1
|
Chen H, Xia L, Li G. Recent progress of chiral metal-organic frameworks in enantioselective separation and detection. Mikrochim Acta 2024; 191:640. [PMID: 39356328 DOI: 10.1007/s00604-024-06729-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 09/24/2024] [Indexed: 10/03/2024]
Abstract
Chiral compounds are abundantly distributed in both the natural world and biological systems. It is crucial to identify and detect chiral compounds in living systems or to separate and determine them in the natural environment. Many researchers have developed a range of chiral materials with different functionalizations to separate and detect chiral substances. Chiral metal-organic frameworks (CMOFs) have the potential to be used in enantioselective separation and detection due to their large surface areas, regulated framework topologies, particular substrate interactions, and accessible chiral sites. CMOFs contribute significantly to the development of enantiomer separation and detection in medicine, agriculture, food, environment, and other fields. This review focuses on four synthesis methods of CMOFs and their applications in chiral separation and chiral sensing in the past five years, mainly including chromatographic separation, membrane separation, optical sensing, electrochemical sensing, and other sensing methods. Finally, the challenges and potential growth direction of CMOFs in enantiomer separation and detection are discussed and prospected.
Collapse
Affiliation(s)
- Huiting Chen
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China
| | - Ling Xia
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China
| | - Gongke Li
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
2
|
Ahsan A, Wang X, Sk R, Heydari M, Buimaga-Iarinca L, Wäckerlin C, Lucenti E, Decurtins S, Cariati E, Jung TA, Aschauer U, Liu SX. Self-Assembly of N-Rich Triimidazoles on Ag(111): Mixing the Pleasures and Pains of Epitaxy and Strain. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:23000-23009. [PMID: 38053624 PMCID: PMC10694807 DOI: 10.1021/acs.jpcc.3c03325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/22/2023] [Indexed: 12/07/2023]
Abstract
In the present report, homochiral hydrogen-bonded assemblies of heavily N-doped (C9H6N6) heterocyclic triimidazole (TT) molecules on an Ag(111) substrate were investigated using scanning tunneling microscopy (STM) and low energy electron diffraction (LEED) techniques. The planar and prochiral TT molecules, which exhibit a threefold rotation symmetry and lack mirror symmetry when assembled on the substrate, carry multiple hydrogen-bonding donor and acceptor functionalities, inevitably leading to the formation of hexameric two-dimensionally extended assemblies that can be either homo- (RR/SS) or heterochiral (RS). Experimental STM data showing well-ordered homochiral domains and experimental LEED data are consistent with simulations assuming the R19.1° overlayer on the Ag(111) lattice. Importantly, we report the unexpected coincidence of spontaneous resolution with the condensation of neighboring islands in adjacent "Janus pairs". The islands are connected by a characteristic fault zone, an observation that we discuss in the context of the fairly symmetric molecule and its propensity to compromise and benefit from interisland bonding at the expense of lattice mismatches and strain in the defect zone. We relate this to the close to triangular shape and the substantial but weak bonding scheme beyond van der Waals (vdW) of the TT molecules, which is due to the three N-containing five-membered imidazole rings. Density functional theory (DFT) calculations show clear energetic differences between homochiral and heterochiral pairwise interactions, clearly supporting the experimental results.
Collapse
Affiliation(s)
- Aisha Ahsan
- Laboratory
for X-ray Nanoscience and Technologies, Paul Scherrer Institute, Villigen-PSI 5232, Switzerland
- Department
of Physics, University of Basel, Klingelbergstrasse 82, Basel 4056, Switzerland
| | - Xing Wang
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, Bern 3012, Switzerland
| | - Rejaul Sk
- Department
of Physics, University of Basel, Klingelbergstrasse 82, Basel 4056, Switzerland
| | - Mehdi Heydari
- Laboratory
for X-ray Nanoscience and Technologies, Paul Scherrer Institute, Villigen-PSI 5232, Switzerland
- Department
of Physics, University of Basel, Klingelbergstrasse 82, Basel 4056, Switzerland
| | - Luiza Buimaga-Iarinca
- National
Institute for Research and Development of Isotopic and Molecular Technologies
(INCDTIM), Donat Str., Cluj-Napoca 67-103, Romania
| | - Christian Wäckerlin
- Laboratory
for X-ray Nanoscience and Technologies, Paul Scherrer Institute, Villigen-PSI 5232, Switzerland
- Institute
of Physics, École Polytechnique Fédérale de Lausanne Station 3, Lausanne 1015, Switzerland
| | - Elena Lucenti
- Institute
of Chemical Sciences and Technologies “Giulio Natta”
(SCITEC) of CNR, via Golgi 19, Milano 20133, Italy
| | - Silvio Decurtins
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, Bern 3012, Switzerland
| | - Elena Cariati
- Institute
of Chemical Sciences and Technologies “Giulio Natta”
(SCITEC) of CNR, via Golgi 19, Milano 20133, Italy
- Department
of Chemistry, Università degli Studi di Milano and INSTM RU Via Golgi 19, Milano 20133, Italy
| | - Thomas A. Jung
- Laboratory
for X-ray Nanoscience and Technologies, Paul Scherrer Institute, Villigen-PSI 5232, Switzerland
- Department
of Physics, University of Basel, Klingelbergstrasse 82, Basel 4056, Switzerland
| | - Ulrich Aschauer
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, Bern 3012, Switzerland
- Department
of Chemistry and Physics of Materials, University
of Salzburg, Jakob-Haringer-Str. 2A, Salzburg 5020, Austria
| | - Shi-Xia Liu
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, Bern 3012, Switzerland
| |
Collapse
|
3
|
Maeda M, Sato K, De Feyter S, Tahara K. Homochiral hierarchical molecular assemblies through dynamic combination of conformational states of a single chiral building block at the liquid/solid interface. NANOSCALE 2023. [PMID: 37997169 DOI: 10.1039/d3nr04042a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
We herein report the construction of homochiral, hierarchical self-assembled molecular networks (SAMNs) at the liquid/graphite interface using a single molecular building block, a chiral dehydrobenzo[12]annulene (cDBA) derivative with three chiral alkoxy and three hydroxy groups positioned in an alternating manner on the DBA core. The cDBA molecules form homochiral hierarchical SAMNs consisting of triangular clusters of several sizes, the size of which can be tuned by solvent polarity and solute concentration, reaching periodicities as large as 9.3 nm. We demonstrate the successful transmission of chirality information from the single molecular level to the hierarchical SAMN level, in a process that is mediated by dynamic self-sorting.
Collapse
Affiliation(s)
- Matsuhiro Maeda
- Department of Applied Chemistry, School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan.
| | - Kazuya Sato
- Department of Applied Chemistry, School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan.
| | - Steven De Feyter
- Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200 F, 3001 Leuven, Belgium
| | - Kazukuni Tahara
- Department of Applied Chemistry, School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan.
| |
Collapse
|
4
|
Ma C, Li J, Zhang S, Duan W, Zeng Q. Progress in self-assemblies of macrocycles at the liquid/solid interface. NANOTECHNOLOGY 2021; 32:382001. [PMID: 34098536 DOI: 10.1088/1361-6528/ac08bd] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 06/07/2021] [Indexed: 06/12/2023]
Abstract
Macrocyclic self-assemblies have gained great interest for diversified structures and potential applications, such as catalysis, magnetism, photovoltaic devices, organic light-emitting diodes. Macrocycles can present regular assembly systems at the liquid/solid interface due to theπ-conjugated structures. Furthermore, suitable guest molecules can be selected for constructing multi-component supramolecular co-assemblies. This review mainly summarizes macrocyclic self-assembly structures with different shapes in recent years. All of the studies are completed with the assistance of scanning tunneling microscope at the liquid/solid interface.
