (EC50 = 0.69 μM) compare to the other halogen-substituted derivatives. FMS-like tyrosine kinase 3 (FLT3) is known to be expressed in AML cancer cells. The molecular docking studies demonstrated that our prepared compounds were potentially bound to AML active site through essential H-bond and other vital interactions with critical binding residues.
Collapse
Affiliation(s)
- Pouria Shirvani
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Science, Hezar Jerib, 817416-73461, Isfahan, Iran
| | - Neda Fayyazi
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Science, Hezar Jerib, 817416-73461, Isfahan, Iran; Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Siska Van Belle
- Department of Pharmacological and Pharmaceutical Sciences, Laboratory of Molecular Virology and Gene Therapy, KU Leuven, Belgium
| | - Zeger Debyser
- Department of Pharmacological and Pharmaceutical Sciences, Laboratory of Molecular Virology and Gene Therapy, KU Leuven, Belgium
| | - Frauke Christ
- Department of Pharmacological and Pharmaceutical Sciences, Laboratory of Molecular Virology and Gene Therapy, KU Leuven, Belgium
| | - Lotfollah Saghaie
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Science, Hezar Jerib, 817416-73461, Isfahan, Iran
| | - Afshin Fassihi
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Science, Hezar Jerib, 817416-73461, Isfahan, Iran.
| |
Collapse
|
18
|
Bahatheg G, Kuppusamy R, Yasir M, Black DS, Willcox M, Kumar N. Short Tryptamine-Based Peptoids as Potential Therapeutics for Microbial Keratitis: Structure-Function Correlation Studies. Antibiotics (Basel) 2022; 11:1074. [PMID: 36009943 PMCID: PMC9404767 DOI: 10.3390/antibiotics11081074] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/05/2022] [Accepted: 08/05/2022] [Indexed: 12/02/2022] Open
Abstract
Peptoids are peptidomimetics that have attracted considerable interest as a promising class of antimicrobials against multi-drug-resistant bacteria due to their resistance to proteolysis, bioavailability, and thermal stability compared to their corresponding peptides. Staphylococcus aureus is a significant contributor to infections worldwide and is a major pathogen in ocular infections (keratitis). S. aureus infections can be challenging to control and treat due to the development of multiple antibiotic resistance. This work describes short cationic peptoids with activity against S. aureus strains from keratitis. The peptoids were synthesized via acid amine-coupling between naphthyl-indole amine or naphthyl-phenyl amine with different amino acids to produce primary amines (series I), mono-guanidines (series II), tertiary amine salts (series III), quaternary ammonium salts (series IV), and di-guanidine (series V) peptoids. The antimicrobial activity of the peptoids was compared with ciprofloxacin, an antibiotic that is commonly used to treat keratitis. All new compounds were active against Staphylococcus aureus S.aureus 38. The most active compounds against S.aur38 were 20a and 22 with MIC = 3.9 μg mL−1 and 5.5 μg mL−1, respectively. The potency of these two active molecules was investigated against 12 S. aureus strains that were isolated from microbial keratitis. Compounds 20a and 22 were active against 12 strains with MIC = 3.2 μg mL−1 and 2.1 μg mL−1, respectively. There were two strains that were resistant to ciprofloxacin (Sa.111 and Sa.112) with MIC = 128 μg mL−1 and 256 μg mL−1, respectively. Compounds 12c and 13c were the most active against E. coli, with MIC > 12 μg mL−1. Cytoplasmic membrane permeability studies suggested that depolarization and disruption of the bacterial cell membrane could be a possible mechanism for antibacterial activity and the hemolysis studies toward horse red blood cells showed that the potent compounds are non-toxic at up to 50 μg mL−1.
Collapse
Affiliation(s)
- Ghayah Bahatheg
- School of Chemistry, The University of New South Wales (UNSW), Sydney, NSW 2052, Australia
- Department of Chemistry, Faculty of Science, University of Jeddah, Jeddah 21589, Saudi Arabia
| | - Rajesh Kuppusamy
- School of Chemistry, The University of New South Wales (UNSW), Sydney, NSW 2052, Australia
- School of Optometry and Vision Science, The University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Muhammad Yasir
- School of Optometry and Vision Science, The University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - David StC. Black
- School of Chemistry, The University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Mark Willcox
- School of Optometry and Vision Science, The University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Naresh Kumar
- School of Chemistry, The University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| |
Collapse
|
19
|
Mutra MR, Li J, Chen Y, Wang J. Time and Atom Economical Regio‐ and Chemoselective Radical Cyclization of Unactivated 1,6‐Enynes Under Metal‐ and Oxidant‐Free Conditions. Chemistry 2022; 28:e202200742. [DOI: 10.1002/chem.202200742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Mohana Reddy Mutra
- Department of Medicinal and Applied Chemistry Kaohsiung Medical University 100, Shih-Chuan 1st Road, Sanmin District Kaohsiung 807 Taiwan
| | - Jing Li
- Department of Medicinal and Applied Chemistry Kaohsiung Medical University 100, Shih-Chuan 1st Road, Sanmin District Kaohsiung 807 Taiwan
| | - Yu‐Ting Chen
- Department of Medicinal and Applied Chemistry Kaohsiung Medical University 100, Shih-Chuan 1st Road, Sanmin District Kaohsiung 807 Taiwan
| | - Jeh‐Jeng Wang
- Department of Medicinal and Applied Chemistry Kaohsiung Medical University 100, Shih-Chuan 1st Road, Sanmin District Kaohsiung 807 Taiwan
- Department of Medical Research Kaohsiung Medical University Hospital No. 100, Tzyou 1st Rd, Sanmin District Kaohsiung City 807 Taiwan
| |
Collapse
|
20
|
Mamalis D, Panagiotopoulou A, Couladouros EA, Tzeli D, Vidali VP. A DFT Study towards the Amide cis‐trans Isomerization Process of the Myc‐Max Inhibitor Mycro 3 and Its Photophysical Properties; Synthesis and NMR Studies of the trans‐Conformation. ChemistrySelect 2022. [DOI: 10.1002/slct.202201639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Dimitrios Mamalis
- Laboratory of Physical Chemistry Department of Chemistry National and Kapodistrian University of Athens Panepistimiopolis Athens 157 71 Greece
- Institute of Nanoscience and Nanotechnology National Center for Scientific Research “Demokritos” Ag. Paraskevi 153 41 Athens Greece
- Theoretical and Physical Chemistry Institute National Hellenic Research Foundation, 48 Vassileos Constantinou Ave. Athens 116 35 Greece
| | - Angeliki Panagiotopoulou
- Institute of Biosciences and Applications National Center for Scientific Research “Demokritos”, Ag. Paraskevi 153 41 Athens Greece
| | - Elias A. Couladouros
- Agricultural University of Athens Department of Food Science and Human Nutrition Iera Odos 75 Athens 118 55 Greece
| | - Demeter Tzeli
- Laboratory of Physical Chemistry Department of Chemistry National and Kapodistrian University of Athens Panepistimiopolis Athens 157 71 Greece
- Theoretical and Physical Chemistry Institute National Hellenic Research Foundation, 48 Vassileos Constantinou Ave. Athens 116 35 Greece
| | - Veroniki P. Vidali
- Institute of Nanoscience and Nanotechnology National Center for Scientific Research “Demokritos” Ag. Paraskevi 153 41 Athens Greece
| |
Collapse
|
21
|
Manenti M, Gusmini S, Lo Presti L, Silvani A. Exploiting Enantiopure β‐Amino Boronic Acids in Isocyanide‐Based Multicomponent Reactions. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Marco Manenti
- Università degli Studi di Milano: Universita degli Studi di Milano Dipartimento di Chimica ITALY
| | - Simone Gusmini
- Università degli Studi di Milano: Universita degli Studi di Milano Dipartimento di Chimica ITALY
| | - Leonardo Lo Presti
- Università degli Studi di Milano: Universita degli Studi di Milano Dipartimento di Chimica ITALY
| | - Alessandra Silvani
- University of Milan: Universita degli Studi di Milano Dipartimento di Chimica via Golgi 19 20133 Milano ITALY
| |
Collapse
|
22
|
Schäker‐Hübner L, Haschemi R, Büch T, Kraft FB, Brumme B, Schöler A, Jenke R, Meiler J, Aigner A, Bendas G, Hansen FK. Balancing Histone Deacetylase (HDAC) Inhibition and Drug-likeness: Biological and Physicochemical Evaluation of Class I Selective HDAC Inhibitors. ChemMedChem 2022; 17:e202100755. [PMID: 35073610 PMCID: PMC9303312 DOI: 10.1002/cmdc.202100755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Indexed: 11/08/2022]
Abstract
Herein we report the structure-activity and structure-physicochemical property relationships of a series of class I selective ortho-aminoanilides targeting the "foot-pocket" in HDAC1&2. To balance the structural benefits and the physicochemical disadvantages of these substances, we started with a set of HDACi related to tacedinaline (CI-994) and evaluated their solubility, lipophilicity (log D7.4 ) and inhibition of selected HDAC isoforms. Subsequently, we selected the most promising "capless" HDACi and transferred its ZBG to our previously published scaffold featuring a peptoid-based cap group. The resulting hit compound 10 c (LSH-A54) showed favorable physicochemical properties and is a potent, selective HDAC1/2 inhibitor. The following evaluation of its slow binding properties revealed that LSH-A54 binds tightly to HDAC1 in an induced-fit mechanism. The potent HDAC1/2 inhibitory properties were reflected by attenuated cell migration in a modified wound healing assay and reduced cell viability in a clonogenic survival assay in selected breast cancer cell lines.
