1
|
Deng H, Chen Y, Xu L, Mo X, Ju J, Yu C, Zhu X. A Biomimetic Emitter Inspired from Green Fluorescent Protein. J Phys Chem B 2022; 126:8771-8776. [PMID: 36278933 DOI: 10.1021/acs.jpcb.2c07131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The unique tripeptide structure of green fluorescent protein (GFP), a Ser-Tyr-Gly motif, generates the mature chromophore in situ to define the emission profiles of GFP. Here, we describe the rational design and discovery of a biomimetic fluorescent emitter, MBP, by mimicking the key structure of the Ser-Tyr-Gly motif. Through systematically tailoring the tripeptide, a family of four chromophores were engineered, while only MBP exhibited bright fluorescence in different fluid solvents with highly enhanced quantum yields. Distinct to previous hydrogen-bonding-induced fluorescence quenching of GFP chromophore analogues, the emission of MBP was only slightly decreased in protic solvents. Heteronuclear multiple bond correlation techniques demonstrated the fundamental mechanism for enhanced fluorescence emission owing to the synergy of the formation of the intramolecular hydrogen-bonding-ring structure and the self-restricted effect, which was further illustrated via theoretical calculations. This work puts forward an extraordinary approach toward highly emissive biomimicking fluorophores, which gives new insights into the emission mechanisms and photophysics of GFP-like chromophores.
Collapse
Affiliation(s)
- Hongping Deng
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai201203, China
| | - Yan Chen
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai200240, China
| | - Li Xu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai201203, China
| | - Xuan Mo
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai201203, China
| | - Jingxuan Ju
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai201203, China
| | - Chunyang Yu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai200240, China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai200240, China
| |
Collapse
|
2
|
Kumar P, Selvaraj B, Serpersu EH, Cuneo MJ. Encoding of Promiscuity in an Aminoglycoside Acetyltransferase. J Med Chem 2018; 61:10218-10227. [PMID: 30347146 DOI: 10.1021/acs.jmedchem.8b01393] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Aminoglycoside antibiotics are a large family of antibiotics that can be divided into two distinct classes on the basis of the substitution pattern of the central deoxystreptamine ring. Although aminoglycosides are chemically, structurally, and topologically diverse, some aminoglycoside-modifying enzymes (AGMEs) are able to inactivate as many as 15 aminoglycosides from the two main classes, the kanamycin- and neomycin-based antibiotics. Here, we present the crystal structure of a promiscuous AGME, aminoglycoside- N3-acetyltransferase-IIIb (AAC-IIIb), in the apo form, in binary drug (sisomicin, neomycin, and paromomycin) and coenzyme A (CoASH) complexes, and in the ternary neomycin-CoASH complex. These data provide a structural framework for interpretation of the thermodynamics of enzyme-ligand interactions and the role of solvent in the recognition of ligands. In combination with the recent structure of an AGME that does not have broad substrate specificity, these structures allow for the direct determination of how antibiotic promiscuity is encoded in some AGMEs.
Collapse
Affiliation(s)
- Prashasti Kumar
- Graduate School of Genome Science and Technology , The University of Tennessee and Oak Ridge National Laboratory , 1414 West Cumberland Avenue , Knoxville , Tennessee 37996 , United States
| | - Brinda Selvaraj
- Neutron Sciences Directorate , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831 , United States
| | - Engin H Serpersu
- Graduate School of Genome Science and Technology , The University of Tennessee and Oak Ridge National Laboratory , 1414 West Cumberland Avenue , Knoxville , Tennessee 37996 , United States.,National Science Foundation , 2415 Eisenhower Avenue , Alexandria , Virginia 22314 , United States.,Department of Biochemistry and Cellular and Molecular Biology , The University of Tennessee , 1414 West Cumberland Avenue , Knoxville , Tennessee 37996 , United States
| | - Matthew J Cuneo
- Department of Structural Biology , St. Jude Children's Research Hospital , 262 Danny Thomas Place , Memphis , Tennessee 38105 , United States
| |
Collapse
|
3
|
Zachleder V, Vítová M, Hlavová M, Moudříková Š, Mojzeš P, Heumann H, Becher JR, Bišová K. Stable isotope compounds - production, detection, and application. Biotechnol Adv 2018; 36:784-797. [PMID: 29355599 DOI: 10.1016/j.biotechadv.2018.01.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 01/12/2018] [Accepted: 01/15/2018] [Indexed: 12/14/2022]
Abstract
Stable isotopes are used in wide fields of application from natural tracers in biology, geology and archeology through studies of metabolic fluxes to their application as tracers in quantitative proteomics and structural biology. We review the use of stable isotopes of biogenic elements (H, C, N, O, S, Mg, Se) with the emphasis on hydrogen and its heavy isotope deuterium. We will discuss the limitations of enriching various compounds in stable isotopes when produced in living organisms. Finally, we overview methods for measuring stable isotopes, focusing on methods for detection in single cells in situ and their exploitation in modern biotechnologies.