Collapse
Affiliation(s)
- Chunyu Ma
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, People's Republic of China
- Department of Chemistry, School of Science, Beijing Jiaotonng University, Beijing 100044, People's Republic of China
| | - Jianqiao Li
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, People's Republic of China
- Department of Chemistry, School of Science, Beijing Jiaotonng University, Beijing 100044, People's Republic of China
| | - Siqi Zhang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, People's Republic of China
- Department of Chemistry, School of Science, Beijing Jiaotonng University, Beijing 100044, People's Republic of China
| | - Wubiao Duan
- Department of Chemistry, School of Science, Beijing Jiaotonng University, Beijing 100044, People's Republic of China
| | - Qingdao Zeng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, People's Republic of China
- Center of Material Science and Optoelectonics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
5
|
Chen HJ, Xu L, Chen MT, Lin LR, Zhuang GL, Long LS, Zheng LS. Role of the Auxiliary Ligand in the Spontaneous Resolution of Enantiomers in Three-Dimensional Coordination Polymers. Inorg Chem 2021; 60:6981-6985. [PMID: 33913721 DOI: 10.1021/acs.inorgchem.1c00608] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Four pairs of chiral 3D coordination polymers (CPs), [Zn2(BDC)(lac)(DMF)]·guest (2) (H2BDC = benzene dicarboxylic acid; H2lac = lactic acid; guest = 1.5DMF + i-PrOH), [Co2(BDC)(lac)(DMF)]·guest (3) (guest = DMF + 2H2O), [Fe4(BDC)3(lac)2(DMF)2](CO3)·guest (4) (guest = DMF + 2H2O), and {Zn11(BPDC)6(lac)6[NH2(CH3)2]2}·guest (H2BPDC = 3,3'-biphenyldicarboxylic acid; guest = 6DMF + 18H2O) (5), are prepared through the reactions of racemic lactic acid (rac-H2lac) with different metal ions and auxiliary ligands. Structural analyses and DFT calculations reveal that forming more and stronger coordination bonds between the auxiliary ligand and metal ions is more conducive to the spontaneous resolution of enantiomers in 3D CPs than simply increasing the entropy of the auxiliary ligand itself.
Collapse
Affiliation(s)
- Hui-Jun Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Lu Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Man-Ting Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Li-Rong Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Gui-Lin Zhuang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - La-Sheng Long
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Lan-Sun Zheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
6
|
Rodríguez LM, Gómez P, Más-Montoya M, Abad J, Tárraga A, Cerdá JI, Méndez J, Curiel D. Synthesis and Two-Dimensional Chiral Surface Self-Assembly of a π-Conjugated System with Three-Fold Symmetry: Benzotri(7-Azaindole). Angew Chem Int Ed Engl 2021; 60:1782-1788. [PMID: 33146444 DOI: 10.1002/anie.202012100] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Indexed: 11/06/2022]
Abstract
The synthesis of a novel expanded π-conjugated system, namely benzotri(7-azaindole), BTAI, is reported. Its C3h symmetry along with the integration of six complementary donor and acceptor N-H⋅⋅⋅N hydrogen bonds in the conjugated structure promote the 2D self-assembly on Au(111) over extended areas. Besides, a perfect commensurability with the gold lattice endows the physisorbed molecular film with a remarkable stability. The structural features of BTAI result in two levels of surface chirality: Firstly, the molecules become chiral upon adsorption on the surface. Then, due to the favorable N-H⋅⋅⋅N hydrogen bond-directed self-assembly, along with the relative molecular rotation with respect to the substrate, supramolecular chirality manifests in two mirror enantiomorphous domains. Thus, the system undergoes spontaneous chiral resolution. LEED and STM assisted by theoretical simulations have been employed to characterize in detail these novel 2D conglomerates with relevant chiral properties for systems with C3h symmetry.
Collapse
Affiliation(s)
- Luis M Rodríguez
- Department of Surfaces and Coatings, Institute of Material Science of Madrid (ICMM-CSIC), Sor Juana Inés de la Cruz 3, 28049-, Madrid, Spain
| | - Paula Gómez
- Department of Organic Chemistry, University of Murcia, Campus of Espinardo, 30100-, Murcia, Spain
| | - Miriam Más-Montoya
- Department of Organic Chemistry, University of Murcia, Campus of Espinardo, 30100-, Murcia, Spain
| | - José Abad
- Department of Applied Physics and Naval Technology, Technical University of Cartagena, Campus Muralla del Mar, 30203-, Cartagena, Spain
| | - Alberto Tárraga
- Department of Organic Chemistry, University of Murcia, Campus of Espinardo, 30100-, Murcia, Spain
| | - Jorge I Cerdá
- Department of Interfaces and Nanostructures, Institute of Material Science of Madrid (ICMM-CSIC), Sor Juana Inés de la Cruz 3, 28049-, Madrid, Spain
| | - Javier Méndez
- Department of Surfaces and Coatings, Institute of Material Science of Madrid (ICMM-CSIC), Sor Juana Inés de la Cruz 3, 28049-, Madrid, Spain
| | - David Curiel
- Department of Organic Chemistry, University of Murcia, Campus of Espinardo, 30100-, Murcia, Spain
| |
Collapse
|
7
|
Synthesis and Two‐Dimensional Chiral Surface Self‐Assembly of a π‐Conjugated System with Three‐Fold Symmetry: Benzotri(7‐Azaindole). Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202012100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
8
|
Wu T, Xue N, Wang Z, Li J, Li Y, Huang W, Shen Q, Hou S, Wang Y. Surface self-assembly involving the interaction between S and N atoms. Chem Commun (Camb) 2021; 57:1328-1331. [DOI: 10.1039/d0cc07931f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Regulation of the self-assembly nanostructures by recruiting the electrostatic interaction between S and N atoms.
Collapse
Affiliation(s)
- Tianhao Wu
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics
- Department of Electronics
- Peking University
- Beijing 100871
- China
| | - Na Xue
- Central Laboratory
- Tianjin Key Laboratory of Epigenetics for Organ Development in Preterm Infants
- The Fifth Central Hospital of Tianjin
- Tianjin 300450
- China
| | - Zhichao Wang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM)
- Nanjing Tech University
- Nanjing 211816
- China
| | - Jie Li
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics
- Department of Electronics
- Peking University
- Beijing 100871
- China
| | - Yaru Li
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics
- Department of Electronics
- Peking University
- Beijing 100871
- China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM)
- Nanjing Tech University
- Nanjing 211816
- China
- Shanxi Institute of Flexible Electronics (SIFE)
| | - Qian Shen
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM)
- Nanjing Tech University
- Nanjing 211816
- China
| | - Shimin Hou
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics
- Department of Electronics
- Peking University
- Beijing 100871
- China
| | - Yongfeng Wang
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics
- Department of Electronics
- Peking University
- Beijing 100871
- China
| |
Collapse
|
9
|
Jeong Y, Kim HW, Ku J, Seo J. Breakdown of chiral recognition of amino acids in reduced dimensions. Sci Rep 2020; 10:16166. [PMID: 32999433 PMCID: PMC7527561 DOI: 10.1038/s41598-020-73300-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/08/2020] [Indexed: 11/09/2022] Open
Abstract
The homochirality of amino acids in living organisms is one of the great mysteries in the phenomena of life. To understand the chiral recognition of amino acids, we have used scanning tunnelling microscopy to investigate the self-assembly of molecules of the amino acid tryptophan (Trp) on Au(111). Earlier experiments showed only homochiral configurations in the self-assembly of amino acids, despite using a mixture of the two opposite enantiomers. In our study, we demonstrate that heterochiral configurations can be favored energetically when L- and D-Trp molecules are mixed to form self-assembly on the Au surface. Using density functional theory calculations, we show that the indole side chain strongly interacts with the Au surface, which reduces the system effectively to two-dimension, with chiral recognition disabled. Our study provides important insight into the recognition of the chirality of amino acid molecules in life.