Collapse
Affiliation(s)
- Linda Schäker‐Hübner
- Institut für WirkstoffentwicklungMedizinische FakultätUniversität LeipzigBrüderstraße 3404103LeipzigGermany
- Abteilung für Pharmazeutische und Zellbiologische ChemiePharmazeutisches InstitutUniversität BonnAn der Immenburg 453121BonnGermany
| | - Reza Haschemi
- Abteilung für Pharmazeutische und Zellbiologische ChemiePharmazeutisches InstitutUniversität BonnAn der Immenburg 453121BonnGermany
| | - Thomas Büch
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Klinische PharmakologieMedizinische FakultätUniversität LeipzigHärtelstraße 16–1804107LeipzigGermany
| | - Fabian B. Kraft
- Abteilung für Pharmazeutische und Zellbiologische ChemiePharmazeutisches InstitutUniversität BonnAn der Immenburg 453121BonnGermany
| | - Birke Brumme
- Institut für WirkstoffentwicklungMedizinische FakultätUniversität LeipzigBrüderstraße 3404103LeipzigGermany
| | - Andrea Schöler
- Institut für WirkstoffentwicklungMedizinische FakultätUniversität LeipzigBrüderstraße 3404103LeipzigGermany
| | - Robert Jenke
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Klinische PharmakologieMedizinische FakultätUniversität LeipzigHärtelstraße 16–1804107LeipzigGermany
- University Cancer Center Leipzig (UCCL)Universitätsklinikum LeipzigLiebigstraße 22, Haus 704103LeipzigGermany
| | - Jens Meiler
- Institut für WirkstoffentwicklungMedizinische FakultätUniversität LeipzigBrüderstraße 3404103LeipzigGermany
| | - Achim Aigner
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Klinische PharmakologieMedizinische FakultätUniversität LeipzigHärtelstraße 16–1804107LeipzigGermany
| | - Gerd Bendas
- Abteilung für Pharmazeutische und Zellbiologische ChemiePharmazeutisches InstitutUniversität BonnAn der Immenburg 453121BonnGermany
| | - Finn K. Hansen
- Abteilung für Pharmazeutische und Zellbiologische ChemiePharmazeutisches InstitutUniversität BonnAn der Immenburg 453121BonnGermany
| |
Collapse
|
23
|
Chen J, Wang H, Zheng Y, Zhang X, Xu X, Gou Q. Sp 2- and sp 3-C⋯O tetrel bonds in the 3-oxetanone homodimer. Phys Chem Chem Phys 2022; 24:8992-8998. [PMID: 35380142 DOI: 10.1039/d2cp00703g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The structures and non-covalent interactions at play in the 3-oxetanone homodimer have been investigated using a pulsed jet Fourier transform microwave spectrometer supplemented with quantum chemical calculations. Two isomers were identified in the pulsed jet. With the analyses of non-covalent intermolecular interactions including the quantum theory of atoms, Johnson's non-covalent interactions and natural bond orbital, the observed global minimum is stabilized by a combination of one sp2-C⋯O tetrel bond and a network of multiple C-H⋯O weak hydrogen bonds. The second isomer is characterized by carbonyl-carbonyl interactions, with the formation of one sp2- and one sp3-C⋯O tetrel bond. The conformational population of the two observed isomers in the supersonic expansion was estimated to be NCE1/NCC1 ≈ 7/5.
Collapse
Affiliation(s)
- Junhua Chen
- School of Pharmacy, Guizhou Medical University, Guiyang 550000, Guizhou, China.,Department of Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331 Chongqing, China.
| | - Hao Wang
- Department of Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331 Chongqing, China.
| | - Yang Zheng
- Department of Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331 Chongqing, China.
| | - Xinyue Zhang
- Department of Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331 Chongqing, China.
| | - Xuefang Xu
- Department of Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331 Chongqing, China.
| | - Qian Gou
- Department of Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331 Chongqing, China. .,Chongqing Key Laboratory of Theoretical and Computational Chemistry, Daxuecheng South Rd. 55, 401331, Chongqing, China
| |
Collapse
|
24
|
Kalita D, Sahariah B, Mookerjee SP, Sarma BK. Strategies to Control the cis-trans Isomerization of Peptoid Amide Bonds. Chem Asian J 2022; 17:e202200149. [PMID: 35362652 DOI: 10.1002/asia.202200149] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/30/2022] [Indexed: 11/11/2022]
Abstract
Peptoids are oligomers of N-substituted glycine units. They structurally resemble peptides but, unlike natural peptides, the side chains of peptoids are present on the amide nitrogen atoms instead of the α-carbons. The N-substitution improves cell-permeability of peptoids and enhance their proteolytic stability over natural peptides. Therefore, peptoids are ideal peptidomimetic candidates for drug discovery, especially for intracellular targets. Unfortunately, most peptoid ligands discovered so far possess moderate affinity towards their biological targets. The moderate affinity of peptoids for biomacromolecules is linked to their conformational flexibility, which causes substantial entropic loss during the peptoid-biomacromolecule binding process. The conformational flexibility of peptoids is caused by the lack of backbone chirality, absence of hydrogen bond donors (NH) in their backbone to form CO···HN hydrogen bonds and the facile cis-trans isomerization of their tertiary amide bonds. In recent years, many investigators have shown that the incorporation of specific side chains with unique steric and stereoelectronic features can favourably shift the cis-trans equilibria of peptoids towards one of the two isomeric forms. Such strategies are helpful to design homogenous peptoid oligomers having well defined secondary structures. Herein, we discuss the strategies developed over the years to control the cis-trans isomerization of peptoid amide bonds.
