1
|
Abstract
This Perspective presents a review of our work and that of others in the highly controversial topic of the coupling of protein dynamics to reaction in enzymes. We have been involved in studying this topic for many years. Thus, this perspective will naturally present our own views, but it also is designed to present an overview of the variety of viewpoints of this topic, both experimental and theoretical. This is obviously a large and contentious topic.
Collapse
Affiliation(s)
- Steven D Schwartz
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
2
|
Zhou S, Wang Y, Gao J. Solvation Induction of Free Energy Barriers of Decarboxylation Reactions in Aqueous Solution from Dual-Level QM/MM Simulations. JACS AU 2021; 1:233-244. [PMID: 34467287 PMCID: PMC8395672 DOI: 10.1021/jacsau.0c00110] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Indexed: 06/13/2023]
Abstract
Carbon dioxide capture, corresponding to the recombination process of decarboxylation reactions of organic acids, is typically barrierless in the gas phase and has a relatively low barrier in aprotic solvents. However, these processes often encounter significant solvent-reorganization-induced barriers in aqueous solution if the decarboxylation product is not immediately protonated. Both the intrinsic stereoelectronic effects and solute-solvent interactions play critical roles in determining the overall decarboxylation equilibrium and free energy barrier. An understanding of the interplay of these factors is important for designing novel materials applied to greenhouse gas capture and storage as well as for unraveling the catalytic mechanisms of a range of carboxy lyases in biological CO2 production. A range of decarboxylation reactions of organic acids with rates spanning nearly 30 orders of magnitude have been examined through dual-level combined quantum mechanical and molecular mechanical simulations to help elucidate the origin of solvation-induced free energy barriers for decarboxylation and the reverse carboxylation reactions in water.
Collapse
Affiliation(s)
- Shaoyuan Zhou
- Institute
of Theoretical Chemistry, Jilin University, Changchun 130023, China
- Institute
of Systems and Physical Biology, Shenzhen
Bay Laboratory, Shenzhen 518055, China
| | - Yingjie Wang
- Institute
of Systems and Physical Biology, Shenzhen
Bay Laboratory, Shenzhen 518055, China
| | - Jiali Gao
- Institute
of Systems and Physical Biology, Shenzhen
Bay Laboratory, Shenzhen 518055, China
- Beijing
University Shenzhen Graduate School, Shenzhen 518055, China
- Department
of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
3
|
Bao JL, Truhlar DG. Variational transition state theory: theoretical framework and recent developments. Chem Soc Rev 2017; 46:7548-7596. [DOI: 10.1039/c7cs00602k] [Citation(s) in RCA: 207] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This article reviews the fundamentals of variational transition state theory (VTST), its recent theoretical development, and some modern applications.
Collapse
Affiliation(s)
- Junwei Lucas Bao
- Department of Chemistry
- Chemical Theory Center, and Minnesota Supercomputing Institute
- University of Minnesota
- Minneapolis
- USA
| | - Donald G. Truhlar
- Department of Chemistry
- Chemical Theory Center, and Minnesota Supercomputing Institute
- University of Minnesota
- Minneapolis
- USA
| |
Collapse
|
4
|
Truhlar DG. Transition state theory for enzyme kinetics. Arch Biochem Biophys 2015; 582:10-7. [PMID: 26008760 PMCID: PMC4555010 DOI: 10.1016/j.abb.2015.05.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 05/15/2015] [Accepted: 05/18/2015] [Indexed: 11/18/2022]
Abstract
This article is an essay that discusses the concepts underlying the application of modern transition state theory to reactions in enzymes. Issues covered include the potential of mean force, the quantization of vibrations, the free energy of activation, and transmission coefficients to account for nonequilibrium effect, recrossing, and tunneling.
Collapse
Affiliation(s)
- Donald G Truhlar
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, 207 Pleasant St. SE, Minneapolis, MN 55455, United States.
| |
Collapse
|
5
|
Nechay MR, Valdez CE, Alexandrova AN. Computational Treatment of Metalloproteins. J Phys Chem B 2015; 119:5945-56. [DOI: 10.1021/acs.jpcb.5b00028] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Michael R. Nechay
- Department
of Chemistry and Biochemistry and ‡California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Crystal E. Valdez
- Department
of Chemistry and Biochemistry and ‡California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Anastassia N. Alexandrova
- Department
of Chemistry and Biochemistry and ‡California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
6
|
Abstract
![]()
The active
site of an enzyme is surrounded by a fluctuating environment of protein
and solvent conformational states, and a realistic calculation of
chemical reaction rates and kinetic isotope effects of enzyme-catalyzed
reactions must take account of this environmental diversity. Ensemble-averaged
variational transition state theory with multidimensional tunneling
(EA-VTST/MT) was developed as a way to carry out such calculations.