Collapse
Affiliation(s)
- Yongchan Jeong
- Department of Emerging Materials Science, DGIST, Daegu, 42988, Korea.
| | - Hyo Won Kim
- Samsung Advanced Institute of Technology, Suwon, 16678, Korea
| | - JiYeon Ku
- Samsung Advanced Institute of Technology, Suwon, 16678, Korea
| | - Jungpil Seo
- Department of Emerging Materials Science, DGIST, Daegu, 42988, Korea.
| |
Collapse
|
10
|
Maeda M, Nakayama R, De Feyter S, Tobe Y, Tahara K. Hierarchical two-dimensional molecular assembly through dynamic combination of conformational states at the liquid/solid interface. Chem Sci 2020; 11:9254-9261. [PMID: 34094197 PMCID: PMC8162029 DOI: 10.1039/d0sc03163a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Self-sorting of multiple building blocks for correctly positioning molecules through orthogonal recognition is a promising strategy for construction of a hierarchical self-assembled molecular network (SAMN) on a surface. Herein we report that a trigonal molecule, dehydrobenzo[12]annulene (DBA) derivative having three tetradecyloxy chains and three hydroxy groups in an alternating manner, forms hierarchical triangular clusters of different sizes ranging from 2.4 to 16.4 nm, consisting of 3 to 78 molecules, respectively, at the liquid/graphite interface. The key is the dynamic combination of three different conformational states, which is solvent and concentration dependent. The present knowledge extends design strategies for production of sophisticated hierarchical SAMNs using a single component at the liquid/solid interface. Self-sorting of multiple building blocks for correctly positioning molecules through orthogonal recognition is a promising strategy for construction of a hierarchical self-assembled molecular network (SAMN) on a surface.![]()
Collapse
Affiliation(s)
- Matsuhiro Maeda
- Department of Applied Chemistry, School of Science and Technology, Meiji University 1-1-1 Higashimita, Tama-ku Kawasaki 214-8571 Japan
| | - Ruri Nakayama
- Department of Applied Chemistry, School of Science and Technology, Meiji University 1-1-1 Higashimita, Tama-ku Kawasaki 214-8571 Japan
| | - Steven De Feyter
- Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven Celestijnenlaan 200 F 3001 Leuven Belgium
| | - Yoshito Tobe
- The Institute of Scientific and Industrial Research, Osaka University Ibaraki Osaka 567-0047 Japan .,Department of Applied Chemistry, National Chiao Tung University 1001 Ta Hsueh Road Hsinchu 30030 Taiwan
| | - Kazukuni Tahara
- Department of Applied Chemistry, School of Science and Technology, Meiji University 1-1-1 Higashimita, Tama-ku Kawasaki 214-8571 Japan
| |
Collapse
|
11
|
Wang D, Yang M, Wu J, Wee ATS. Thermally Induced Chiral Aggregation of Dihydrobenzopyrenone on Au(111). ACS APPLIED MATERIALS & INTERFACES 2020; 12:35547-35554. [PMID: 32692546 DOI: 10.1021/acsami.0c05856] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The realization of chiral supramolecular architectures on solid surfaces has triggered much interest due to its potential enantiospecific applications. An in-depth study of chiral aggregation on surfaces is significant for developing functional chiral surfaces. Herein, we report thermally induced chiral aggregation of dihydrobenzopyrenone on Au(111). By high-resolution low-temperature scanning tunneling microscopy, a racemate monolayer consisting of levorotatory and dextrorotatory dihydrobenzopyrenones was found to aggregate into conglomerate domains after moderate annealing treatment. Combined with first-principles calculations, we suggest that the intermolecular dipole-dipole interaction plays an important role in chiral aggregation, which takes place via molecular in-plane diffusion rather than molecular out-of-plane flipping. This work unveils one underlying mechanism of thermally induced chiral aggregation, thus enabling potential applications such as fabricating supramolecular architectures for functional chiral surfaces.
Collapse
Affiliation(s)
- Dingguan Wang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117551
| | - Ming Yang
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634
| | - Jishan Wu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
| | - Andrew T S Wee
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117551
- Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, 3 Science Drive 3, Singapore 117546
| |
Collapse
|
12
|
Jasper-Tönnies T, Gruber M, Ulrich S, Herges R, Berndt R. Coverage-Controlled Superstructures of C 3 -Symmetric Molecules: Honeycomb versus Hexagonal Tiling. Angew Chem Int Ed Engl 2020; 59:7008-7017. [PMID: 32106353 PMCID: PMC7216838 DOI: 10.1002/anie.202001383] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Indexed: 11/06/2022]
Abstract
The competition between honeycomb and hexagonal tiling of molecular units can lead to large honeycomb superstructures on surfaces. Such superstructures exhibit pores that may be used as 2D templates for functional guest molecules. Honeycomb superstructures of molecules that comprise a C3 symmetric platform on Au(111) and Ag(111) surfaces are presented. The superstructures cover nearly mesoscopic areas with unit cells containing up to 3000 molecules, more than an order of magnitude larger than previously reported. The unit cell size may be controlled by the coverage. A fairly general model was developed to describe the energetics of honeycomb superstructures built from C3 symmetric units. Based on three parameters that characterize two competing bonding arrangements, the model is consistent with the present experimental data and also reproduces various published results. The model identifies the relevant driving force, mostly related to geometric aspects, of the pattern formation.
Collapse
Affiliation(s)
- Torben Jasper-Tönnies
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität, 24098, Kiel, Germany
| | - Manuel Gruber
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität, 24098, Kiel, Germany
| | - Sandra Ulrich
- Otto-Diels-Institut für Organische Chemie, Christian-Albrechts-Universität, 24098, Kiel, Germany
| | - Rainer Herges
- Otto-Diels-Institut für Organische Chemie, Christian-Albrechts-Universität, 24098, Kiel, Germany
| | - Richard Berndt
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität, 24098, Kiel, Germany
| |
Collapse
|
13
|
Lu H, Wenlong E, Ma Z, Yang X. Organometallic polymers synthesized from prochiral molecules by a surface-assisted synthesis on Ag(111). Phys Chem Chem Phys 2020; 22:8141-8145. [PMID: 32248207 DOI: 10.1039/c9cp06893g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Organometallic polymers can be successfully synthesized on a Ag(111) surface via a surface-assisted synthesis by choosing prochiral 4,4'-dibromo-2,2'-bis(2-phenylethynyl)-1,1'-biphenyl (DBPB) molecules as the designed precursor. High-resolution scanning tunneling microscopy investigation reveals that prochiral molecules show chirality on a surface and can evolve into organometallic chains on the Ag(111) surface based on Ullmann coupling. Due to the special structural features of DBPB molecules, chiral selectivity will be lost in the organometallic polymers. This result may provide an important basis for selecting suitable precursors to fabricate chiral covalent nanostructures on a surface.