Collapse
Affiliation(s)
- Vilém Zachleder
- Institute of Microbiology, CAS, Centre Algatech, Laboratory of Cell Cycles of Algae, CZ-379 81 Třeboň, Czech Republic
| | - Milada Vítová
- Institute of Microbiology, CAS, Centre Algatech, Laboratory of Cell Cycles of Algae, CZ-379 81 Třeboň, Czech Republic
| | - Monika Hlavová
- Institute of Microbiology, CAS, Centre Algatech, Laboratory of Cell Cycles of Algae, CZ-379 81 Třeboň, Czech Republic
| | - Šárka Moudříková
- Institute of Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, CZ-121 16 Prague 2, Czech Republic
| | - Peter Mojzeš
- Institute of Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, CZ-121 16 Prague 2, Czech Republic
| | | | | | - Kateřina Bišová
- Institute of Microbiology, CAS, Centre Algatech, Laboratory of Cell Cycles of Algae, CZ-379 81 Třeboň, Czech Republic.
| |
Collapse
|
4
|
Jaimee G, Halami P. Conjugal transfer of aac(6′)Ie-aph(2″)Ia gene from native species and mechanism of regulation and cross resistance in Enterococcus faecalis MCC3063 by real time-PCR. Microb Pathog 2017; 110:546-553. [DOI: 10.1016/j.micpath.2017.07.049] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 07/28/2017] [Accepted: 07/28/2017] [Indexed: 10/19/2022]
|
5
|
Bacot-Davis VR, Bassenden AV, Sprules T, Berghuis AM. Effect of solvent and protein dynamics in ligand recognition and inhibition of aminoglycoside adenyltransferase 2″-Ia. Protein Sci 2017; 26:1852-1863. [PMID: 28734024 DOI: 10.1002/pro.3224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 06/24/2017] [Accepted: 07/03/2017] [Indexed: 01/15/2023]
Abstract
The aminoglycoside modifying enzyme (AME) ANT(2″)-Ia is a significant target for next generation antibiotic development. Structural studies of a related aminoglycoside-modifying enzyme, ANT(3″)(9), revealed this enzyme contains dynamic, disordered, and well-defined segments that modulate thermodynamically before and after antibiotic binding. Characterizing these structural dynamics is critical for in situ screening, design, and development of contemporary antibiotics that can be implemented in a clinical setting to treat potentially lethal, antibiotic resistant, human infections. Here, the first NMR structural ensembles of ANT(2″)-Ia are presented, and suggest that ATP-aminoglycoside binding repositions the nucleotidyltransferase (NT) and C-terminal domains for catalysis to efficiently occur. Residues involved in ligand recognition were assessed by site-directed mutagenesis. In vitro activity assays indicate a critical role for I129 toward aminoglycoside modification in addition to known catalytic D44, D46, and D48 residues. These observations support previous claims that ANT aminoglycoside sub-class promiscuity is not solely due to binding cleft size, or inherent partial disorder, but can be controlled by ligand modulation on distinct dynamic and thermodynamic properties of ANTs under cellular conditions. Hydrophobic interactions in the substrate binding cleft, as well as solution dynamics in the C-terminal tail of ANT(2″)-Ia, advocate toward design of kanamycin-derived cationic lipid aminoglycoside analogs, some of which have already shown antimicrobial activity in vivo against kanamycin and gentamicin-resistant P. aeruginosa. This data will drive additional in silico, next generation antibiotic development for future human use to combat increasingly prevalent antimicrobial resistance.