Collapse
Affiliation(s)
- Debajit Kalita
- Jawaharlal Nehru Centre for Advanced Scientific Research, New Chemistry Unit, INDIA
| | - Biswajit Sahariah
- Jawaharlal Nehru Centre for Advanced Scientific Research, New Chemistry Unit, INDIA
| | | | - Bani Kanta Sarma
- Jawaharlal Nehru Centre for Advanced Scientific Research, New Chemistry Unit, Rachenahalli Lake Road, Jakkur, 560064, India, 560064, Bangalore, INDIA
| |
Collapse
|
25
|
Fargher HA, Sherbow TJ, Haley MM, Johnson DW, Pluth MD. C-H⋯S hydrogen bonding interactions. Chem Soc Rev 2022; 51:1454-1469. [PMID: 35103265 PMCID: PMC9088610 DOI: 10.1039/d1cs00838b] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The short C-H⋯S contacts found in available structural data for both small molecules and larger biomolecular systems suggest that such contacts are an often overlooked yet important stabilizing interaction. Moreover, many of these short C-H⋯S contacts meet the definition of a hydrogen bonding interaction. Using available structural data from the Cambridge Structural Database (CSD), as well as selected examples from the literature in which important C-H⋯S contacts may have been overlooked, we highlight the generality of C-H⋯S hydrogen bonding as an important stabilizing interaction. To uncover and establish the generality of these interactions, we compare C-H⋯S contacts with other traditional hydrogen bond donors and acceptors as well as investigate how coordination number and metal bonding affect the preferred geometry of interactions in the solid state. This work establishes that the C-H⋯S bond meets the definition of a hydrogen bond and serves as a guide to identify C-H⋯S hydrogen bonds in diverse systems.
Collapse
Affiliation(s)
- Hazel A. Fargher
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, and Institute of Molecular Biology, University of Oregon, Eugene, Oregon, 97403-1253, USA
| | - Tobias J. Sherbow
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, and Institute of Molecular Biology, University of Oregon, Eugene, Oregon, 97403-1253, USA
| | - Michael M. Haley
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, and Institute of Molecular Biology, University of Oregon, Eugene, Oregon, 97403-1253, USA
| | - Darren W. Johnson
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, and Institute of Molecular Biology, University of Oregon, Eugene, Oregon, 97403-1253, USA
| | - Michael D. Pluth
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, and Institute of Molecular Biology, University of Oregon, Eugene, Oregon, 97403-1253, USA
| |
Collapse
|
26
|
Li Y, Li J, Bao G, Yu C, Liu Y, He Z, Wang P, Ma W, Xie J, Sun W, Wang R. NDTP Mediated Direct Rapid Amide and Peptide Synthesis without Epimerization. Org Lett 2022; 24:1169-1174. [PMID: 34994572 DOI: 10.1021/acs.orglett.1c04258] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Herein, we explored an unprecedented mild, nonirritating, conveniently available, and recyclable coupling reagent NDTP, which could activate the carboxylic acids via acyl thiocyanide and enable the rapid amide and peptide synthesis at very mild conditions. In addition, the methodology was compatible with Fmoc-SPPS, which may provide an alternative to peptide manufacturing.
Collapse
Affiliation(s)
- Yiping Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, 199 West Donggang Rd, Lanzhou 730000, Gansu, P. R. China
| | - Jingyue Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, 199 West Donggang Rd, Lanzhou 730000, Gansu, P. R. China
| | - Guangjun Bao
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, 199 West Donggang Rd, Lanzhou 730000, Gansu, P. R. China
| | - Changjun Yu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, 199 West Donggang Rd, Lanzhou 730000, Gansu, P. R. China
| | - Yuyang Liu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, 199 West Donggang Rd, Lanzhou 730000, Gansu, P. R. China
| | - Zeyuan He
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, 199 West Donggang Rd, Lanzhou 730000, Gansu, P. R. China
| | - Peng Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, 199 West Donggang Rd, Lanzhou 730000, Gansu, P. R. China
| | - Wen Ma
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, 199 West Donggang Rd, Lanzhou 730000, Gansu, P. R. China
| | - Junqiu Xie
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, 199 West Donggang Rd, Lanzhou 730000, Gansu, P. R. China
| | - Wangsheng Sun
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, 199 West Donggang Rd, Lanzhou 730000, Gansu, P. R. China
| | - Rui Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, 199 West Donggang Rd, Lanzhou 730000, Gansu, P. R. China.,Institute of Materia Medica, Chinese Academy of Medical Sciences, Beijing 100050, P. R. China
| |
Collapse
|
27
|
Purushotham M, Paul B, Gajula SNR, Sahariah B, Sonti R. Deciphering C–H⋯O/X weak hydrogen bonding and halogen bonding interactions in aromatic peptoids. NEW J CHEM 2022. [DOI: 10.1039/d2nj02616c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We deciphered weak interactions in aromatic peptoids, such as C–H⋯O/X, and simultaneously identified strong interactions, including N–H⋯N and N–H⋯O, in this class of foldamer.
Collapse
Affiliation(s)
- Manasa Purushotham
- Department of Chemistry, Jnana Bharathi Campus, Bangalore University, Bangalore 560056, India
| | - Bishwajit Paul
- Department of Chemistry, Jnana Bharathi Campus, Bangalore University, Bangalore 560056, India
| | - Siva Nageswara Rao Gajula
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana 500037, India
| | - Biswajit Sahariah
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Rajesh Sonti
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana 500037, India
| |
Collapse
|
28
|
Fukuda Y, Yokomine M, Kuroda D, Tsumoto K, Morimoto J, Sando S. Peptoid-based reprogrammable template for cell-permeable inhibitors of protein-protein interactions. Chem Sci 2021; 12:13292-13300. [PMID: 34777747 PMCID: PMC8528041 DOI: 10.1039/d1sc01560e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 08/02/2021] [Indexed: 12/27/2022] Open
Abstract
The development of inhibitors of intracellular protein–protein interactions (PPIs) is of great significance for drug discovery, but the generation of a cell-permeable molecule with high affinity to protein is challenging. Oligo(N-substituted glycines) (oligo-NSGs), referred to as peptoids, are attractive as potential intracellular PPI inhibitors owing to their high membrane permeability. However, their intrinsically flexible backbones make the rational design of inhibitors difficult. Here, we propose a peptoid-based rational approach to develop cell-permeable PPI inhibitors using oligo(N-substituted alanines) (oligo-NSAs). The rigid structures of oligo-NSAs enable independent optimization of each N-substituent to improve binding affinity and membrane permeability, while preserving the backbone shape. A molecule with optimized N-substituents inhibited a target PPI in cells, which demonstrated the utility of oligo-NSA as a reprogrammable template to develop intracellular PPI inhibitors. A peptoid-based modular approach using oligo(N-substituted alanine) as a reprogrammable template enables independent optimization of N-substituents and facile development of cell-permeable inhibitors of protein–protein interactions.![]()
Collapse
Affiliation(s)
- Yasuhiro Fukuda
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Marin Yokomine
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Daisuke Kuroda
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan .,Department of Bioengineering, Graduate School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Kouhei Tsumoto
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan .,Department of Bioengineering, Graduate School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan.,Institute of Medical Science, The University of Tokyo 4-6-1, Shirokanedai, Minato-ku Tokyo 108-8639 Japan
| | - Jumpei Morimoto
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Shinsuke Sando
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan .,Department of Bioengineering, Graduate School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| |
Collapse
|
29
|
De Cesare S, McKenna CA, Mulholland N, Murray L, Bella J, Campopiano DJ. Direct monitoring of biocatalytic deacetylation of amino acid substrates by 1H NMR reveals fine details of substrate specificity. Org Biomol Chem 2021; 19:4904-4909. [PMID: 33998641 DOI: 10.1039/d1ob00122a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Amino acids are key synthetic building blocks that can be prepared in an enantiopure form by biocatalytic methods. We show that the l-selective ornithine deacetylase ArgE catalyses hydrolysis of a wide-range of N-acyl-amino acid substrates. This activity was revealed by 1H NMR spectroscopy that monitored the appearance of the well resolved signal of the acetate product. Furthermore, the assay was used to probe the subtle structural selectivity of the biocatalyst using a substrate that could adopt different rotameric conformations.