Collapse
Affiliation(s)
- Hui Lu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, 457, Zhongshan Road, Dalian 116023, Liaoning, P. R. China. and University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing 100049, P. R. China
| | - E Wenlong
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, 457, Zhongshan Road, Dalian 116023, Liaoning, P. R. China. and University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing 100049, P. R. China
| | - Zhibo Ma
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, 457, Zhongshan Road, Dalian 116023, Liaoning, P. R. China.
| | - Xueming Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, 457, Zhongshan Road, Dalian 116023, Liaoning, P. R. China. and Department of Chemistry, Southern University of Science and Technology, 1088 Xueyuan Road, Guangdong, Shenzhen 518055, P. R. China
| |
Collapse
|
14
|
Jasper‐Tönnies T, Gruber M, Ulrich S, Herges R, Berndt R. Coverage‐Controlled Superstructures of
C
3
‐Symmetric Molecules: Honeycomb versus Hexagonal Tiling. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001383] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Torben Jasper‐Tönnies
- Institut für Experimentelle und Angewandte Physik Christian-Albrechts-Universität 24098 Kiel Germany
| | - Manuel Gruber
- Institut für Experimentelle und Angewandte Physik Christian-Albrechts-Universität 24098 Kiel Germany
| | - Sandra Ulrich
- Otto-Diels-Institut für Organische Chemie Christian-Albrechts-Universität 24098 Kiel Germany
| | - Rainer Herges
- Otto-Diels-Institut für Organische Chemie Christian-Albrechts-Universität 24098 Kiel Germany
| | - Richard Berndt
- Institut für Experimentelle und Angewandte Physik Christian-Albrechts-Universität 24098 Kiel Germany
| |
Collapse
|
15
|
Silly F. Elucidating the intramolecular contrast in the STM images of 2,4,6-tris(4',4'',4'''-trimethylphenyl)-1,3,5-triazine molecules recorded at room-temperature and at the liquid-solid interface. RSC Adv 2020; 10:5742-5746. [PMID: 35497445 PMCID: PMC9049222 DOI: 10.1039/c9ra09681g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 01/23/2020] [Indexed: 11/21/2022] Open
Abstract
Star-shaped 2,4,6-tris(4',4'',4'''-trimethylphenyl)-1,3,5-triazine molecules self-assemble at the solid-liquid interface into a compact hexagonal nanoarchitecture on graphite. High resolution scanning tunneling microscopy (STM) images of the molecules reveal intramolecular features. Comparison of the experimental data with calculated molecular charge density contours shows that the molecular features in the STM images correspond to molecular LUMO+2.
Collapse
Affiliation(s)
- Fabien Silly
- TITANS, SPEC, CEA, CNRS, Université Paris-Saclay CEA Saclay F-91191 Gif sur Yvette France +33169088446 +33169088019
| |
Collapse
|
16
|
Pinfold H, Greenland C, Pattison G, Costantini G. Fluorinated carboxylic acids as powerful building blocks for the formation of bimolecular monolayers. Chem Commun (Camb) 2019; 56:125-128. [PMID: 31793952 DOI: 10.1039/c9cc08361h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We compare the ability of a prototypical dicarboxylic acid and its fluorinated analogue to act as molecular building blocks for the formation of self-assembled monolayers. Whilst fluorination is found to prevent homomolecular self-assembly, it greatly increases the ability of the carboxylic acid to act as a hydrogen bond donor for the formation of bimolecular networks.
Collapse
Affiliation(s)
- Harry Pinfold
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK.
| | - Christopher Greenland
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK.
| | - Graham Pattison
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK.
| | - Giovanni Costantini
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK.
| |
Collapse
|
17
|
Xu H, Wang Z, Wei S, Liu X, Wang L. Observations of Gradual Chiral Self-Recognition of Adsorbed Aromatic Compound. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:870-874. [PMID: 30589554 DOI: 10.1021/acs.langmuir.8b03066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The self-assembly of two-dimensional chiral 1 H,5 H-benzo(1,2- d:4,5- d')bistriazole (H2bbta) on a Ag(110) surface was investigated by ultra-high-vacuum scanning tunneling microscopy. The gradual formation of ordered structures by H2bbta molecules with the same chirality recognizing each other was observed as the annealing temperature was increased from 300 to 333 K. When the sample was annealed at 355 K, the homochiral structures were converted to coexisting structures containing λ-H2bbta and δ-H2bbta in a ratio of 6:1. Density functional theory (DFT) calculations revealed that thermally driven and intermolecular interactions induced chiral self-recognition to form enantiomorphous H2bbta structures in which N-H···N hydrogen bonds and C-H···N hydrogen bonds are the main attractive forces.
Collapse
Affiliation(s)
- Hongxiang Xu
- Department of Physics , Nanchang University , Nanchang 330031 , China
| | - Zhongping Wang
- Department of Physics , Nanchang University , Nanchang 330031 , China
| | - Sheng Wei
- Department of Physics , Nanchang University , Nanchang 330031 , China
| | - Xiaoqing Liu
- Department of Physics , Nanchang University , Nanchang 330031 , China
| | - Li Wang
- Department of Physics , Nanchang University , Nanchang 330031 , China
| |
Collapse
|
18
|
Dutta S, Gellman AJ. Enantiomer surface chemistry: conglomerate versus racemate formation on surfaces. Chem Soc Rev 2018; 46:7787-7839. [PMID: 29165467 DOI: 10.1039/c7cs00555e] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Research on surface chirality is motivated by the need to develop functional chiral surfaces for enantiospecific applications. While molecular chirality in 3D has been the subject of study for almost two centuries, many aspects of 2D chiral surface chemistry have yet to be addressed. In 3D, racemic mixtures of chiral molecules tend to aggregate into racemate (molecularly heterochiral) crystals much more frequently than conglomerate (molecularly homochiral) crystals. Whether chiral adsorbates on surfaces preferentially aggregate into heterochiral rather than homochiral domains (2D crystals or clusters) is not known. In this review, we have made the first attempt to answer the following question based on available data: in 2D racemic mixtures adsorbed on surfaces, is there a clear preference for homochiral or heterochiral aggregation? The current hypothesis is that homochiral packing is preferred on surfaces; in contrast to 3D where heterochiral packing is more common. In this review, we present a simple hierarchical scheme to categorize the chirality of adsorbate-surface systems. We then review the body of work using scanning tunneling microscopy predominantly to study aggregation of racemic adsorbates. Our analysis of the existing literature suggests that there is no clear evidence of any preference for either homochiral or heterochiral aggregation at the molecular level by chiral and prochiral adsorbates on surfaces.
Collapse
Affiliation(s)
- Soham Dutta
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| | | |
Collapse
|
19
|
Miao K, Hu Y, Xu L, Dong M, Wu J, Miao X, Deng W. Chiral polymorphism in the self-assemblies of achiral molecules induced by multiple hydrogen bonds. Phys Chem Chem Phys 2018; 20:11160-11173. [PMID: 29629458 DOI: 10.1039/c8cp00591e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Driven by multiple hydrogen bonds, chiral and achiral polymorphs are successfully fabricated at a liquid–solid interface.