Collapse
Affiliation(s)
- Valjean R Bacot-Davis
- McGill University, Biochemistry, 3649 Promenade Sir William Osler Room 470, Montreal, QC H3A 0G4, Canada
| | - Angelia V Bassenden
- McGill University, Biochemistry, 3649 Promenade Sir William Osler Room 470, Montreal, QC H3A 0G4, Canada
| | - Tara Sprules
- McGill University, Biochemistry, 3649 Promenade Sir William Osler Room 470, Montreal, QC H3A 0G4, Canada.,Quebec/Eastern Canada NMR Centre, Pulp & Paper Research Centre, 3420 University St. Room 023, Montreal, QC H3A 2A7, Canada
| | - Albert M Berghuis
- McGill University, Biochemistry, 3649 Promenade Sir William Osler Room 470, Montreal, QC H3A 0G4, Canada
| |
Collapse
|
6
|
Norris AL, Serpersu EH. Ligand promiscuity through the eyes of the aminoglycoside N3 acetyltransferase IIa. Protein Sci 2014; 22:916-28. [PMID: 23640799 DOI: 10.1002/pro.2273] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 04/23/2013] [Accepted: 04/24/2013] [Indexed: 11/08/2022]
Abstract
Aminoglycoside-modifying enzymes (AGMEs) are expressed in many pathogenic bacteria and cause resistance to aminoglycoside (AG) antibiotics. Remarkably, the substrate promiscuity of AGMEs is quite variable. The molecular basis for such ligand promiscuity is largely unknown as there is not an obvious link between amino acid sequence or structure and the antibiotic profiles of AGMEs. To address this issue, this article presents the first kinetic and thermodynamic characterization of one of the least promiscuous AGMEs, the AG N3 acetyltransferase-IIa (AAC-IIa) and its comparison to two highly promiscuous AGMEs, the AG N3-acetyltransferase-IIIb (AAC-IIIb) and the AG phosphotransferase(3')-IIIa (APH). Despite having similar antibiotic selectivities, AAC-IIIb and APH catalyze different reactions and share no homology to one another. AAC-IIa and AAC-IIIb catalyze the same reaction and are very similar in both amino acid sequence and structure. However, they demonstrate strong differences in their substrate profiles and kinetic and thermodynamic properties. AAC-IIa and APH are also polar opposites in terms of ligand promiscuity but share no sequence or apparent structural homology. However, they both are highly dynamic and may even contain disordered segments and both adopt well-defined conformations when AGs are bound. Contrary to this AAC-IIIb maintains a well-defined structure even in apo form. Data presented herein suggest that the antibiotic promiscuity of AGMEs may be determined neither by the flexibility of the protein nor the size of the active site cavity alone but strongly modulated or controlled by the effects of the cosubstrate on the dynamic and thermodynamic properties of the enzyme.
Collapse
Affiliation(s)
- Adrianne L Norris
- Department of Biochemistry and Cellular and Molecular Biology, The University of Tennessee, Knoxville, Tennessee 37996, USA
| | | |
Collapse
|
7
|
NMR spectroscopy on domain dynamics in biomacromolecules. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2013; 112:58-117. [DOI: 10.1016/j.pbiomolbio.2013.05.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Revised: 05/06/2013] [Accepted: 05/07/2013] [Indexed: 12/22/2022]
|
8
|
Serpersu EH, Norris AL. Effect of protein dynamics and solvent in ligand recognition by promiscuous aminoglycoside-modifying enzymes. Adv Carbohydr Chem Biochem 2012; 67:221-48. [PMID: 22794185 DOI: 10.1016/b978-0-12-396527-1.00005-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Engin H Serpersu
- Department of Biochemistry, Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN, USA
| | | |
Collapse
|
9
|
Romanowska J, Reuter N, Trylska J. Comparing aminoglycoside binding sites in bacterial ribosomal RNA and aminoglycoside modifying enzymes. Proteins 2012; 81:63-80. [PMID: 22907688 DOI: 10.1002/prot.24163] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 08/02/2012] [Accepted: 08/09/2012] [Indexed: 11/10/2022]
Abstract