Collapse
Affiliation(s)
- Silvia De Cesare
- School of Chemistry, University of Edinburgh, David Brewster Road, King's Buildings, Edinburgh, EH9 3FJ, UK.
| | - Catherine A McKenna
- School of Chemistry, University of Edinburgh, David Brewster Road, King's Buildings, Edinburgh, EH9 3FJ, UK.
| | | | - Lorna Murray
- School of Chemistry, University of Edinburgh, David Brewster Road, King's Buildings, Edinburgh, EH9 3FJ, UK.
| | - Juraj Bella
- School of Chemistry, University of Edinburgh, David Brewster Road, King's Buildings, Edinburgh, EH9 3FJ, UK.
| | - Dominic J Campopiano
- School of Chemistry, University of Edinburgh, David Brewster Road, King's Buildings, Edinburgh, EH9 3FJ, UK.
| |
Collapse
|
30
|
Song S, Hyodo T, Ikeda H, Vu KAL, Tang Y, Chan ES, Otani Y, Inagaki S, Yamaguchi K, Ohwada T. Contribution of Solvents to Geometrical Preference in the Z/ E Equilibrium of N-Phenylthioacetamide. J Org Chem 2021; 87:1641-1660. [PMID: 34082529 DOI: 10.1021/acs.joc.1c00801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We studied the Z/E preference of N-phenylthioacetamide (thioacetanilide) derivatives in various solvents by means of 1H NMR spectroscopy, as well as molecular dynamics (MD) and other computational analyses. Our experimental results indicate that the Z/E isomer preference of secondary (NH)thioamides of N-phenylthioacetamides shows substantial solvent dependency, whereas the corresponding amides do not show solvent dependency of the Z/E isomer ratios. Detailed study of the solvent effects based on molecular dynamics simulations revealed that there are two main modes of hydrogen (H)-bond formation between solvent and (NH)thioacetamide, which influence the Z/E isomer preference of (NH)thioamides. DFT calculations of NH-thioamide in the presence of one or two explicit solvent molecules in the continuum solvent model can effectively mimic the solvation by multiple solvent molecules surrounding the thioamide in MD simulations and shed light on the precise nature of the interactions between thioamide and solvent. Orbital interaction analysis showed that, counterintuitively, the Z/E preference of NH-thioacetamides is mainly determined by steric repulsion, while that of sterically congested N-methylthioacetamides is mainly determined by thioamide conjugation.
Collapse
Affiliation(s)
- Shuyi Song
- Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tadashi Hyodo
- Faculty of Pharmaceutical Sciences at Kagawa Campus, Tokushima Bunri University, 1314-1 Shido, Sanuki, Kagawa 769-2193, Japan
| | - Hirotaka Ikeda
- Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kim Anh L Vu
- Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, 119077.,Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599
| | - Yulan Tang
- Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Erika S Chan
- Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, New Jersey 08854, United States
| | - Yuko Otani
- Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Satoshi Inagaki
- Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kentaro Yamaguchi
- Faculty of Pharmaceutical Sciences at Kagawa Campus, Tokushima Bunri University, 1314-1 Shido, Sanuki, Kagawa 769-2193, Japan
| | - Tomohiko Ohwada
- Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
31
|
Comeau C, Ries B, Stadelmann T, Tremblay J, Poulet S, Fröhlich U, Côté J, Boudreault PL, Derbali RM, Sarret P, Grandbois M, Leclair G, Riniker S, Marsault É. Modulation of the Passive Permeability of Semipeptidic Macrocycles: N- and C-Methylations Fine-Tune Conformation and Properties. J Med Chem 2021; 64:5365-5383. [PMID: 33750117 DOI: 10.1021/acs.jmedchem.0c02036] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Incorporating small modifications to peptidic macrocycles can have a major influence on their properties. For instance, N-methylation has been shown to impact permeability. A better understanding of the relationship between permeability and structure is of key importance as peptidic drugs are often associated with unfavorable pharmacokinetic profiles. Starting from a semipeptidic macrocycle backbone composed of a tripeptide tethered head-to-tail with an alkyl linker, we investigated two small changes: peptide-to-peptoid substitution and various methyl placements on the nonpeptidic linker. Implementing these changes in parallel, we created a collection of 36 compounds. Their permeability was then assessed in parallel artificial membrane permeability assay (PAMPA) and Caco-2 assays. Our results show a systematic improvement in permeability associated with one peptoid position in the cycle, while the influence of methyl substitution varies on a case-by-case basis. Using a combination of molecular dynamics simulations and NMR measurements, we offer hypotheses to explain such behavior.
Collapse
Affiliation(s)
- Christian Comeau
- Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001, 12e av nord, Sherbrooke, Quebec, Canada J1H5N4
| | - Benjamin Ries
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Thomas Stadelmann
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Jacob Tremblay
- Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001, 12e av nord, Sherbrooke, Quebec, Canada J1H5N4
| | - Sylvain Poulet
- Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001, 12e av nord, Sherbrooke, Quebec, Canada J1H5N4
| | - Ulrike Fröhlich
- Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001, 12e av nord, Sherbrooke, Quebec, Canada J1H5N4
| | - Jérôme Côté
- Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001, 12e av nord, Sherbrooke, Quebec, Canada J1H5N4
| | - Pierre-Luc Boudreault
- Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001, 12e av nord, Sherbrooke, Quebec, Canada J1H5N4
| | - Rabeb Mouna Derbali
- Faculté de pharmacie, Université de Montréal, C.P. 6128, succursale Centre-ville, Montréal, Quebec, Canada H3C 3J7
| | - Philippe Sarret
- Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001, 12e av nord, Sherbrooke, Quebec, Canada J1H5N4
| | - Michel Grandbois
- Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001, 12e av nord, Sherbrooke, Quebec, Canada J1H5N4
| | - Grégoire Leclair
- Faculté de pharmacie, Université de Montréal, C.P. 6128, succursale Centre-ville, Montréal, Quebec, Canada H3C 3J7
| | - Sereina Riniker
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Éric Marsault
- Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001, 12e av nord, Sherbrooke, Quebec, Canada J1H5N4
| |
Collapse
|
32
|
Sahariah B, Sarma BK. Spectroscopic evidence of n → π* interactions involving carbonyl groups. Phys Chem Chem Phys 2021; 22:26669-26681. [PMID: 33226050 DOI: 10.1039/d0cp03557b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
n → π* has emerged as an important noncovalent interaction that can affect the conformations of both small- and macromolecules including peptides and proteins. Carbonyl-carbonyl (COCO) n → π* interactions involving CO groups are well studied. Recent studies have shown that the COCO n → π* interactions are the most abundant secondary interactions in proteins with a frequency of 33 interactions per 100 residues and, among the various secondary interactions, n → π* interactions are expected to provide the highest enthalpic contributions to the conformational stability of globular proteins. However, n → π* interactions are relatively weak and provide an average stabilization of about 0.25 kcal mol-1 per interaction in proteins. The strongest n → π* interaction could be as strong as a moderate hydrogen bond. Therefore, it is challenging to detect and quantify these weak interactions, especially in solution in the presence of perturbation from other intermolecular interactions. Accordingly, spectroscopic investigations that can provide direct evidence of n → π* interaction are limited, and the majority of papers published in this area have relied on X-ray crystallography and/or theoretical calculations to establish the presence of this interaction. The aim of this perspective is to discuss the studies where a spectroscopic signature in support of n → π* interaction was observed. As the "n → π* interaction" is a relatively new terminology, there remains the possibility of there being earlier studies where spectroscopic evidence for n → π* interactions was obtained but it was not discussed in light of the n → π* terminology. We noticed several such studies and, as can be expected, these studies were often overlooked in the discussion of n → π* interactions in the recent literature. In this perspective, we have also discussed these studies and provided computational support for the presence of n → π* interaction.