Collapse
Affiliation(s)
- Kai Miao
- College of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510640
- P. R. China
| | - Yi Hu
- College of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510640
- P. R. China
| | - Li Xu
- College of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510640
- P. R. China
| | - Meiqiu Dong
- College of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510640
- P. R. China
| | - Juntian Wu
- College of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510640
- P. R. China
| | - Xinrui Miao
- College of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510640
- P. R. China
| | - Wenli Deng
- College of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510640
- P. R. China
| |
Collapse
|
20
|
Nuermaimaiti A, Ning Y, Cramer JL, Svane KL, Hammer B, Gothelf KV, Linderoth TR. Influence of CH···N Interaction in the Self-Assembly of an Oligo(isoquinolyne-ethynylyne) Molecule with Distinct Conformational States. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:10782-10791. [PMID: 28968110 DOI: 10.1021/acs.langmuir.7b02207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Molecular conformational flexibility can play an important role in supramolecular self-assembly on surfaces, affecting not least chiral molecular assemblies. To explicitly and systematically investigate the role of molecular conformational flexibility in surface self-assembly, we synthesized a three-bit conformational switch where each of three switching units on the molecules can assume one of two distinct binary positions on the surface. The molecules are designed to promote C-H···N type hydrogen bonds between the switching units. While supramolecular self-assembly based on strong hydrogen-bonding interactions has been widely explored, less is known about the role of such weaker directional interactions for surface self-assembly. The synthesized molecules consist of three nitrogen-containing isoquinoline (IQ) bits connected by ethynylene spokes and terminated by tert-butyl (tBu) groups. Using high-resolution scanning tunnelling microscopy, we investigate the self-assembly of the IQ-tBu molecules on a Au(111) surface under ultrahigh-vacuum conditions. The molecules form extended domains of brick-wall structure where the molecular backbones are packed regularly but without selection of specific molecular conformations. However, statistical analysis of the extended network demonstrates alignment/correlation for the orientations of the switching units indicating specific interactions. The primary interaction motifs in the structure are quantified from DFT calculations, showing that the brick-wall structure is indeed stabilized by two types of weak C-H···N bonds, involving either aromatic hydrogens on the IQ groups or nonaromatic hydrogens on the tBu groups. Analysis of the C-H···N interactions in the brick-wall structure explains the observed distribution and alignment of molecular conformations as well as the overall organization of the molecular surface structures.
Collapse
Affiliation(s)
- Ajiguli Nuermaimaiti
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University , 8000 Aarhus C, Denmark
| | - Yanxiao Ning
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University , 8000 Aarhus C, Denmark
| | - Jacob L Cramer
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University , 8000 Aarhus C, Denmark
- Department of Chemistry, Aarhus University , 8000 Aarhus C, Denmark
| | - Katrine L Svane
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University , 8000 Aarhus C, Denmark
- Department of Physics and Astronomy, Aarhus University , 8000 Aarhus C, Denmark
| | - Bjørk Hammer
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University , 8000 Aarhus C, Denmark
- Department of Physics and Astronomy, Aarhus University , 8000 Aarhus C, Denmark
| | - Kurt V Gothelf
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University , 8000 Aarhus C, Denmark
- Department of Chemistry, Aarhus University , 8000 Aarhus C, Denmark
| | - Trolle R Linderoth
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University , 8000 Aarhus C, Denmark
- Department of Physics and Astronomy, Aarhus University , 8000 Aarhus C, Denmark
| |
Collapse
|
21
|
Pinning-down molecules in their self-assemblies with multiple weak hydrogen bonds of C H⋯F and C H⋯N. CHINESE CHEM LETT 2017. [DOI: 10.1016/j.cclet.2016.11.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
22
|
Hu Y, Miao K, Xu L, Zha B, Miao X, Deng W. Effects of alkyl chain number and position on 2D self-assemblies. RSC Adv 2017. [DOI: 10.1039/c7ra05811j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Alkyl chain number and position effects are explored via the fabrication and regulation of 2D self-assemblies at liquid/HOPG interfaces.
Collapse
Affiliation(s)
- Yi Hu
- College of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510640
- China
| | - Kai Miao
- College of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510640
- China
| | - Li Xu
- College of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510640
- China
| | - Bao Zha
- College of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510640
- China
| | - Xinrui Miao
- College of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510640
- China
| | - Wenli Deng
- College of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510640
- China
| |
Collapse
|
23
|
Tobe Y, Tahara K, De Feyter S. Adaptive Building Blocks Consisting of Rigid Triangular Core and Flexible Alkoxy Chains for Self-Assembly at Liquid/Solid Interfaces. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2016. [DOI: 10.1246/bcsj.20160214] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
24
|
Zhang H, Gong Z, Sun K, Duan R, Ji P, Li L, Li C, Müllen K, Chi L. Two-Dimensional Chirality Transfer via On-Surface Reaction. J Am Chem Soc 2016; 138:11743-8. [PMID: 27548402 DOI: 10.1021/jacs.6b05597] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Two-dimensional chirality transfer from self-assembled (SA) molecules to covalently bonded products was achieved via on-surface synthesis on Au(111) substrates by choosing 1,4-dibromo-2,5-didodecylbenzene (12DB) and 1,4-dibromo-2,5-ditridecylbenzene (13DB) as designed precursors. Scanning tunneling microscopy investigations reveal that their aryl-aryl coupling reaction occurs by connecting the nearest neighboring precursors and thus preserving the SA lamellar structure. The SA structures of 12(13)DB precursors determine the final structures of produced oligo-p-phenylenes (OPP) on the surface. Pure homochiral domains (12DB) give rise to homochiral domains of OPP, whereas lamellae containing mixed chiral geometry of the precursor (13DB) results in the formation of racemic lamellae of OPP.
Collapse
Affiliation(s)
- Haiming Zhang
- Institute of Functional Nano&Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University , 199 Ren'ai Road, Suzhou, Jiangsu 215123, People's Republic of China
| | - Zhongmiao Gong
- Institute of Functional Nano&Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University , 199 Ren'ai Road, Suzhou, Jiangsu 215123, People's Republic of China
| | - Kewei Sun
- Institute of Functional Nano&Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University , 199 Ren'ai Road, Suzhou, Jiangsu 215123, People's Republic of China
| | - Ruomeng Duan
- Max Planck Institute for Polymer Research , Ackermannweg 10, D-55128 Mainz, Germany
| | - Penghui Ji
- Institute of Functional Nano&Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University , 199 Ren'ai Road, Suzhou, Jiangsu 215123, People's Republic of China
| | - Ling Li
- Institute of Functional Nano&Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University , 199 Ren'ai Road, Suzhou, Jiangsu 215123, People's Republic of China
| | - Chen Li
- Max Planck Institute for Polymer Research , Ackermannweg 10, D-55128 Mainz, Germany
| | - Klaus Müllen
- Max Planck Institute for Polymer Research , Ackermannweg 10, D-55128 Mainz, Germany.,Institute of Physical Chemistry, Johannes Gutenberg University Mainz , Duesbergweg 10-14, D-55128 Mainz, Germany
| | - Lifeng Chi
- Institute of Functional Nano&Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University , 199 Ren'ai Road, Suzhou, Jiangsu 215123, People's Republic of China
| |
Collapse
|
25
|
Solvent-controlled assembly of crystal structures: From centrosymmetric structure to noncentrosymmetric structure. J Mol Struct 2016. [DOI: 10.1016/j.molstruc.2015.10.094] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
26
|
El Garah M, Dianat A, Cadeddu A, Gutierrez R, Cecchini M, Cook TR, Ciesielski A, Stang PJ, Cuniberti G, Samorì P. Atomically Precise Prediction of 2D Self-Assembly of Weakly Bonded Nanostructures: STM Insight into Concentration-Dependent Architectures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:343-350. [PMID: 26596683 DOI: 10.1002/smll.201502957] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Indexed: 06/05/2023]
Abstract
A joint experimental and computational study is reported on the concentration-dependant self-assembly of a flat C3 -symmetric molecule on a graphite surface. As a model system a tripodal molecule, 1,3,5-tris(pyridin-3-ylethynyl)benzene, has been chosen, which can adopt either C3h or Cs symmetry when planar, as a result of pyridyl rotation along the alkynyl spacers. Density functional theory (DFT) simulations of 2D nanopatterns with different surface coverage reveal that the molecule can generate different types of self-assembled motifs. The stability of fourteen 2D patterns and the influence of concentration are analyzed. It is found that ordered, densely packed monolayers and 2D porous networks are obtained at high and low concentrations, respectively. A concentration-dependent scanning tunneling microscopy (STM) investigation of this molecular self-assembly system at a solution/graphite interface reveals four supramolecular motifs, which are in perfect agreement with those predicted by simulations. Therefore, this DFT method represents a key step forward toward the atomically precise prediction of molecular self-assembly on surfaces and at interfaces.