Aminoglycoside antibiotics are used against severe bacterial infections. They bind to the bacterial ribosomal RNA and interfere with the translation process. However, bacteria produce aminoglycoside modifying enzymes (AME) to resist aminoglycoside actions. AMEs form a variable group and yet they specifically recognize and efficiently bind aminoglycosides, which are also diverse in terms of total net charge and the number of pseudo-sugar rings. Here, we present the results of 25 molecular dynamics simulations of three AME representatives and aminoglycoside ribosomal RNA binding site, unliganded and complexed with an aminoglycoside, kanamycin A. A comparison of the aminoglycoside binding sites in these different receptors revealed that the enzymes efficiently mimic the nucleic acid environment of the ribosomal RNA binding cleft. Although internal dynamics of AMEs and their interaction patterns with aminoglycosides differ, the energetical analysis showed that the most favorable sites are virtually the same in the enzymes and RNA. The most copied interactions were of electrostatic nature, but stacking was also replicated in one AME:kanamycin complex. In addition, we found that some water-mediated interactions were very stable in the simulations of the complexes. We show that our simulations reproduce well findings from NMR or X-ray structural studies, as well as results from directed mutagenesis. The outcomes of our analyses provide new insight into aminoglycoside resistance mechanism that is related to the enzymatic modification of these drugs.
Collapse
Affiliation(s)
- Julia Romanowska
- Department of Biophysics, Faculty of Physics, University of Warsaw, Hoża 69, 00-681 Warsaw, Poland.
| | | | | |
Collapse
|
10
|
Rossi R, Bellina F, Lessi M. Selective Palladium-Catalyzed Suzuki-Miyaura Reactions of Polyhalogenated Heteroarenes. Adv Synth Catal 2012. [DOI: 10.1002/adsc.201100942] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
11
|
Matesanz R, Diaz JF, Corzana F, Santana AG, Bastida A, Asensio JL. Multiple keys for a single lock: the unusual structural plasticity of the nucleotidyltransferase (4')/kanamycin complex. Chemistry 2012; 18:2875-89. [PMID: 22298309 DOI: 10.1002/chem.201101888] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 12/05/2011] [Indexed: 11/09/2022]
Abstract
The most common mode of bacterial resistance to aminoglycoside antibiotics is the enzyme-catalysed chemical modification of the drug. Over the last two decades, significant efforts in medicinal chemistry have been focused on the design of non- inactivable antibiotics. Unfortunately, this strategy has met with limited success on account of the remarkably wide substrate specificity of aminoglycoside-modifying enzymes. To understand the mechanisms behind substrate promiscuity, we have performed a comprehensive experimental and theoretical analysis of the molecular-recognition processes that lead to antibiotic inactivation by Staphylococcus aureus nucleotidyltransferase 4'(ANT(4')), a clinically relevant protein. According to our results, the ability of this enzyme to inactivate structurally diverse polycationic molecules relies on three specific features of the catalytic region. First, the dominant role of electrostatics in aminoglycoside recognition, in combination with the significant extension of the enzyme anionic regions, confers to the protein/antibiotic complex a highly dynamic character. The motion deduced for the bound antibiotic seem to be essential for the enzyme action and probably provide a mechanism to explore alternative drug inactivation modes. Second, the nucleotide recognition is exclusively mediated by the inorganic fragment. In fact, even inorganic triphosphate can be employed as a substrate. Third, ANT(4') seems to be equipped with a duplicated basic catalyst that is able to promote drug inactivation through different reactive geometries. This particular combination of features explains the enzyme versatility and renders the design of non-inactivable derivatives a challenging task.
Collapse
Affiliation(s)
- Ruth Matesanz
- Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
12
|
Hu X, Norris AL, Baudry J, Serpersu EH. Coenzyme A binding to the aminoglycoside acetyltransferase (3)-IIIb increases conformational sampling of antibiotic binding site. Biochemistry 2011; 50:10559-65. [PMID: 22026726 DOI: 10.1021/bi201008f] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
NMR spectroscopy experiments and molecular dynamics simulations were performed to describe the dynamic properties of the aminoglycoside acetyltransferase (3)-IIIb (AAC) in its apo and coenzyme A (CoASH) bound forms. The (15)N-(1)H HSQC spectra indicate a partial structural change and coupling of the CoASH binding site with another region in the protein upon the CoASH titration into the apo enzyme. Molecular dynamics simulations indicate a significant structural and dynamic variation of the long loop in the antibiotic binding domain in the form of a relatively slow (250 ns), concerted opening motion in the CoASH-enzyme complex and that binding of the CoASH increases the structural flexibility of the loop, leading to an interchange between several similar equally populated conformations.