Collapse
Affiliation(s)
- Biswajit Sahariah
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India.
| | | |
Collapse
|
33
|
Kulkarni P, Datta D, Ramabhadran RO, Ganesh K. Gem-dimethyl peptide nucleic acid (α/β/γ- gdm-PNA) monomers: synthesis and the role of gdm-substituents in preferential stabilisation of Z/ E-rotamers. Org Biomol Chem 2021; 19:6534-6545. [PMID: 34259296 DOI: 10.1039/d1ob01097b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The flexible backbone of aminoethylglycine (aeg) PNA upon substitution becomes sterically constrained to enable conformational pre-organization for preferential binding to DNA or RNA. The bulky gem-dimethyl (gdm) substituent on carbons adjacent to the t-amide sidechain either at Cα (glycyl) or Cβ/Cγ (aminoethylene) sides may influence the Z/E rotamer ratio arising from a restricted rotation around the t-amide bond. Employing 2D NMR (NOESY), it is shown here that the Cα-gdm-PNA-T monomer exhibits exclusively the Z-rotamer, while the Cβ-gdm-PNA-T monomer shows only the E-rotamer. The unsubstituted aeg-PNA-T and Cγ-gdm-PNA-T monomers display a mixture of Z/E rotamers. The rotamers with t-amide carbonyl pointing towards the gem-dimethyl group always prevailed. The results are supported by computational studies that suggested that the preferred rotamers are the outcome of a net energetic benefit from the stabilising n-π* interactions of carbonyls (amide backbone and t-amide sidechain), and C-HO interactions and the destabilising steric clash of gem-dimethyl groups with the t-amido methylene group. The E-rotamer structure in Cγ-gdm is also characterised by X-ray crystallography. The exclusive E-rotamer for the Cβ-gdm monomer seen in solution here is the first such example among several modified PNA monomers. Since the conformation of the sidechain is important for inducing base stacking and effective base pairing, the exclusive E-rotamer in the Cβ-gdm monomer may have significance in the properties of the derived PNA : DNA/RNA duplexes with all E-rotamers.
Collapse
Affiliation(s)
- Pradnya Kulkarni
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr Homi Bhabha Road, Pune 411008, India
| | - Dhrubajyoti Datta
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr Homi Bhabha Road, Pune 411008, India
| | - Raghunath O Ramabhadran
- Chemistry Department and CAMOST, Indian Institute of Science Education and Research (IISER) Tirupati, Karkambadi Road, Mangalam, Tirupati 517507, India.
| | - Krishna Ganesh
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr Homi Bhabha Road, Pune 411008, India and Chemistry Department and CAMOST, Indian Institute of Science Education and Research (IISER) Tirupati, Karkambadi Road, Mangalam, Tirupati 517507, India.
| |
Collapse
|
34
|
Chen H, Tang X, Ye H, Wang X, Zheng H, Hai Y, Cao X, You L. Effects of n → π* Orbital Interactions on Molecular Rotors: The Control and Switching of Rotational Pathway and Speed. Org Lett 2020; 23:231-235. [PMID: 33351640 DOI: 10.1021/acs.orglett.0c03969] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The role of n → π* orbital interactions in the rotational pathway and barrier of biaryl-based molecular rotors was elucidated through a combined experimental and computational study. The n → π* interaction in the transition state can lead to the acceleration of rotors. The competition between the n → π* interaction and hydrogen bonding further enabled the reversal of the pathway and greasing/braking the rotor in response to acid/base stimuli, thereby creating a switchable molecular rotor.
Collapse
Affiliation(s)
- Hang Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Xiao Tang
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005,China
| | - Hebo Ye
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Xinchang Wang
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005,China
| | - Hao Zheng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Yu Hai
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyu Cao
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005,China
| | - Lei You
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
35
|
Zhang J, Liu Z, Yin Z, Yang X, Ma Y, Szostak R, Szostak M. Preference of cis-Thioamide Structure in N-Thioacyl-N-methylanilines. Org Lett 2020; 22:9500-9505. [DOI: 10.1021/acs.orglett.0c03512] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Jin Zhang
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Zhulin Liu
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Zheng Yin
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Xiufang Yang
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Yangmin Ma
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Roman Szostak
- Department of Chemistry, Wroclaw University, F. Joliot-Curie 14, Wroclaw 50-383, Poland
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| |
Collapse
|
36
|
Morimoto J, Sando S. Peptoids with Substituents on the Backbone Carbons as Conformationally Constrained Synthetic Oligoamides. J SYN ORG CHEM JPN 2020. [DOI: 10.5059/yukigoseikyokaishi.78.1076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Shinsuke Sando
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo
| |
Collapse
|
37
|
Richaud AD, Roche SP. Structure-Property Relationship Study of N-(Hydroxy)Peptides for the Design of Self-Assembled Parallel β-Sheets. J Org Chem 2020; 85:12329-12342. [PMID: 32881524 DOI: 10.1021/acs.joc.0c01441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The design of novel and functional biomimetic foldamers remains a major challenge in creating mimics of native protein structures. Herein, we report the stabilization of a remarkably short β-sheet by incorporating N-(hydroxy)glycine (Hyg) residues into the backbone of peptides. These peptide-peptoid hybrids form unique parallel β-sheet structures by self-assembly upon hydrogenation. Our spectroscopic and crystallographic data suggest that the local conformational perturbations induced by N-(hydroxy)amides are outweighed by a network of strong interstrand hydrogen bonds.
Collapse
Affiliation(s)
- Alexis D Richaud
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, Florida 33431, United States
| | - Stéphane P Roche
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, Florida 33431, United States.,Center for Molecular Biology and Biotechnology, Florida Atlantic University, Jupiter, Florida 33458, United States
| |
Collapse
|
38
|
Choi C, Cho Y, Son A, Shin SW, Lee YJ, Park HC. Therapeutic Potential of (-)-Agelamide D, a Diterpene Alkaloid from the Marine Sponge Agelas sp., as a Natural Radiosensitizer in Hepatocellular Carcinoma Models. Mar Drugs 2020; 18:md18100500. [PMID: 33003597 PMCID: PMC7600430 DOI: 10.3390/md18100500] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/23/2020] [Accepted: 09/28/2020] [Indexed: 12/12/2022] Open
Abstract
Radiation therapy (RT) is an effective local treatment for unresectable hepatocellular carcinoma (HCC), but there are currently no predictive biomarkers to guide treatment decision for RT or adjuvant systemic drugs to be combined with RT for HCC patients. Previously, we reported that extracts of the marine sponge Agelas sp. may contain a natural radiosensitizer for HCC treatment. In this study, we isolated (−)-agelamide D from Agelas extract and investigated the mechanism underlying its radiosensitization. (−)-Agelamide D enhanced radiation sensitivity of Hep3B cells with decreased clonogenic survival and increased apoptotic cell death. Furthermore, (−)-agelamide D increased the expression of protein kinase RNA-like endoplasmic reticulum kinase/inositol-requiring enzyme 1α/activating transcription factor 4 (PERK/eIF2α/ATF4), a key pathway of the unfolded protein response (UPR) in multiple HCC cell lines, and augmented radiation-induced UPR signaling. In vivo xenograft experiments confirmed that (−)-agelamide D enhanced tumor growth inhibition by radiation without systemic toxicity. Immunohistochemistry results showed that (−)-agelamide D further increased radiation-induced ATF4 expression and apoptotic cell death, which was consistent with our in vitro finding. Collectively, our results provide preclinical evidence that the use of UPR inducers such as (−)-agelamide D may enhance the efficacy of RT in HCC management.