Collapse
Affiliation(s)
- Mohamed El Garah
- ISIS & icFRC, Université de Strasbourg & CNRS, 8 allée Gaspard Monge, 67000, Strasbourg, France
| | - Arezoo Dianat
- Faculty of Mechanical Science and Engineering, Institute for Materials Sciences and Max Bergmann Center of Biomaterials, 01062, Dresden, Germany
- Institute for Materials Science, Dresden Center for Computational Materials Science (DCCMS) and Max Bergmann Center of Biomaterials, Dresden University of Technology, 01062, Dresden, Germany
| | - Andrea Cadeddu
- ISIS & icFRC, Université de Strasbourg & CNRS, 8 allée Gaspard Monge, 67000, Strasbourg, France
| | - Rafael Gutierrez
- Faculty of Mechanical Science and Engineering, Institute for Materials Sciences and Max Bergmann Center of Biomaterials, 01062, Dresden, Germany
- Institute for Materials Science, Dresden Center for Computational Materials Science (DCCMS) and Max Bergmann Center of Biomaterials, Dresden University of Technology, 01062, Dresden, Germany
| | - Marco Cecchini
- ISIS & icFRC, Université de Strasbourg & CNRS, 8 allée Gaspard Monge, 67000, Strasbourg, France
| | - Timothy R Cook
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, UT, 84112, USA
| | - Artur Ciesielski
- ISIS & icFRC, Université de Strasbourg & CNRS, 8 allée Gaspard Monge, 67000, Strasbourg, France
| | - Peter J Stang
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, UT, 84112, USA
| | - Gianaurelio Cuniberti
- Faculty of Mechanical Science and Engineering, Institute for Materials Sciences and Max Bergmann Center of Biomaterials, 01062, Dresden, Germany
- Institute for Materials Science, Dresden Center for Computational Materials Science (DCCMS) and Max Bergmann Center of Biomaterials, Dresden University of Technology, 01062, Dresden, Germany
| | - Paolo Samorì
- ISIS & icFRC, Université de Strasbourg & CNRS, 8 allée Gaspard Monge, 67000, Strasbourg, France
| |
Collapse
|
27
|
Li X, Yu Z, Li X, Guo X. Solvent‐Mediated Transformation from Achiral to Chiral Nickel(II) Metal–Organic Frameworks and Reassembly in Solution. Chemistry 2015; 21:16593-600. [DOI: 10.1002/chem.201501029] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Indexed: 11/12/2022]
Affiliation(s)
- Xiaoju Li
- Fujian Key Laboratory of Polymer Materials, College of Materials Science and Engineering, Fujian Normal University, Fuzhou, Fujian, 350007 (P.R. China)
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 (P.R. China)
| | - Zhenjiang Yu
- Fujian Key Laboratory of Polymer Materials, College of Materials Science and Engineering, Fujian Normal University, Fuzhou, Fujian, 350007 (P.R. China)
| | - Xinxiong Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 (P.R. China)
| | - Xiaofang Guo
- Fujian Key Laboratory of Polymer Materials, College of Materials Science and Engineering, Fujian Normal University, Fuzhou, Fujian, 350007 (P.R. China)
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 (P.R. China)
| |
Collapse
|
28
|
Silly F, Kervella Y, Jousselme B. Engineering porous and compact two-dimensional nanoarchitectures on surfaces taking advantage of bisterpyridine-derivatives self-assembly. RSC Adv 2015. [DOI: 10.1039/c5ra22117j] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The self-assembly of bis-terpyridine molecules is investigated using STM. Images reveal that close-packed as well as porous two-dimensional nanoarchitectures can be engineered by changing the molecular backbone separating the terpyridine groups.
Collapse
Affiliation(s)
- Fabien Silly
- TITANS, SPEC
- CEA
- CNRS
- Université Paris-Saclay
- F-91191 Gif sur Yvette
| | - Yann Kervella
- CEA Grenoble INAC/SPrAM UMR 5819 CEA – CNRS – Univ. J. Fourier-Grenoble 1
- LEMOH
- 38054 Grenoble Cedex 9
- France
| | - Bruno Jousselme
- CEA Grenoble INAC/SPrAM UMR 5819 CEA – CNRS – Univ. J. Fourier-Grenoble 1
- LEMOH
- 38054 Grenoble Cedex 9
- France
- LICSEN, NIMBE
| |
Collapse
|
29
|
Liu P, Miao X, Li Z, Zha B, Deng W. Two-dimensional self-assembly of single-, poly- and co-crystals at the liquid/solid interface. CrystEngComm 2014. [DOI: 10.1039/c4ce01183j] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The observation of two polymorphs indicates that C2 cannot form single crystals because of an increase in molecular flexibility.
Collapse
Affiliation(s)
- Pei Liu
- College of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510640, PR China
| | - Xinrui Miao
- College of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510640, PR China
| | - Zhuomin Li
- College of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510640, PR China
| | - Bao Zha
- College of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510640, PR China
| | - Wenli Deng
- College of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510640, PR China
| |
Collapse
|
30
|
Ciesielski A, Szabelski PJ, Rżysko W, Cadeddu A, Cook TR, Stang PJ, Samorì P. Concentration-Dependent Supramolecular Engineering of Hydrogen-Bonded Nanostructures at Surfaces: Predicting Self-Assembly in 2D. J Am Chem Soc 2013; 135:6942-50. [DOI: 10.1021/ja4002025] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Artur Ciesielski
- Nanochemistry Laboratory, ISIS & icFRC, Université de Strasbourg & CNRS, 8 allée Gaspard Monge, 67000 Strasbourg, France
| | | | | | - Andrea Cadeddu
- Nanochemistry Laboratory, ISIS & icFRC, Université de Strasbourg & CNRS, 8 allée Gaspard Monge, 67000 Strasbourg, France
| | - Timothy R. Cook
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake
City, Utah 84112, United States
| | - Peter J. Stang
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake
City, Utah 84112, United States
| | - Paolo Samorì
- Nanochemistry Laboratory, ISIS & icFRC, Université de Strasbourg & CNRS, 8 allée Gaspard Monge, 67000 Strasbourg, France
| |
Collapse
|
31
|
Xu H, Ghijsens E, George SJ, Wolffs M, Tomović Ž, Schenning APHJ, De Feyter S. Chiral Induction and Amplification in Supramolecular Systems at the Liquid-Solid Interface. Chemphyschem 2013; 14:1583-90. [DOI: 10.1002/cphc.201300212] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Indexed: 11/12/2022]
|
32
|
González-Campo A, Amabilino DB. Biomolecules at interfaces: chiral, naturally. Top Curr Chem (Cham) 2013; 333:109-56. [PMID: 23460199 DOI: 10.1007/128_2012_405] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
Interfaces are a most important environment in natural and synthetic chemistries for a wide variety of processes, such as catalysis, recognition, separation, and so on. Naturally occurring systems have evolved to one handedness and the study of interfaces where biomolecules are located is a potentially revealing pursuit with regard to understanding the reasons and importance of stereochemistry in these environments. Equally, the spontaneous resolution of achiral and chiral compounds at interfaces could lead to explanations regarding the emergence of single handedness in proteins and sugars. Also, the attachment of biomolecules to surfaces leads to systems capable of stereoselective processes which may be useful for the applications mentioned above. The review covers systems ranging from small biomolecules studied under ultrapure conditions in vacuum to protein adsorption to surfaces in solution, and the techniques that can be used to study them.