This theory incorporates ensemble averaging, quantized vibrational
energies, energy, tunneling, and recrossing of transition state dividing
surfaces in a systematic way. It has been applied successfully to
a number of hydrogen-, proton-, and hydride-transfer reactions. The
theory also exposes the set of effects that should be considered in
reliable rate constants calculations. We first review the basic
theory and the steps in the calculation. A key role is played by the
generalized free energy of activation profile, which is obtained by
quantizing the classical potential of mean force as a function of
a reaction coordinate because the one-way flux through the transition
state dividing surface can be written in terms of the generalized
free energy of activation. A recrossing transmission coefficient accounts
for the difference between the one-way flux through the chosen transition
state dividing surface and the net flux, and a tunneling transmission
coefficient converts classical motion along the reaction coordinate
to quantum mechanical motion. The tunneling calculation is multidimensional,
accounting for the change in vibrational frequencies along the tunneling
path and shortening of the tunneling path with respect to the minimum
energy path (MEP), as promoted by reaction-path curvature. The generalized
free energy of activation and the transmission coefficients both involve
averaging over an ensemble of reaction paths and conformations, and
this includes the coupling of protein motions to the rearrangement
of chemical bonds in a statistical mechanically correct way. The standard
deviations of the transmissions coefficients provide information on
the diversity of the distribution of reaction paths, barriers, and
protein conformations along the members of an ensemble of reaction
paths passing through the transition state. We first illustrate
the theory by discussing the application to both wild-type and mutant Escherichia coli dihydrofolate reductase and hyperthermophilic Thermotoga maritima dihydrofolate reductase (DHFR); DHFR
is of special interest because the protein conformational changes
have been widely studied. Then we present shorter discussions of several
other applications of EA-VTST/MT to transfer of protons, hydrogen
atoms, and hydride ions and their deuterated analogs. Systems discussed
include hydride transfer in alcohol dehydrogenase, xylose isomerase,
and thymidylate synthase, proton transfer in methylamine dehydrogenase,
hydrogen atom transfer in methylmalonyl-CoA mutase, and nucleophilic
substitution in haloalkane dehalogenase and two-dimensional potentials
of mean force for potentially coupled proton and hydride transfer
in the β-oxidation of butyryl-coenzyme A catalyzed by short-chain
acyl-CoA dehydrogenase and in the pyruvate to lactate transformation
catalyzed by lactate dehydrogenase.
Collapse
Affiliation(s)
- Laura Masgrau
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain
| | - Donald G. Truhlar
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455-0431, United States
| |
Collapse
|
7
|
Navarro-Whyte L, Kellie JL, Lenz SAP, Wetmore SD. Hydrolysis of the damaged deoxythymidine glycol nucleoside and comparison to canonical DNA. Phys Chem Chem Phys 2013; 15:19343-52. [DOI: 10.1039/c3cp53217h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
Nachimuthu S, Gao J, Truhlar DG. A Benchmark Test Suite for Proton Transfer Energies and its Use to Test Electronic Structure Model Chemistries. Chem Phys 2012; 400:8-12. [PMID: 23230346 PMCID: PMC3516617 DOI: 10.1016/j.chemphys.2012.01.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We present benchmark calculations of nine selected points on potential energy surfaces describing proton transfer process in three model systems, H(5)O(2) (+), CH(3)OH…H(+)…OH(2), and CH(3)COOH…OH(2). The calculated relative energies of these geometries are compared to those calculated by various wave function and density functional methods, including the polarized molecular orbital (PMO) model recently developed in our research group and other semiempirical molecular orbital methods. We found that the SCC-DFTB and PMO methods (the latter available so far only for molecules consisting of only O and H and therefore only for the first of the three model systems) give results that are, on average, within 2 kcal/mol of the benchmark results. Other semiempirical molecular orbital methods have mean unsigned errors (MUEs) of 3 to 8 kcal/mol, local density functionals have MUEs in the range 0.7 to 3.7 kcal/mol, and hybrid density functionals have MUEs of only 0.3 to 1.0 kcal/mol, with the best density functional performance obtained by hybrid meta-GGAs, especially M06 and PW6B95.