Collapse
Affiliation(s)
- Xiaohu Hu
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | | | | | | |
Collapse
|
13
|
Norris AL, Serpersu EH. Antibiotic selection by the promiscuous aminoglycoside acetyltransferase-(3)-IIIb is thermodynamically achieved through the control of solvent rearrangement. Biochemistry 2011; 50:9309-17. [PMID: 21958034 DOI: 10.1021/bi2011916] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The results presented here show the first known observation of opposite signs of change in heat capacity (ΔC(p)) of two structurally similar ligands binding to the same protein site. Neomycin and paromomycin are aminoglycoside antibiotics that are substrates for the resistance-conferring enzyme, the aminoglycoside acetyltransferase-(3)-IIIb (AAC). These antibiotics are identical to one another except at the 6' position where neomycin has an amine and paromomycin has a hydroxyl. The opposite trends in ΔC(p) of binding of these two drugs to AAC suggest a differential exposure of nonpolar amino acid side chains. Nuclear magnetic resonance experiments further demonstrate significantly different changes in AAC upon interaction with neomycin and paromomycin. Experiments in H(2)O and D(2)O reveal the first observed temperature dependence of solvent and vibrational contributions to ΔC(p). Coenzyme A significantly influences these effects. Together, the data suggest that AAC exploits solvent properties to facilitate favorable thermodynamic selection of antibiotics.
Collapse
Affiliation(s)
- Adrianne L Norris
- Department of Biochemistry and Cellular and Molecular Biology, The University of Tennessee, Knoxville, Tennessee 37996, United States
| | | |
Collapse
|
14
|
ATP binding enables broad antibiotic selectivity of aminoglycoside phosphotransferase(3')-IIIa: an elastic network analysis. J Mol Biol 2011; 409:450-65. [PMID: 21477597 DOI: 10.1016/j.jmb.2011.03.061] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 03/22/2011] [Accepted: 03/27/2011] [Indexed: 11/21/2022]
Abstract
The bacterial enzyme aminoglycoside phosphotransferase(3')-IIIa (APH) confers resistance against a wide range of aminoglycoside antibiotics. In this study, we use the Gaussian network model to investigate how the binding of nucleotides and antibiotics influences the dynamics and thereby the ligand binding properties of APH. Interestingly, in NMR experiments, the dynamics differ significantly in various APH complexes, although crystallographic studies indicate that no larger conformational changes occur upon ligand binding. Isothermal titration calorimetry also shows different thermodynamic contributions to ligand binding. Formation of aminoglycoside-APH complexes is enthalpically driven, while the enthalpic change upon aminoglycoside binding to the nucleotide-APH complex is much smaller. The differential effects of nucleotide binding and antibiotic binding to APH can be explained theoretically by single-residue fluctuations and correlated motions of the enzyme. The surprising destabilization of β-sheet residues upon nucleotide binding, as seen in hydrogen/deuterium exchange experiments, shows that the number of closest neighbors does not fully explain residue flexibility. Additionally, we must consider correlated motions of dynamic protein domains, which show that not only connectivity but also the overall protein architecture is important for protein dynamics.