Collapse
Affiliation(s)
- Arántzazu González-Campo
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus Universitari de Bellaterra, 08193, Cerdanyola del Vallès, Catalonia, Spain
| | | |
Collapse
|
33
|
Anthony SP, Varughese S. Diaminotriazine substituted diphenyl ether: reversible structural transformation and solvent dependent solid state fluorescence. CrystEngComm 2013. [DOI: 10.1039/c3ce00014a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
34
|
XU WEI, ZHU HONGLIN, LIN JIANL, ZHENG YUEQING. A cyclic water octamer in a binuclear copper(II) complex: synthesis, crystal structure, and properties. J COORD CHEM 2012. [DOI: 10.1080/00958972.2012.744970] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- WEI XU
- a Crystal Engineering Division, Center of Applied Solid State Chemistry Research, Ningbo University , Ningbo , P.R. China
| | - HONG-LIN ZHU
- a Crystal Engineering Division, Center of Applied Solid State Chemistry Research, Ningbo University , Ningbo , P.R. China
| | - JIAN-Li LIN
- a Crystal Engineering Division, Center of Applied Solid State Chemistry Research, Ningbo University , Ningbo , P.R. China
| | - YUE-QING ZHENG
- a Crystal Engineering Division, Center of Applied Solid State Chemistry Research, Ningbo University , Ningbo , P.R. China
| |
Collapse
|
35
|
Jester S, Sigmund E, Röck LM, Höger S. Hierarchical Self‐Assembly of Polycyclic Heteroaromatic Stars into Snowflake Patterns. Angew Chem Int Ed Engl 2012; 51:8555-9. [DOI: 10.1002/anie.201204006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 06/22/2012] [Indexed: 11/06/2022]
Affiliation(s)
- Stefan‐S. Jester
- Kekulé‐Institut für Organische Chemie und Biochemie, Rheinische Friedrich‐Wilhelms‐Universität Bonn, Gerhard‐Domagk‐Strasse 1, 53121 Bonn (Germany)
| | - Eva Sigmund
- Kekulé‐Institut für Organische Chemie und Biochemie, Rheinische Friedrich‐Wilhelms‐Universität Bonn, Gerhard‐Domagk‐Strasse 1, 53121 Bonn (Germany)
| | - Lisa M. Röck
- Kekulé‐Institut für Organische Chemie und Biochemie, Rheinische Friedrich‐Wilhelms‐Universität Bonn, Gerhard‐Domagk‐Strasse 1, 53121 Bonn (Germany)
| | - Sigurd Höger
- Kekulé‐Institut für Organische Chemie und Biochemie, Rheinische Friedrich‐Wilhelms‐Universität Bonn, Gerhard‐Domagk‐Strasse 1, 53121 Bonn (Germany)
| |
Collapse
|
36
|
Jester S, Sigmund E, Röck LM, Höger S. Hierarchical Self‐Assembly of Polycyclic Heteroaromatic Stars into Snowflake Patterns. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201204006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Stefan‐S. Jester
- Kekulé‐Institut für Organische Chemie und Biochemie, Rheinische Friedrich‐Wilhelms‐Universität Bonn, Gerhard‐Domagk‐Strasse 1, 53121 Bonn (Germany)
| | - Eva Sigmund
- Kekulé‐Institut für Organische Chemie und Biochemie, Rheinische Friedrich‐Wilhelms‐Universität Bonn, Gerhard‐Domagk‐Strasse 1, 53121 Bonn (Germany)
| | - Lisa M. Röck
- Kekulé‐Institut für Organische Chemie und Biochemie, Rheinische Friedrich‐Wilhelms‐Universität Bonn, Gerhard‐Domagk‐Strasse 1, 53121 Bonn (Germany)
| | - Sigurd Höger
- Kekulé‐Institut für Organische Chemie und Biochemie, Rheinische Friedrich‐Wilhelms‐Universität Bonn, Gerhard‐Domagk‐Strasse 1, 53121 Bonn (Germany)
| |
Collapse
|
37
|
Grillo F, Mugnaini V, Oliveros M, Francis SM, Choi DJ, Rastei MV, Limot L, Cepek C, Pedio M, Bromley ST, Richardson NV, Bucher JP, Veciana J. Chiral Conformation at a Molecular Level of a Propeller-Like Open-Shell Molecule on Au(111). J Phys Chem Lett 2012; 3:1559-1564. [PMID: 26285638 DOI: 10.1021/jz3003926] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A key stage in engineering molecular functional organizations is represented by controlling the supramolecular assembly of single molecular building blocks, tectons, into ordered networks. Here, we show how an open-shell, propeller-like molecule has been deposited under UHV conditions on Au(111) and its supramolecular organization characterized by scanning tunneling microscopy (STM). Racemic islands were observed at room temperature, and their chirality was imaged at the molecular level at low temperature. Modeling further suggests that the observed chirally alternating ordering dominated by intermolecular interactions is energetically favored. Electron paramagnetic resonance and ultraviolet photoemission spectroscopy evidences suggest that the supramolecular networks may preserve the open-shell character of the tecton. These results represent a fundamental step forward toward the engineering of purely organic spintronic devices.