Collapse
Affiliation(s)
- Santhanamoorthi Nachimuthu
- Department of Chemistry and Supercomputing Institute, University of Minnesota, 207 Pleasant Street S.E., Minneapolis, MN 55455-0431
| | - Jiali Gao
- Department of Chemistry and Supercomputing Institute, University of Minnesota, 207 Pleasant Street S.E., Minneapolis, MN 55455-0431
| | - Donald G Truhlar
- Department of Chemistry and Supercomputing Institute, University of Minnesota, 207 Pleasant Street S.E., Minneapolis, MN 55455-0431
| |
Collapse
|
9
|
Wu P, Cisneros GA, Hu H, Chaudret R, Hu X, Yang W. Catalytic mechanism of 4-oxalocrotonate tautomerase: significances of protein-protein interactions on proton transfer pathways. J Phys Chem B 2012; 116:6889-97. [PMID: 22417185 DOI: 10.1021/jp212643j] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
4-Oxalocrotonate tautomerase (4-OT), a member of tautomerase superfamily, is an essential enzyme in the degradative metabolism pathway occurring in the Krebs cycle. The proton transfer process catalyzed by 4-OT has been explored previously using both experimental and theoretical methods; however, the elaborate catalytic mechanism of 4-OT still remains unsettled. By combining classical molecular mechanics with quantum mechanics, our results demonstrate that the native hexametric 4-OT enzyme, including six protein monomers, must be employed to simulate the proton transfer process in 4-OT due to protein-protein steric and electrostatic interactions. As a consequence, only three out of the six active sites in the 4-OT hexamer are observed to be occupied by three 2-oxo-4-hexenedioates (2o4hex), i.e., half-of-the-sites occupation. This agrees with experimental observations on negative cooperative effect between two adjacent substrates. Two sequential proton transfers occur: one proton from the C3 position of 2o4hex is initially transferred to the nitrogen atom of the general base, Pro1. Subsequently, the same proton is shuttled back to the position C5 of 2o4hex to complete the proton transfer process in 4-OT. During the catalytic reaction, conformational changes (i.e., 1-carboxyl group rotation) of 2o4hex may occur in the 4-OT dimer model but cannot proceed in the hexametric structure. We further explained that the docking process of 2o4hex can influence the specific reactant conformations and an alternative substrate (2-hydroxymuconate) may serve as reactant under a different reaction mechanism than 2o4hex.
Collapse
Affiliation(s)
- Pan Wu
- Department of Chemistry, Duke University, Durham, North Carolina 27708, USA
| | | | | | | | | | | |
Collapse
|
10
|
Ribeiro RF, Marenich AV, Cramer CJ, Truhlar DG. Use of Solution-Phase Vibrational Frequencies in Continuum Models for the Free Energy of Solvation. J Phys Chem B 2011; 115:14556-62. [DOI: 10.1021/jp205508z] [Citation(s) in RCA: 675] [Impact Index Per Article: 48.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Raphael F. Ribeiro
- Department of Chemistry and Supercomputing Institute, University of Minnesota, 207 Pleasant Street S.E., Minneapolis, Minnesota 55455-0431, United States
| | - Aleksandr V. Marenich
- Department of Chemistry and Supercomputing Institute, University of Minnesota, 207 Pleasant Street S.E., Minneapolis, Minnesota 55455-0431, United States
| | - Christopher J. Cramer
- Department of Chemistry and Supercomputing Institute, University of Minnesota, 207 Pleasant Street S.E., Minneapolis, Minnesota 55455-0431, United States
| | - Donald G. Truhlar
- Department of Chemistry and Supercomputing Institute, University of Minnesota, 207 Pleasant Street S.E., Minneapolis, Minnesota 55455-0431, United States
| |
Collapse
|
11
|
FEARCF a multidimensional free energy method for investigating conformational landscapes and chemical reaction mechanisms. Sci China Chem 2011. [DOI: 10.1007/s11426-011-4423-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
12
|
Shmilovits-Ofir M, Gerber RB. Proton Transfer and Dissociation of GlyLysH+ following O–H and N–H Stretching Mode Excitations: Dynamics Simulations. J Am Chem Soc 2011; 133:16510-7. [DOI: 10.1021/ja205634b] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Michaela Shmilovits-Ofir
- Department of Physical Chemistry and the Fritz Haber Research Center, The Hebrew University, Jerusalem 91904, Israel
| | - R. Benny Gerber
- Department of Physical Chemistry and the Fritz Haber Research Center, The Hebrew University, Jerusalem 91904, Israel
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| |
Collapse
|
13
|
Truhlar DG. Tunneling in enzymatic and nonenzymatic hydrogen transfer reactions. J PHYS ORG CHEM 2010. [DOI: 10.1002/poc.1676] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|