Collapse
|
15
|
Norris AL, Serpersu EH. Interactions of coenzyme A with the aminoglycoside acetyltransferase (3)-IIIb and thermodynamics of a ternary system. Biochemistry 2010; 49:4036-42. [PMID: 20387904 DOI: 10.1021/bi1001568] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this work, the binding of coenzyme A (CoASH) to the aminoglycoside acetyltransferase (3)-IIIb (AAC) is studied by several experimental techniques. These data represent the first thermodynamic and kinetic characterization of interaction of a cofactor with an enzyme that modifies the 2-deoxystreptamine ring (2-DOS) common to all aminoglycoside antibiotics. Acetyl coenzyme A (AcCoA) was the preferred substrate, but propionyl and malonyl CoA were also substrates. CoASH associates with two different sites on AAC as confirmed by ITC, NMR, and fluorescence experiments: one with a high-affinity, catalytic site and a secondary, low-affinity site that overlaps with the antibiotic binding pocket. The binding of CoASH to the high-affinity site occurs with a small, unfavorable enthalpy and a favorable entropy. Binding to the second site is highly exothermic and is accompanied by an unfavorable entropic contribution. The presence of an aminoglycoside alters the binding of CoASH to AAC dramatically such that the binding occurs with a favorable enthalpy (DeltaH < 0) and an unfavorable entropy (TDeltaS < 0). This is irrespective of which aminoglycoside is the cosubstrate and occurs without a significant change in the affinity of CoASH for AAC. Also, antibiotics eliminate binding of CoASH to the second site. These data allowed the enthalpies of all six equilibria present in a ternary system (AAC-antibiotic-coenzyme) to be determined for the first time for an aminoglycoside-modifying enzyme. NMR experiments also shed light on the dynamic nature of AAC as fast, slow, and intermediary exchanges between apoenzyme- and coenzyme-bound forms were observed.
Collapse
Affiliation(s)
- Adrianne L Norris
- Department of Biochemistry and Cellular and Molecular Biology, The University of Tennessee, Knoxville, Tennessee 37996, USA
| | | |
Collapse
|
16
|
Revuelta J, Corzana F, Bastida A, Asensio J. The Unusual Nucleotide Recognition Properties of the Resistance Enzyme ANT(4′): Inorganic Tri/Polyphosphate as a Substrate for Aminoglycoside Inactivation. Chemistry 2010; 16:8635-40. [DOI: 10.1002/chem.201000641] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
17
|
Norris AL, Özen C, Serpersu EH. Thermodynamics and Kinetics of Association of Antibiotics with the Aminoglycoside Acetyltransferase (3)-IIIb, a Resistance-Causing Enzyme. Biochemistry 2010; 49:4027-35. [DOI: 10.1021/bi100155j] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Adrianne L. Norris
- Department of Biochemistry and Cellular and Molecular Biology, The University of Tennessee, Knoxville, Tennessee 37996
| | - Can Özen
- Department of Biotechnology and Central Laboratory Molecular Biology and Biotechnology R&D Center, Middle East Technical University, Ankara, Turkey
| | - Engin H. Serpersu
- Department of Biochemistry and Cellular and Molecular Biology, The University of Tennessee, Knoxville, Tennessee 37996
- Graduate School of Genome Science and Technology, The University of Tennessee and Oak Ridge National Laboratories, Knoxville, Tennessee 37996, and Bioscience Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
| |
Collapse
|
18
|
Serpersu EH, Ozen C, Norris AL, Steren C, Whittemore N. Backbone resonance assignments of a promiscuous aminoglycoside antibiotic resistance enzyme; the aminoglycoside phosphotransferase(3')-IIIa. BIOMOLECULAR NMR ASSIGNMENTS 2010; 4:9-12. [PMID: 19898995 DOI: 10.1007/s12104-009-9195-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Accepted: 10/27/2009] [Indexed: 05/28/2023]
Abstract
The aminoglycoside phosphotransferase(3')-IIIa (APH) is a promiscuous enzyme and renders a large number of structurally diverse aminoglycoside antibiotics useless against infectious bacteria. A remarkable property of this approximately 31 kDa enzyme is in its unusual dynamic behavior in solution; the apo-form of the enzyme exchanges all of its backbone amide protons within 15 h of exposure to D ( 2 ) O while aminoglycoside-bound forms retain approximately 40% of the amide protons even after >90 h of exposure. Moreover, the number of observable peaks and their dispersion in HSQC spectra varies with each aminoglycoside, rendering the resonance assignments very challenging. Therefore, the binary APH-tobramycin complex, which shows the largest number of well-resolved peaks, was used for the backbone resonance assignments (Calpha, C, N, H, and some Cbeta) of this protein (BMRB-16337).
Collapse
Affiliation(s)
- Engin H Serpersu
- Department of Biochemistry Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN 37996, USA.
| | | | | | | | | |
Collapse
|