Collapse
Affiliation(s)
- Changhoon Choi
- Department of Radiation Oncology, Samsung Medical Center, Seoul 06351, Korea; (C.C.); (A.S.); (S.-W.S.)
| | - Yeonwoo Cho
- Marine Natural Products Chemistry Laboratory, Korea Institute of Ocean Science and Technology, 385 Haeyangro, Busan 49111, Korea;
- Department of Applied Ocean Science, University of Science and Technology, Daejeon 34113, Korea
| | - Arang Son
- Department of Radiation Oncology, Samsung Medical Center, Seoul 06351, Korea; (C.C.); (A.S.); (S.-W.S.)
| | - Sung-Won Shin
- Department of Radiation Oncology, Samsung Medical Center, Seoul 06351, Korea; (C.C.); (A.S.); (S.-W.S.)
- Department of Radiation Oncology, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
| | - Yeon-Ju Lee
- Marine Natural Products Chemistry Laboratory, Korea Institute of Ocean Science and Technology, 385 Haeyangro, Busan 49111, Korea;
- Department of Applied Ocean Science, University of Science and Technology, Daejeon 34113, Korea
- Correspondence: (Y.-J.L.); (H.C.P.)
| | - Hee Chul Park
- Department of Radiation Oncology, Samsung Medical Center, Seoul 06351, Korea; (C.C.); (A.S.); (S.-W.S.)
- Department of Radiation Oncology, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
- Correspondence: (Y.-J.L.); (H.C.P.)
| |
Collapse
|
39
|
Wellhöfer I, Beck J, Frydenvang K, Bräse S, Olsen CA. Increasing the Functional Group Diversity in Helical β-Peptoids: Achievement of Solvent- and pH-Dependent Folding. J Org Chem 2020; 85:10466-10478. [PMID: 32806085 DOI: 10.1021/acs.joc.0c00780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We report the synthesis of a series of bis-functionalized β-peptoid oligomers of the hexamer length. This was achieved by synthesizing and incorporating protected amino- or azido-functionalized chiral building blocks into precursor oligomers by a trimer segment coupling strategy. The resulting hexamers were readily elaborated to provide target compounds displaying amino groups, carboxy groups, hydroxy groups, or triazolo-pyridines, which should enable metal ion binding. Analysis of the novel hexamers by circular dichroism (CD) spectroscopy and 1H-13C heteronuclear single quantum coherence nuclear magnetic resonance (HSQC NMR) spectroscopy revealed robust helical folding propensity in acetonitrile. CD analysis showed a solvent-dependent degree of helical content in the structural ensembles when adding different ratios of protic solvents including an aqueous buffer. These studies were enabled by a substantial increase in solubility compared to previously analyzed β-peptoid oligomers. This also allowed for the investigation of the effect of pH on the folding propensity of the amino- and carboxy-functionalized oligomers, respectively. Interestingly, we could show a reversible effect of sequentially adding acid and base, resulting in a switching between compositions of folded ensembles with varying helical content. We envision that the present discoveries can form the basis for the development of functional peptidomimetic materials responsive to external stimuli.
Collapse
Affiliation(s)
- Isabelle Wellhöfer
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen DK-2100, Denmark
| | - Janina Beck
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), D-76131 Karlsruhe, Germany
| | - Karla Frydenvang
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen DK-2100, Denmark
| | - Stefan Bräse
- Institute of Biological and Chemical Systems - Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, Eggenstein-Leopoldshafen D-76344, Germany.,Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), D-76131 Karlsruhe, Germany
| | - Christian A Olsen
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen DK-2100, Denmark
| |
Collapse
|
40
|
Zhang Y, Yan X, Cao J, Weng P, Miao D, Li Z, Jiang YB. Turn Conformation of β-Amino Acid-Based Short Peptides Promoted by an Amidothiourea Moiety at C-Terminus. J Org Chem 2020; 85:9844-9849. [PMID: 32584574 DOI: 10.1021/acs.joc.0c01139] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A C-terminal amidothiourea motif is shown to promote a β-turn-like folded conformation in a series of β-amino acid-based short peptides in both the solid state and solution phase by an intramolecular 11-membered ring hydrogen bond.
Collapse
Affiliation(s)
- Yanhan Zhang
- Department of Chemistry, College of Chemistry and Chemical Engineering, the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, and iChEM, Xiamen University, Xiamen 361005, China
| | - Xiaosheng Yan
- Department of Chemistry, College of Chemistry and Chemical Engineering, the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, and iChEM, Xiamen University, Xiamen 361005, China
| | - Jinlian Cao
- Department of Chemistry, College of Chemistry and Chemical Engineering, the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, and iChEM, Xiamen University, Xiamen 361005, China
| | - Peimin Weng
- Department of Chemistry, College of Chemistry and Chemical Engineering, the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, and iChEM, Xiamen University, Xiamen 361005, China
| | - Daiyu Miao
- Department of Chemistry, College of Chemistry and Chemical Engineering, the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, and iChEM, Xiamen University, Xiamen 361005, China
| | - Zhao Li
- Department of Chemistry, College of Chemistry and Chemical Engineering, the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, and iChEM, Xiamen University, Xiamen 361005, China
| | - Yun-Bao Jiang
- Department of Chemistry, College of Chemistry and Chemical Engineering, the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, and iChEM, Xiamen University, Xiamen 361005, China
| |
Collapse
|
41
|
Shah SS, Casanova N, Antuono G, Sabatino D. Polyamide Backbone Modified Cell Targeting and Penetrating Peptides in Cancer Detection and Treatment. Front Chem 2020; 8:218. [PMID: 32296681 PMCID: PMC7136562 DOI: 10.3389/fchem.2020.00218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 03/09/2020] [Indexed: 12/15/2022] Open
Abstract
Cell penetrating and targeting peptides (CPPs and CTPs) encompass an important class of biochemically active peptides owning the capabilities of targeting and translocating within selected cell types. As such, they have been widely used in the delivery of imaging and therapeutic agents for the diagnosis and treatment of various diseases, especially in cancer. Despite their potential utility, first generation CTPs and CPPs based on the native peptide sequences are limited by poor biological and pharmacological properties, thereby restricting their efficacy. Therefore, medicinal chemistry approaches have been designed and developed to construct related peptidomimetics. Of specific interest herein, are the design applications which modify the polyamide backbone of lead CTPs and CPPs. These modifications aim to improve the biochemical characteristics of the native peptide sequence in order to enhance its diagnostic and therapeutic capabilities. This review will focus on a selected set of cell penetrating and targeting peptides and their related peptidomimetics whose polyamide backbone has been modified in order to improve their applications in cancer detection and treatment.