Collapse
Affiliation(s)
- Federico Grillo
- †EaStCHEM and School of Chemistry, University of St. Andrews, St. Andrews KY16 9ST, United Kingdom
| | - Veronica Mugnaini
- ‡Institut de Ciència de Materials de Barcelona-CSIC, Campus UAB, E-08193 Bellaterra, Spain
- ⊥CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) Campus Río Ebro - Edificio I+D Bloque 5, 1a planta c/ Poeta Mariano Esquillor s/n, E-50018 Zaragoza, Spain
| | - Malena Oliveros
- ‡Institut de Ciència de Materials de Barcelona-CSIC, Campus UAB, E-08193 Bellaterra, Spain
- ⊥CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) Campus Río Ebro - Edificio I+D Bloque 5, 1a planta c/ Poeta Mariano Esquillor s/n, E-50018 Zaragoza, Spain
| | - Steve M Francis
- †EaStCHEM and School of Chemistry, University of St. Andrews, St. Andrews KY16 9ST, United Kingdom
| | - Deung-Jang Choi
- #Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, Université de Strasbourg, F-67034 Strasbourg, France
| | - Mircea V Rastei
- #Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, Université de Strasbourg, F-67034 Strasbourg, France
| | - Laurent Limot
- #Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, Université de Strasbourg, F-67034 Strasbourg, France
| | - Cinzia Cepek
- ∥Istituto Officina dei Materiali del Consiglio Nazionale delle Ricerche, Laboratorio TASC, building MM in AREA Science Park - Basovizza, I-34149 Trieste, Italy
| | - Maddalena Pedio
- ∥Istituto Officina dei Materiali del Consiglio Nazionale delle Ricerche, Laboratorio TASC, building MM in AREA Science Park - Basovizza, I-34149 Trieste, Italy
| | - Stefan T Bromley
- ∇ICREA (Institució Catalana de Recerca y Estudis Avançats) and Department of Physical Chemistry and Institute of Theoretical and Computational Chemistry (IQTCUB), University of Barcelona, E-08028 Barcelona, Spain
| | - Neville V Richardson
- †EaStCHEM and School of Chemistry, University of St. Andrews, St. Andrews KY16 9ST, United Kingdom
| | - Jean-Pierre Bucher
- #Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, Université de Strasbourg, F-67034 Strasbourg, France
| | - Jaume Veciana
- ‡Institut de Ciència de Materials de Barcelona-CSIC, Campus UAB, E-08193 Bellaterra, Spain
- ⊥CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) Campus Río Ebro - Edificio I+D Bloque 5, 1a planta c/ Poeta Mariano Esquillor s/n, E-50018 Zaragoza, Spain
| |
Collapse
|
38
|
Gao MJ, Yang P, Cai B, Dai JW, Wu JZ, Yu Y. Spontaneous resolution of lanthanide coordination polymers with 2-hydroxypyrimidine-4,6-dicarboxylic acid. CrystEngComm 2012. [DOI: 10.1039/c1ce06090b] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
39
|
Chen F, Hu Z, Ji Y, Zhao A, Wang B, Yang J, Hou JG. Interactions in different domains of truxenone supramolecular assembly on Au(111). Phys Chem Chem Phys 2012; 14:3980-6. [DOI: 10.1039/c2cp23190e] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
40
|
Gong Y, Wu T, Lin J, Wang B. Metal–organic frameworks built from achiral cyclohex-1-ene-1,2-dicarboxylate: syntheses, structures and photoluminescence properties. CrystEngComm 2012. [DOI: 10.1039/c2ce06415d] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
41
|
Gong Y, Li J, Qin J, Lin J. A homochiral network constructed by supramolecular packing of 2D chiral bilayer: synthesis, structure and property of metal(ii) complex based on achiral 3,3′,4,4′-oxydiphthalate and coligand. CrystEngComm 2012. [DOI: 10.1039/c2ce25702e] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
42
|
Liu J, Chen T, Deng X, Wang D, Pei J, Wan LJ. Chiral Hierarchical Molecular Nanostructures on Two-Dimensional Surface by Controllable Trinary Self-Assembly. J Am Chem Soc 2011; 133:21010-5. [DOI: 10.1021/ja209469d] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jia Liu
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China,
and Beijing National Laboratory for Molecular Sciences, Beijing 100190,
China
| | - Ting Chen
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China,
and Beijing National Laboratory for Molecular Sciences, Beijing 100190,
China
| | - Xin Deng
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China,
and Beijing National Laboratory for Molecular Sciences, Beijing 100190,
China
| | - Dong Wang
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China,
and Beijing National Laboratory for Molecular Sciences, Beijing 100190,
China
| | - Jian Pei
- College of Chemistry
and Molecular
Engineering, Peking University, and Beijing
National Laboratory for Molecular Sciences, Beijing 100190, China
| | - Li-Jun Wan
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China,
and Beijing National Laboratory for Molecular Sciences, Beijing 100190,
China
| |
Collapse
|
43
|
Iski EV, Tierney HL, Jewell AD, Sykes ECH. Spontaneous Transmission of Chirality through Multiple Length Scales. Chemistry 2011; 17:7205-12. [DOI: 10.1002/chem.201100268] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Indexed: 11/11/2022]
Affiliation(s)
- Erin V. Iski
- Department of Chemistry, Tufts University, 62 Talbot Ave., Medford, MA 02155 (USA), Fax: (+1) 617‐627‐3773
| | - Heather L. Tierney
- Department of Chemistry, Tufts University, 62 Talbot Ave., Medford, MA 02155 (USA), Fax: (+1) 617‐627‐3773
| | - April D. Jewell
- Department of Chemistry, Tufts University, 62 Talbot Ave., Medford, MA 02155 (USA), Fax: (+1) 617‐627‐3773
| | - E. Charles H. Sykes
- Department of Chemistry, Tufts University, 62 Talbot Ave., Medford, MA 02155 (USA), Fax: (+1) 617‐627‐3773
| |
Collapse
|
44
|
Lei S, Tahara K, Müllen K, Szabelski P, Tobe Y, De Feyter S. Mixing behavior of alkoxylated dehydrobenzo [12]annulenes at the solid-liquid interface: scanning tunneling microscopy and Monte Carlo simulations. ACS NANO 2011; 5:4145-4157. [PMID: 21500863 DOI: 10.1021/nn200874k] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
We present a systematic scanning tunneling microscopic study on the mixing behavior of molecules (DBAs) with different alkyl substituents at the solid-liquid interface to reveal the phase behavior of complex systems. The phase behavior of binary mixtures of alkylated DBAs at the solid-liquid interface can be predicted by the 2D isomorphism coefficient. In addition, we also investigated the influence of coadsorption of template molecules on the phase behavior of DBA mixtures. Coadsorption of these molecules significantly promotes mixing of DBAs, possibly by affecting the recognition between alkyl chains. Monte Carlo simulations prove that the 2D isomorphism coefficient can predict the phase behavior at the interface. These results are helpful for the understanding of phase behavior of complex assembling systems and also for the design of programmable porous networks and hierarchical architectures at the solid-liquid interface.
Collapse
Affiliation(s)
- Shengbin Lei
- Division of Molecular and Nanomaterials, Department of Chemistry and Institute of Nanoscale Physics and Chemistry, Katholieke Universiteit Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium.
| | | | | | | | | | | |
Collapse
|
45
|
Li B, Li Z, Yang J, Hou JG. STM studies of single molecules: molecular orbital aspects. Chem Commun (Camb) 2011; 47:2747-62. [DOI: 10.1039/c0cc03021j] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
46
|
Wang L, Fu Y, Zhou J, Chen Q. Stereoselective Interaction between DNA and Stable Chiral Surfaces Modified with 1,2-Diphenylethylenediamine Enantiomers. ELECTROANAL 2010. [DOI: 10.1002/elan.201000476] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
47
|
Clair S, Abel M, Porte L. Mesoscopic Arrays from Supramolecular Self-Assembly. Angew Chem Int Ed Engl 2010; 49:8237-9. [PMID: 20859982 DOI: 10.1002/anie.201003335] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Sylvain Clair
- Aix-Marseille Université, IM2NP, CNRS UMR 6242, Campus de Saint-Jérôme, Case 142, 13397 Marseille Cedex 20, France.
| | | | | |
Collapse
|
48
|
Clair S, Abel M, Porte L. Mesoscopic Arrays from Supramolecular Self-Assembly. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.201003335] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
49
|
Pivetta M, Blüm MC, Patthey F, Schneider WD. Coverage-Dependent Self-Assembly of Rubrene Molecules on Noble Metal Surfaces Observed by Scanning Tunneling Microscopy. Chemphyschem 2010; 11:1558-69. [DOI: 10.1002/cphc.200900846] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
50
|
Lei S, Tahara K, Adisoejoso J, Balandina T, Tobe Y, De Feyter S. Towards two-dimensional nanoporous networks: crystal engineering at the solid–liquid interface. CrystEngComm 2010. [DOI: 10.1039/c0ce00282h] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|