Collapse
Affiliation(s)
- Sunil S Shah
- Department of Chemistry and Biochemistry, Seton Hall University, South Orange, NJ, United States
| | - Nelson Casanova
- Department of Chemistry and Biochemistry, Seton Hall University, South Orange, NJ, United States
| | - Gina Antuono
- Department of Chemistry and Biochemistry, Seton Hall University, South Orange, NJ, United States
| | - David Sabatino
- Department of Chemistry and Biochemistry, Seton Hall University, South Orange, NJ, United States
| |
Collapse
|
42
|
Maltais R, Perreault M, Roy J, Poirier D. Minor chemical modifications of the aminosteroid derivative RM-581 lead to major impact on its anticancer activity, metabolic stability and aqueous solubility. Eur J Med Chem 2020; 188:111990. [PMID: 31893547 DOI: 10.1016/j.ejmech.2019.111990] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 12/16/2019] [Accepted: 12/18/2019] [Indexed: 12/31/2022]
Abstract
The aminosteroid (AM) RM-581 is built around a mestranol backbone and has recently emerged as this family's lead candidate, showing in vitro and in vivo potency over different types of cancer, including high fatality pancreatic cancer. To extend the structure-activity relationships (SAR) to other estrane analogs, we synthesized a focused series of RM-581 derivatives at position C3 or C2 of its steroidal core. These new AM derivatives were first tested on a large selection of prostate, breast, pancreatic and ovarian cancer cell lines. The impact of these modifications on metabolic stability (human liver microsomes) was also measured. A SAR study revealed a fine regulation of anticancer activity related to the nature of the substituent. Indeed, the addition of potential prodrug groups like acetate, sulfamate or phosphate (compounds 8, 9 and 10) at C3 of the phenolic counterpart provided better antiproliferative activities than RM-581 in breast and pancreatic cancer cell types while maintaining activity in other cancer cell lines. Also, the phosphate group was highly beneficial on water solubility. However, the bulkier carbamate prodrugs 6 (N,N-dimethyl) and 7 (N,N-diethyl) were less active. Otherwise, carbon homologation (CH2) at C2 (compound 33) was beneficial to metabolic stability and, in the meantime, this AM conserved the same anticancer activity as RM-581. However, the replacement of the hydroxy or methoxy at C3 by a hydrogen or an acetyl (compound 17 or 21b) was detrimental for anticancer activity, pointing to a crucial molecular interaction of the aromatic oxygen atom at this position. Overall, this work provided a better knowledge of the structural requirements to maintain RM-581's anticancer activity, and also identified minor structural modifications to increase both metabolic stability and water solubility, three important parameters of pharmacological development.
Collapse
Affiliation(s)
- René Maltais
- Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU de Québec - Research Center (CHUL, T4), Québec, QC, G1V 4G2, Canada
| | - Martin Perreault
- Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU de Québec - Research Center (CHUL, T4), Québec, QC, G1V 4G2, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Jenny Roy
- Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU de Québec - Research Center (CHUL, T4), Québec, QC, G1V 4G2, Canada
| | - Donald Poirier
- Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU de Québec - Research Center (CHUL, T4), Québec, QC, G1V 4G2, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec, QC, G1V 0A6, Canada.
| |
Collapse
|
43
|
Chen H, Ye H, Hai Y, Zhang L, You L. n → π* interactions as a versatile tool for controlling dynamic imine chemistry in both organic and aqueous media. Chem Sci 2020; 11:2707-2715. [PMID: 34084329 PMCID: PMC8157614 DOI: 10.1039/c9sc05698j] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 01/31/2020] [Indexed: 11/21/2022] Open
Abstract
The imine bond holds a prominent place in supramolecular chemistry and materials science, and one issue is the stability of imines due to their electrophilic nature. Here we introduced ortho-carboxylate groups into a series of aromatic aldehydes/imines for dictating imine dynamic covalent chemistry (DCC) through n → π* interactions, one class of widespread and yet underused non-covalent interactions. The thermodynamically stabilizing role of carboxylate-aldehyde/imine n → π* interactions in acetonitrile was elucidated by the movement of the imine exchange equilibrium and further supported by crystal analysis. Computational studies provided mechanistic insights for n → π* interactions, the strength of which can surpass that of CH hydrogen bonding and is dependent on the orientation of interacting sites based on natural bond orbital analysis. Moreover, the substituent effect and the combination of recognition sites allowed additional means for modulation. Finally, to show the relevance of our findings ortho-carboxylate containing aldehydes were used to regulate imine formation/exchange in water, and modification of the N-terminus of amino acids and peptides was achieved in a neutral buffer. This work represents the latest example of weak interactions governing DCC and sets the stage for assembly and application studies.
Collapse
Affiliation(s)
- Hang Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Hebo Ye
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 China
| | - Yu Hai
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Ling Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 China
| | - Lei You
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
44
|
Morimoto J, Kim J, Kuroda D, Nagatoishi S, Tsumoto K, Sando S. Per-Residue Program of Multiple Backbone Dihedral Angles of β-Peptoids via Backbone Substitutions. J Am Chem Soc 2020; 142:2277-2284. [PMID: 31917919 DOI: 10.1021/jacs.9b10496] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Unique folded structures of natural and synthetic oligomers are the most fundamental basis for their unique functions. N-Substituted β-peptides, or β-peptoids, are synthetic oligomers with great potential to fold into diverse three-dimensional structures because of the existence of four rotatable bonds in a monomer with highly modular synthetic accessibility. However, the existence of the four rotatable bonds poses a challenge for conformational control of β-peptoids. Here, we report a strategy for per-residue programming of two dihedral angles of β-peptoids, which is useful for restricting the conformational space of the oligomers. The oligomer was found to form a unique loop conformation that is stabilized by the backbone rotational restrictions. Circular dichroism and NMR spectroscopic analyses and X-ray crystallographic analysis of the oligomer are presented. The strategy would significantly facilitate the discovery of many more unique folded structures of β-peptoids.
Collapse
Affiliation(s)
- Jumpei Morimoto
- Department of Chemistry and Biotechnology, Graduate School of Engineering , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku , Tokyo 113-8656 , Japan
| | - Jungyeon Kim
- Department of Chemistry and Biotechnology, Graduate School of Engineering , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku , Tokyo 113-8656 , Japan
| | - Daisuke Kuroda
- Department of Chemistry and Biotechnology, Graduate School of Engineering , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku , Tokyo 113-8656 , Japan.,Department of Bioengineering, Graduate School of Engineering , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku , Tokyo 113-8656 , Japan
| | - Satoru Nagatoishi
- Institute of Medical Science , The University of Tokyo , 4-6-1 Shirokanedai , Minato-ku , Tokyo 108-8639 , Japan
| | - Kouhei Tsumoto
- Department of Chemistry and Biotechnology, Graduate School of Engineering , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku , Tokyo 113-8656 , Japan.,Department of Bioengineering, Graduate School of Engineering , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku , Tokyo 113-8656 , Japan.,Institute of Medical Science , The University of Tokyo , 4-6-1 Shirokanedai , Minato-ku , Tokyo 108-8639 , Japan
| | - Shinsuke Sando
- Department of Chemistry and Biotechnology, Graduate School of Engineering , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku , Tokyo 113-8656 , Japan.,Department of Bioengineering, Graduate School of Engineering , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku , Tokyo 113-8656 , Japan
| |
Collapse
|
45
|
Reese HR, Shanahan CC, Proulx C, Menegatti S. Peptide science: A "rule model" for new generations of peptidomimetics. Acta Biomater 2020; 102:35-74. [PMID: 31698048 DOI: 10.1016/j.actbio.2019.10.045] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 10/17/2019] [Accepted: 10/30/2019] [Indexed: 02/07/2023]
Abstract
Peptides have been heavily investigated for their biocompatible and bioactive properties. Though a wide array of functionalities can be introduced by varying the amino acid sequence or by structural constraints, properties such as proteolytic stability, catalytic activity, and phase behavior in solution are difficult or impossible to impart upon naturally occurring α-L-peptides. To this end, sequence-controlled peptidomimetics exhibit new folds, morphologies, and chemical modifications that create new structures and functions. The study of these new classes of polymers, especially α-peptoids, has been highly influenced by the analysis, computational, and design techniques developed for peptides. This review examines techniques to determine primary, secondary, and tertiary structure of peptides, and how they have been adapted to investigate peptoid structure. Computational models developed for peptides have been modified to predict the morphologies of peptoids and have increased in accuracy in recent years. The combination of in vitro and in silico techniques have led to secondary and tertiary structure design principles that mirror those for peptides. We then examine several important developments in peptoid applications inspired by peptides such as pharmaceuticals, catalysis, and protein-binding. A brief survey of alternative backbone structures and research investigating these peptidomimetics shows how the advancement of peptide and peptoid science has influenced the growth of numerous fields of study. As peptide, peptoid, and other peptidomimetic studies continue to advance, we will expect to see higher throughput structural analyses, greater computational accuracy and functionality, and wider application space that can improve human health, solve environmental challenges, and meet industrial needs. STATEMENT OF SIGNIFICANCE: Many historical, chemical, and functional relations draw a thread connecting peptides to their recent cognates, the "peptidomimetics". This review presents a comprehensive survey of this field by highlighting the width and relevance of these familial connections. In the first section, we examine the experimental and computational techniques originally developed for peptides and their morphing into a broader analytical and predictive toolbox. The second section presents an excursus of the structures and properties of prominent peptidomimetics, and how the expansion of the chemical and structural diversity has returned new exciting properties. The third section presents an overview of technological applications and new families of peptidomimetics. As the field grows, new compounds emerge with clear potential in medicine and advanced manufacturing.
Collapse
|
46
|
Popa MM, Shova S, Hrubaru M, Barbu L, Draghici C, Dumitrascu F, Dumitrescu DE. Introducing chirality in halogenated 3-arylsydnones and their corresponding 1-arylpyrazoles obtained by 1,3-dipolar cycloaddition. RSC Adv 2020; 10:15656-15664. [PMID: 35493656 PMCID: PMC9052417 DOI: 10.1039/d0ra02368j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 04/11/2020] [Indexed: 12/15/2022] Open
Abstract
New 1-arylpyrazoles substituted with halogen atoms (Br, I) were synthesized from the corresponding sydnones by 1,3-dipolar cycloaddition. By introduction of a prochiral group such as isopropyl, in the ortho position of the benzene ring, in the starting phenylglycine 1 the rotamers caused by the hindered rotation between the phenyl and the heterocyclic ring were detected by NMR spectroscopy for 1-arylpyrazoles and for the first time for 3-arylsydnones. The N-nitrosophenylglycines present E–Z stereoisomerism due to the partial C–N double bond character. All the new compounds were structurally characterized by NMR spectroscopy and confirmed by X-ray crystallography. The crystal structures of N-nitrosophenylglycine 2c and of the sydnone 3c present similar Br⋯Br type II halogen contacts. New 1-arylpyrazoles substituted with halogen atoms (Br, I) were synthesized from the corresponding sydnones by 1,3-dipolar cycloaddition.![]()
Collapse
Affiliation(s)
- Marcel Mirel Popa
- Center of Organic Chemistry “C. D. Nenitzescu”
- Romanian Academy
- 060023 Bucharest
- Romania
| | - Sergiu Shova
- “Petru Poni” Institute of Macromolecular Chemistry
- Iasi 700487
- Romania
| | - Madalina Hrubaru
- Center of Organic Chemistry “C. D. Nenitzescu”
- Romanian Academy
- 060023 Bucharest
- Romania
| | - Loredana Barbu
- Center of Organic Chemistry “C. D. Nenitzescu”
- Romanian Academy
- 060023 Bucharest
- Romania
| | - Constantin Draghici
- Center of Organic Chemistry “C. D. Nenitzescu”
- Romanian Academy
- 060023 Bucharest
- Romania
| | - Florea Dumitrascu
- Center of Organic Chemistry “C. D. Nenitzescu”
- Romanian Academy
- 060023 Bucharest
- Romania
| | | |
Collapse
|
47
|
Santra S, Ghosh P. Fluorophoric [2]rotaxanes: post-synthetic functionalization, conformational fluxionality and metal ion chelation. NEW J CHEM 2020. [DOI: 10.1039/d0nj00353k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fluorophoric [2]rotaxanes form an exciplex upon interpenetration and the exciplex signals are used to monitor the chelation properties of the interlocked systems.
Collapse
Affiliation(s)
- Saikat Santra
- School of Chemical Science
- Indian Association for the Cultivation of Science
- Kolkata 700032
- India
- Department of Chemistry
| | - Pradyut Ghosh
- School of Chemical Science
- Indian Association for the Cultivation of Science
- Kolkata 700032
- India
| |
Collapse
|
48
|
Ye L, Pankow RM, Horikawa M, Melenbrink EL, Liu K, Thompson BC. Green-Solvent-Processed Amide-Functionalized Conjugated Polymers Prepared via Direct Arylation Polymerization (DArP). Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b02014] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Liwei Ye
- Department of Chemistry and Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, California 90089-1661, United States
| | - Robert M. Pankow
- Department of Chemistry and Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, California 90089-1661, United States
| | - Mami Horikawa
- Department of Chemistry and Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, California 90089-1661, United States
| | - Elizabeth L. Melenbrink
- Department of Chemistry and Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, California 90089-1661, United States
| | - Kangying Liu
- Department of Chemistry and Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, California 90089-1661, United States
| | - Barry C. Thompson
- Department of Chemistry and Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, California 90089-1661, United States
| |
Collapse
|
49
|
Wijaya AW, Nguyen AI, Roe LT, Butterfoss GL, Spencer RK, Li NK, Zuckermann RN. Cooperative Intramolecular Hydrogen Bonding Strongly Enforces cis-Peptoid Folding. J Am Chem Soc 2019; 141:19436-19447. [DOI: 10.1021/jacs.9b10497] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Andrew W. Wijaya
- The Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Andy I. Nguyen
- The Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Leah T. Roe
- The Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Glenn L. Butterfoss
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Ryan K. Spencer
- Department of Chemistry, Department of Chemical Engineering & Material Science, University of California, Irvine, California 92697, United States
| | - Nan K. Li
- The Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Ronald N. Zuckermann
- The Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| |
Collapse
|
50
|
Dai Z, Tian Q, Li Y, Shang S, Luo W, Wang X, Li D, Zhang Y, Li Z, Yuan J. Michael Addition Reaction Catalyzed by Imidazolium Chloride to Protect Amino Groups and Construct Medium Ring Heterocycles. Molecules 2019; 24:E4224. [PMID: 31757097 PMCID: PMC6930643 DOI: 10.3390/molecules24234224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 11/17/2022] Open
Abstract
An effective approach for amino protection and construction of a seven-membered ring has been developed. The method uses imidazolium chloride to carry out the Michael addition reaction at low temperatures and perform amino deprotection or construction of a seven-membered ring at high temperatures.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Jianyong Yuan
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; (Z.D.); (Q.T.); (Y.L.); (S.S.); (W.L.); (X.W.); (D.L.); (Y.Z.); (Z.L.)
| |
Collapse
|